| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem28.1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) |
| 3 |
|
poimirlem28.2 |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
| 4 |
|
poimirlem28.3 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n ) |
| 5 |
|
poimirlem28.4 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> B =/= ( n - 1 ) ) |
| 6 |
|
fzfi |
|- ( 0 ... K ) e. Fin |
| 7 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 8 |
|
mapfi |
|- ( ( ( 0 ... K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 0 ... K ) ^m ( 1 ... N ) ) e. Fin ) |
| 9 |
6 7 8
|
mp2an |
|- ( ( 0 ... K ) ^m ( 1 ... N ) ) e. Fin |
| 10 |
|
fzfi |
|- ( 0 ... ( N - 1 ) ) e. Fin |
| 11 |
|
mapfi |
|- ( ( ( ( 0 ... K ) ^m ( 1 ... N ) ) e. Fin /\ ( 0 ... ( N - 1 ) ) e. Fin ) -> ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) e. Fin ) |
| 12 |
9 10 11
|
mp2an |
|- ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) e. Fin |
| 13 |
12
|
a1i |
|- ( ph -> ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) e. Fin ) |
| 14 |
|
2z |
|- 2 e. ZZ |
| 15 |
14
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 16 |
|
fzofi |
|- ( 0 ..^ K ) e. Fin |
| 17 |
|
mapfi |
|- ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin ) |
| 18 |
16 7 17
|
mp2an |
|- ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin |
| 19 |
|
mapfi |
|- ( ( ( 1 ... N ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin ) |
| 20 |
7 7 19
|
mp2an |
|- ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin |
| 21 |
|
f1of |
|- ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> f : ( 1 ... N ) --> ( 1 ... N ) ) |
| 22 |
21
|
ss2abi |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ { f | f : ( 1 ... N ) --> ( 1 ... N ) } |
| 23 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 24 |
23 23
|
mapval |
|- ( ( 1 ... N ) ^m ( 1 ... N ) ) = { f | f : ( 1 ... N ) --> ( 1 ... N ) } |
| 25 |
22 24
|
sseqtrri |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) |
| 26 |
|
ssfi |
|- ( ( ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) ) -> { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) |
| 27 |
20 25 26
|
mp2an |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin |
| 28 |
|
xpfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin ) |
| 29 |
18 27 28
|
mp2an |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin |
| 30 |
|
fzfi |
|- ( 0 ... N ) e. Fin |
| 31 |
|
xpfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin /\ ( 0 ... N ) e. Fin ) -> ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin ) |
| 32 |
29 30 31
|
mp2an |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin |
| 33 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin ) |
| 34 |
32 33
|
ax-mp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin |
| 35 |
|
hashcl |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) e. NN0 ) |
| 36 |
35
|
nn0zd |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) e. ZZ ) |
| 37 |
34 36
|
mp1i |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) e. ZZ ) |
| 38 |
|
dfrex2 |
|- ( E. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) <-> -. A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) |
| 39 |
|
nfv |
|- F/ t ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) |
| 40 |
|
nfcv |
|- F/_ t 2 |
| 41 |
|
nfcv |
|- F/_ t || |
| 42 |
|
nfcv |
|- F/_ t # |
| 43 |
|
nfrab1 |
|- F/_ t { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } |
| 44 |
42 43
|
nffv |
|- F/_ t ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) |
| 45 |
40 41 44
|
nfbr |
|- F/ t 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) |
| 46 |
|
neq0 |
|- ( -. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) <-> E. s s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) |
| 47 |
|
iddvds |
|- ( 2 e. ZZ -> 2 || 2 ) |
| 48 |
14 47
|
ax-mp |
|- 2 || 2 |
| 49 |
|
vex |
|- s e. _V |
| 50 |
|
hashsng |
|- ( s e. _V -> ( # ` { s } ) = 1 ) |
| 51 |
49 50
|
ax-mp |
|- ( # ` { s } ) = 1 |
| 52 |
51
|
oveq2i |
|- ( 1 + ( # ` { s } ) ) = ( 1 + 1 ) |
| 53 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 54 |
52 53
|
eqtr4i |
|- ( 1 + ( # ` { s } ) ) = 2 |
| 55 |
48 54
|
breqtrri |
|- 2 || ( 1 + ( # ` { s } ) ) |
| 56 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } e. Fin ) |
| 57 |
|
diffi |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } e. Fin -> ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. Fin ) |
| 58 |
32 56 57
|
mp2b |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. Fin |
| 59 |
|
snfi |
|- { s } e. Fin |
| 60 |
|
disjdifr |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) i^i { s } ) = (/) |
| 61 |
|
hashun |
|- ( ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. Fin /\ { s } e. Fin /\ ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) i^i { s } ) = (/) ) -> ( # ` ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) ) = ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) ) |
| 62 |
58 59 60 61
|
mp3an |
|- ( # ` ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) ) = ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) |
| 63 |
|
difsnid |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) |
| 64 |
63
|
fveq2d |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( # ` ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
| 65 |
62 64
|
eqtr3id |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
| 66 |
65
|
adantl |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
| 67 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> N e. NN ) |
| 68 |
|
fveq2 |
|- ( t = u -> ( 2nd ` t ) = ( 2nd ` u ) ) |
| 69 |
68
|
breq2d |
|- ( t = u -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` u ) ) ) |
| 70 |
69
|
ifbid |
|- ( t = u -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) ) |
| 71 |
70
|
csbeq1d |
|- ( t = u -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 72 |
|
2fveq3 |
|- ( t = u -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` u ) ) ) |
| 73 |
|
2fveq3 |
|- ( t = u -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` u ) ) ) |
| 74 |
73
|
imaeq1d |
|- ( t = u -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) ) |
| 75 |
74
|
xpeq1d |
|- ( t = u -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 76 |
73
|
imaeq1d |
|- ( t = u -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) ) |
| 77 |
76
|
xpeq1d |
|- ( t = u -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 78 |
75 77
|
uneq12d |
|- ( t = u -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 79 |
72 78
|
oveq12d |
|- ( t = u -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 80 |
79
|
csbeq2dv |
|- ( t = u -> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 81 |
71 80
|
eqtrd |
|- ( t = u -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 82 |
81
|
mpteq2dv |
|- ( t = u -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 83 |
|
breq1 |
|- ( y = w -> ( y < ( 2nd ` u ) <-> w < ( 2nd ` u ) ) ) |
| 84 |
|
id |
|- ( y = w -> y = w ) |
| 85 |
|
oveq1 |
|- ( y = w -> ( y + 1 ) = ( w + 1 ) ) |
| 86 |
83 84 85
|
ifbieq12d |
|- ( y = w -> if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) = if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) ) |
| 87 |
86
|
csbeq1d |
|- ( y = w -> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 88 |
|
oveq2 |
|- ( j = i -> ( 1 ... j ) = ( 1 ... i ) ) |
| 89 |
88
|
imaeq2d |
|- ( j = i -> ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) ) |
| 90 |
89
|
xpeq1d |
|- ( j = i -> ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) ) |
| 91 |
|
oveq1 |
|- ( j = i -> ( j + 1 ) = ( i + 1 ) ) |
| 92 |
91
|
oveq1d |
|- ( j = i -> ( ( j + 1 ) ... N ) = ( ( i + 1 ) ... N ) ) |
| 93 |
92
|
imaeq2d |
|- ( j = i -> ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) ) |
| 94 |
93
|
xpeq1d |
|- ( j = i -> ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) |
| 95 |
90 94
|
uneq12d |
|- ( j = i -> ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 96 |
95
|
oveq2d |
|- ( j = i -> ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 97 |
96
|
cbvcsbv |
|- [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 98 |
87 97
|
eqtrdi |
|- ( y = w -> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 99 |
98
|
cbvmptv |
|- ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 100 |
82 99
|
eqtrdi |
|- ( t = u -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 101 |
100
|
eqeq2d |
|- ( t = u -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> x = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 102 |
101
|
cbvrabv |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = { u e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) } |
| 103 |
|
elmapi |
|- ( x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) -> x : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
| 104 |
103
|
ad3antlr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> x : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
| 105 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) |
| 106 |
|
simpl |
|- ( ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> E. p e. ran x ( p ` n ) =/= 0 ) |
| 107 |
106
|
ralimi |
|- ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 ) |
| 108 |
107
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 ) |
| 109 |
|
fveq2 |
|- ( n = m -> ( p ` n ) = ( p ` m ) ) |
| 110 |
109
|
neeq1d |
|- ( n = m -> ( ( p ` n ) =/= 0 <-> ( p ` m ) =/= 0 ) ) |
| 111 |
110
|
rexbidv |
|- ( n = m -> ( E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` m ) =/= 0 ) ) |
| 112 |
|
fveq1 |
|- ( p = q -> ( p ` m ) = ( q ` m ) ) |
| 113 |
112
|
neeq1d |
|- ( p = q -> ( ( p ` m ) =/= 0 <-> ( q ` m ) =/= 0 ) ) |
| 114 |
113
|
cbvrexvw |
|- ( E. p e. ran x ( p ` m ) =/= 0 <-> E. q e. ran x ( q ` m ) =/= 0 ) |
| 115 |
111 114
|
bitrdi |
|- ( n = m -> ( E. p e. ran x ( p ` n ) =/= 0 <-> E. q e. ran x ( q ` m ) =/= 0 ) ) |
| 116 |
115
|
rspccva |
|- ( ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= 0 ) |
| 117 |
108 116
|
sylan |
|- ( ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= 0 ) |
| 118 |
|
simpr |
|- ( ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> E. p e. ran x ( p ` n ) =/= K ) |
| 119 |
118
|
ralimi |
|- ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) |
| 120 |
119
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) |
| 121 |
109
|
neeq1d |
|- ( n = m -> ( ( p ` n ) =/= K <-> ( p ` m ) =/= K ) ) |
| 122 |
121
|
rexbidv |
|- ( n = m -> ( E. p e. ran x ( p ` n ) =/= K <-> E. p e. ran x ( p ` m ) =/= K ) ) |
| 123 |
112
|
neeq1d |
|- ( p = q -> ( ( p ` m ) =/= K <-> ( q ` m ) =/= K ) ) |
| 124 |
123
|
cbvrexvw |
|- ( E. p e. ran x ( p ` m ) =/= K <-> E. q e. ran x ( q ` m ) =/= K ) |
| 125 |
122 124
|
bitrdi |
|- ( n = m -> ( E. p e. ran x ( p ` n ) =/= K <-> E. q e. ran x ( q ` m ) =/= K ) ) |
| 126 |
125
|
rspccva |
|- ( ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= K ) |
| 127 |
120 126
|
sylan |
|- ( ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= K ) |
| 128 |
67 102 104 105 117 127
|
poimirlem22 |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> E! z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } z =/= s ) |
| 129 |
|
eldifsn |
|- ( z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) <-> ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } /\ z =/= s ) ) |
| 130 |
129
|
eubii |
|- ( E! z z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) <-> E! z ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } /\ z =/= s ) ) |
| 131 |
58
|
elexi |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. _V |
| 132 |
|
euhash1 |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. _V -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 <-> E! z z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) ) |
| 133 |
131 132
|
ax-mp |
|- ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 <-> E! z z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) |
| 134 |
|
df-reu |
|- ( E! z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } z =/= s <-> E! z ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } /\ z =/= s ) ) |
| 135 |
130 133 134
|
3bitr4ri |
|- ( E! z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } z =/= s <-> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 ) |
| 136 |
128 135
|
sylib |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 ) |
| 137 |
136
|
oveq1d |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) = ( 1 + ( # ` { s } ) ) ) |
| 138 |
66 137
|
eqtr3d |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) = ( 1 + ( # ` { s } ) ) ) |
| 139 |
55 138
|
breqtrrid |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
| 140 |
139
|
ex |
|- ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) ) |
| 141 |
140
|
exlimdv |
|- ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( E. s s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) ) |
| 142 |
46 141
|
biimtrid |
|- ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( -. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) ) |
| 143 |
|
dvds0 |
|- ( 2 e. ZZ -> 2 || 0 ) |
| 144 |
14 143
|
ax-mp |
|- 2 || 0 |
| 145 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 146 |
144 145
|
breqtrri |
|- 2 || ( # ` (/) ) |
| 147 |
|
fveq2 |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) = ( # ` (/) ) ) |
| 148 |
146 147
|
breqtrrid |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
| 149 |
142 148
|
pm2.61d2 |
|- ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
| 150 |
149
|
ex |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) ) |
| 151 |
150
|
adantld |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) ) |
| 152 |
|
iba |
|- ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) ) |
| 153 |
152
|
rabbidv |
|- ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) |
| 154 |
153
|
fveq2d |
|- ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
| 155 |
154
|
breq2d |
|- ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) <-> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) |
| 156 |
151 155
|
mpbidi |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) |
| 157 |
156
|
a1d |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) ) |
| 158 |
39 45 157
|
rexlimd |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( E. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) |
| 159 |
38 158
|
biimtrrid |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( -. A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) |
| 160 |
|
simpr |
|- ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) -> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) |
| 161 |
160
|
con3i |
|- ( -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> -. ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) |
| 162 |
161
|
ralimi |
|- ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) |
| 163 |
|
rabeq0 |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = (/) <-> A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) |
| 164 |
162 163
|
sylibr |
|- ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = (/) ) |
| 165 |
164
|
fveq2d |
|- ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = ( # ` (/) ) ) |
| 166 |
146 165
|
breqtrrid |
|- ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
| 167 |
159 166
|
pm2.61d2 |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
| 168 |
13 15 37 167
|
fsumdvds |
|- ( ph -> 2 || sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
| 169 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin ) |
| 170 |
32 169
|
ax-mp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin |
| 171 |
|
simp1 |
|- ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) |
| 172 |
|
sneq |
|- ( ( 2nd ` t ) = N -> { ( 2nd ` t ) } = { N } ) |
| 173 |
172
|
difeq2d |
|- ( ( 2nd ` t ) = N -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) = ( ( 0 ... N ) \ { N } ) ) |
| 174 |
|
difun2 |
|- ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) |
| 175 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 176 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 177 |
175 176
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 178 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( n e. ( 0 ... N ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) ) ) |
| 179 |
177 178
|
syl |
|- ( ph -> ( n e. ( 0 ... N ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) ) ) |
| 180 |
|
elun |
|- ( n e. ( ( 0 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n e. { N } ) ) |
| 181 |
|
velsn |
|- ( n e. { N } <-> n = N ) |
| 182 |
181
|
orbi2i |
|- ( ( n e. ( 0 ... ( N - 1 ) ) \/ n e. { N } ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) ) |
| 183 |
180 182
|
bitri |
|- ( n e. ( ( 0 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) ) |
| 184 |
179 183
|
bitr4di |
|- ( ph -> ( n e. ( 0 ... N ) <-> n e. ( ( 0 ... ( N - 1 ) ) u. { N } ) ) ) |
| 185 |
184
|
eqrdv |
|- ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) |
| 186 |
185
|
difeq1d |
|- ( ph -> ( ( 0 ... N ) \ { N } ) = ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ { N } ) ) |
| 187 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 188 |
|
uzid |
|- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
| 189 |
|
uznfz |
|- ( N e. ( ZZ>= ` N ) -> -. N e. ( 0 ... ( N - 1 ) ) ) |
| 190 |
187 188 189
|
3syl |
|- ( ph -> -. N e. ( 0 ... ( N - 1 ) ) ) |
| 191 |
|
disjsn |
|- ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 0 ... ( N - 1 ) ) ) |
| 192 |
|
disj3 |
|- ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> ( 0 ... ( N - 1 ) ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) ) |
| 193 |
191 192
|
bitr3i |
|- ( -. N e. ( 0 ... ( N - 1 ) ) <-> ( 0 ... ( N - 1 ) ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) ) |
| 194 |
190 193
|
sylib |
|- ( ph -> ( 0 ... ( N - 1 ) ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) ) |
| 195 |
174 186 194
|
3eqtr4a |
|- ( ph -> ( ( 0 ... N ) \ { N } ) = ( 0 ... ( N - 1 ) ) ) |
| 196 |
173 195
|
sylan9eqr |
|- ( ( ph /\ ( 2nd ` t ) = N ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) = ( 0 ... ( N - 1 ) ) ) |
| 197 |
196
|
rexeqdv |
|- ( ( ph /\ ( 2nd ` t ) = N ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 198 |
197
|
biimprd |
|- ( ( ph /\ ( 2nd ` t ) = N ) -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 199 |
198
|
ralimdv |
|- ( ( ph /\ ( 2nd ` t ) = N ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 200 |
199
|
expimpd |
|- ( ph -> ( ( ( 2nd ` t ) = N /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 201 |
171 200
|
sylan2i |
|- ( ph -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 202 |
201
|
adantr |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 203 |
202
|
ss2rabdv |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) |
| 204 |
|
hashssdif |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) ) |
| 205 |
170 203 204
|
sylancr |
|- ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) ) |
| 206 |
1
|
adantr |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> N e. NN ) |
| 207 |
3
|
adantlr |
|- ( ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
| 208 |
|
xp1st |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 209 |
|
xp1st |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` t ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 210 |
|
elmapi |
|- ( ( 1st ` ( 1st ` t ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` t ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 211 |
208 209 210
|
3syl |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` ( 1st ` t ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 212 |
211
|
adantl |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 1st ` ( 1st ` t ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 213 |
|
xp2nd |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` t ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 214 |
|
fvex |
|- ( 2nd ` ( 1st ` t ) ) e. _V |
| 215 |
|
f1oeq1 |
|- ( f = ( 2nd ` ( 1st ` t ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 216 |
214 215
|
elab |
|- ( ( 2nd ` ( 1st ` t ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 217 |
213 216
|
sylib |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 218 |
208 217
|
syl |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 219 |
218
|
adantl |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 220 |
|
xp2nd |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` t ) e. ( 0 ... N ) ) |
| 221 |
220
|
adantl |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 2nd ` t ) e. ( 0 ... N ) ) |
| 222 |
206 2 207 212 219 221
|
poimirlem24 |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
| 223 |
208
|
adantl |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 224 |
|
1st2nd2 |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` t ) = <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. ) |
| 225 |
224
|
csbeq1d |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> [_ ( 1st ` t ) / s ]_ C = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) |
| 226 |
225
|
eqeq2d |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) ) |
| 227 |
226
|
rexbidv |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) ) |
| 228 |
227
|
ralbidv |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) ) |
| 229 |
228
|
anbi1d |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
| 230 |
223 229
|
syl |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
| 231 |
222 230
|
bitr4d |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
| 232 |
103
|
frnd |
|- ( x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) -> ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
| 233 |
232
|
anim2i |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) ) |
| 234 |
|
dfss3 |
|- ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) <-> A. n e. ( 0 ... ( N - 1 ) ) n e. ran ( p e. ran x |-> B ) ) |
| 235 |
|
vex |
|- n e. _V |
| 236 |
|
eqid |
|- ( p e. ran x |-> B ) = ( p e. ran x |-> B ) |
| 237 |
236
|
elrnmpt |
|- ( n e. _V -> ( n e. ran ( p e. ran x |-> B ) <-> E. p e. ran x n = B ) ) |
| 238 |
235 237
|
ax-mp |
|- ( n e. ran ( p e. ran x |-> B ) <-> E. p e. ran x n = B ) |
| 239 |
238
|
ralbii |
|- ( A. n e. ( 0 ... ( N - 1 ) ) n e. ran ( p e. ran x |-> B ) <-> A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) |
| 240 |
234 239
|
sylbb |
|- ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) -> A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) |
| 241 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
| 242 |
|
fzss1 |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) ) |
| 243 |
|
ssralv |
|- ( ( 1 ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B ) ) |
| 244 |
241 242 243
|
mp2b |
|- ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B ) |
| 245 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 246 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 247 |
245 246
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 248 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 249 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 250 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 251 |
187 248 249 250
|
4syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 252 |
247 251
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 253 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
| 254 |
252 253
|
syl |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
| 255 |
254
|
sselda |
|- ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n e. ( 1 ... N ) ) |
| 256 |
255
|
adantlr |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... ( N - 1 ) ) ) -> n e. ( 1 ... N ) ) |
| 257 |
|
simplr |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
| 258 |
|
ssel2 |
|- ( ( ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) /\ p e. ran x ) -> p e. ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
| 259 |
|
elmapi |
|- ( p e. ( ( 0 ... K ) ^m ( 1 ... N ) ) -> p : ( 1 ... N ) --> ( 0 ... K ) ) |
| 260 |
258 259
|
syl |
|- ( ( ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) /\ p e. ran x ) -> p : ( 1 ... N ) --> ( 0 ... K ) ) |
| 261 |
257 260
|
sylan |
|- ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p e. ran x ) -> p : ( 1 ... N ) --> ( 0 ... K ) ) |
| 262 |
|
elfzelz |
|- ( n e. ( 1 ... N ) -> n e. ZZ ) |
| 263 |
262
|
zred |
|- ( n e. ( 1 ... N ) -> n e. RR ) |
| 264 |
263
|
ltnrd |
|- ( n e. ( 1 ... N ) -> -. n < n ) |
| 265 |
|
breq1 |
|- ( n = B -> ( n < n <-> B < n ) ) |
| 266 |
265
|
notbid |
|- ( n = B -> ( -. n < n <-> -. B < n ) ) |
| 267 |
264 266
|
syl5ibcom |
|- ( n e. ( 1 ... N ) -> ( n = B -> -. B < n ) ) |
| 268 |
267
|
necon2ad |
|- ( n e. ( 1 ... N ) -> ( B < n -> n =/= B ) ) |
| 269 |
268
|
3ad2ant1 |
|- ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) -> ( B < n -> n =/= B ) ) |
| 270 |
269
|
adantl |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> ( B < n -> n =/= B ) ) |
| 271 |
4 270
|
mpd |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> n =/= B ) |
| 272 |
271
|
3exp2 |
|- ( ph -> ( n e. ( 1 ... N ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) -> ( ( p ` n ) = 0 -> n =/= B ) ) ) ) |
| 273 |
272
|
imp31 |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( p ` n ) = 0 -> n =/= B ) ) |
| 274 |
273
|
necon2d |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( n = B -> ( p ` n ) =/= 0 ) ) |
| 275 |
274
|
adantllr |
|- ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( n = B -> ( p ` n ) =/= 0 ) ) |
| 276 |
261 275
|
syldan |
|- ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p e. ran x ) -> ( n = B -> ( p ` n ) =/= 0 ) ) |
| 277 |
276
|
reximdva |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( E. p e. ran x n = B -> E. p e. ran x ( p ` n ) =/= 0 ) ) |
| 278 |
256 277
|
syldan |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( E. p e. ran x n = B -> E. p e. ran x ( p ` n ) =/= 0 ) ) |
| 279 |
278
|
ralimdva |
|- ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) -> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 ) ) |
| 280 |
279
|
imp |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 ) |
| 281 |
244 280
|
sylan2 |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 ) |
| 282 |
281
|
biantrurd |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) ) |
| 283 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 284 |
1 283
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 285 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( n e. ( 1 ... N ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) ) ) |
| 286 |
284 285
|
syl |
|- ( ph -> ( n e. ( 1 ... N ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) ) ) |
| 287 |
|
elun |
|- ( n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n e. { N } ) ) |
| 288 |
181
|
orbi2i |
|- ( ( n e. ( 1 ... ( N - 1 ) ) \/ n e. { N } ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) ) |
| 289 |
287 288
|
bitri |
|- ( n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) ) |
| 290 |
286 289
|
bitr4di |
|- ( ph -> ( n e. ( 1 ... N ) <-> n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) ) ) |
| 291 |
290
|
eqrdv |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) |
| 292 |
291
|
raleqdv |
|- ( ph -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> A. n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) E. p e. ran x ( p ` n ) =/= 0 ) ) |
| 293 |
|
ralunb |
|- ( A. n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 ) ) |
| 294 |
292 293
|
bitrdi |
|- ( ph -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 ) ) ) |
| 295 |
|
fveq2 |
|- ( n = N -> ( p ` n ) = ( p ` N ) ) |
| 296 |
295
|
neeq1d |
|- ( n = N -> ( ( p ` n ) =/= 0 <-> ( p ` N ) =/= 0 ) ) |
| 297 |
296
|
rexbidv |
|- ( n = N -> ( E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` N ) =/= 0 ) ) |
| 298 |
297
|
ralsng |
|- ( N e. NN -> ( A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` N ) =/= 0 ) ) |
| 299 |
1 298
|
syl |
|- ( ph -> ( A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` N ) =/= 0 ) ) |
| 300 |
299
|
anbi2d |
|- ( ph -> ( ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 ) <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) ) |
| 301 |
294 300
|
bitrd |
|- ( ph -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) ) |
| 302 |
301
|
ad2antrr |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) ) |
| 303 |
|
0z |
|- 0 e. ZZ |
| 304 |
|
1z |
|- 1 e. ZZ |
| 305 |
|
fzshftral |
|- ( ( 0 e. ZZ /\ ( N - 1 ) e. ZZ /\ 1 e. ZZ ) -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) ) |
| 306 |
303 304 305
|
mp3an13 |
|- ( ( N - 1 ) e. ZZ -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) ) |
| 307 |
187 248 306
|
3syl |
|- ( ph -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) ) |
| 308 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 309 |
308
|
a1i |
|- ( ph -> ( 0 + 1 ) = 1 ) |
| 310 |
309 247
|
oveq12d |
|- ( ph -> ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
| 311 |
310
|
raleqdv |
|- ( ph -> ( A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) ) |
| 312 |
307 311
|
bitrd |
|- ( ph -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) ) |
| 313 |
|
ovex |
|- ( m - 1 ) e. _V |
| 314 |
|
eqeq1 |
|- ( n = ( m - 1 ) -> ( n = B <-> ( m - 1 ) = B ) ) |
| 315 |
314
|
rexbidv |
|- ( n = ( m - 1 ) -> ( E. p e. ran x n = B <-> E. p e. ran x ( m - 1 ) = B ) ) |
| 316 |
313 315
|
sbcie |
|- ( [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> E. p e. ran x ( m - 1 ) = B ) |
| 317 |
316
|
ralbii |
|- ( A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> A. m e. ( 1 ... N ) E. p e. ran x ( m - 1 ) = B ) |
| 318 |
|
oveq1 |
|- ( m = n -> ( m - 1 ) = ( n - 1 ) ) |
| 319 |
318
|
eqeq1d |
|- ( m = n -> ( ( m - 1 ) = B <-> ( n - 1 ) = B ) ) |
| 320 |
319
|
rexbidv |
|- ( m = n -> ( E. p e. ran x ( m - 1 ) = B <-> E. p e. ran x ( n - 1 ) = B ) ) |
| 321 |
320
|
cbvralvw |
|- ( A. m e. ( 1 ... N ) E. p e. ran x ( m - 1 ) = B <-> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) |
| 322 |
317 321
|
bitri |
|- ( A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) |
| 323 |
312 322
|
bitrdi |
|- ( ph -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) ) |
| 324 |
323
|
biimpa |
|- ( ( ph /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) |
| 325 |
324
|
adantlr |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) |
| 326 |
5
|
necomd |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> ( n - 1 ) =/= B ) |
| 327 |
326
|
3exp2 |
|- ( ph -> ( n e. ( 1 ... N ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) -> ( ( p ` n ) = K -> ( n - 1 ) =/= B ) ) ) ) |
| 328 |
327
|
imp31 |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( p ` n ) = K -> ( n - 1 ) =/= B ) ) |
| 329 |
328
|
necon2d |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( n - 1 ) = B -> ( p ` n ) =/= K ) ) |
| 330 |
329
|
adantllr |
|- ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( n - 1 ) = B -> ( p ` n ) =/= K ) ) |
| 331 |
261 330
|
syldan |
|- ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p e. ran x ) -> ( ( n - 1 ) = B -> ( p ` n ) =/= K ) ) |
| 332 |
331
|
reximdva |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( E. p e. ran x ( n - 1 ) = B -> E. p e. ran x ( p ` n ) =/= K ) ) |
| 333 |
332
|
ralimdva |
|- ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) ) |
| 334 |
333
|
imp |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) |
| 335 |
325 334
|
syldan |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) |
| 336 |
335
|
biantrud |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) ) ) |
| 337 |
|
r19.26 |
|- ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) <-> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) ) |
| 338 |
336 337
|
bitr4di |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) |
| 339 |
282 302 338
|
3bitr2d |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) |
| 340 |
233 240 339
|
syl2an |
|- ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) |
| 341 |
340
|
pm5.32da |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) <-> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) |
| 342 |
341
|
anbi2d |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) ) |
| 343 |
342
|
rexbidva |
|- ( ph -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) ) |
| 344 |
343
|
adantr |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) ) |
| 345 |
195
|
rexeqdv |
|- ( ph -> ( E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 346 |
345
|
biimpd |
|- ( ph -> ( E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 347 |
346
|
ralimdv |
|- ( ph -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 348 |
173
|
rexeqdv |
|- ( ( 2nd ` t ) = N -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 349 |
348
|
ralbidv |
|- ( ( 2nd ` t ) = N -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 350 |
349
|
imbi1d |
|- ( ( 2nd ` t ) = N -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 351 |
347 350
|
syl5ibrcom |
|- ( ph -> ( ( 2nd ` t ) = N -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 352 |
351
|
com23 |
|- ( ph -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( ( 2nd ` t ) = N -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 353 |
352
|
imp |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( 2nd ` t ) = N -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 354 |
353
|
adantrd |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 355 |
354
|
pm4.71rd |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
| 356 |
|
an12 |
|- ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) |
| 357 |
|
3anass |
|- ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) |
| 358 |
357
|
anbi2i |
|- ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) |
| 359 |
356 358
|
bitr4i |
|- ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) |
| 360 |
355 359
|
bitrdi |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) |
| 361 |
360
|
notbid |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) |
| 362 |
361
|
pm5.32da |
|- ( ph -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
| 363 |
362
|
adantr |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
| 364 |
231 344 363
|
3bitr3d |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
| 365 |
364
|
rabbidva |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) } ) |
| 366 |
|
iunrab |
|- U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } |
| 367 |
|
difrab |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) } |
| 368 |
365 366 367
|
3eqtr4g |
|- ( ph -> U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) |
| 369 |
368
|
fveq2d |
|- ( ph -> ( # ` U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) ) |
| 370 |
32 33
|
mp1i |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin ) |
| 371 |
|
simpl |
|- ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) -> x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 372 |
371
|
a1i |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) -> x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 373 |
372
|
ss2rabi |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } |
| 374 |
373
|
sseli |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } -> s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) |
| 375 |
|
fveq2 |
|- ( t = s -> ( 2nd ` t ) = ( 2nd ` s ) ) |
| 376 |
375
|
breq2d |
|- ( t = s -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` s ) ) ) |
| 377 |
376
|
ifbid |
|- ( t = s -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) ) |
| 378 |
377
|
csbeq1d |
|- ( t = s -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 379 |
|
2fveq3 |
|- ( t = s -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` s ) ) ) |
| 380 |
|
2fveq3 |
|- ( t = s -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` s ) ) ) |
| 381 |
380
|
imaeq1d |
|- ( t = s -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) ) |
| 382 |
381
|
xpeq1d |
|- ( t = s -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 383 |
380
|
imaeq1d |
|- ( t = s -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) ) |
| 384 |
383
|
xpeq1d |
|- ( t = s -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 385 |
382 384
|
uneq12d |
|- ( t = s -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 386 |
379 385
|
oveq12d |
|- ( t = s -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 387 |
386
|
csbeq2dv |
|- ( t = s -> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 388 |
378 387
|
eqtrd |
|- ( t = s -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 389 |
388
|
mpteq2dv |
|- ( t = s -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 390 |
389
|
eqeq2d |
|- ( t = s -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 391 |
|
eqcom |
|- ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) |
| 392 |
390 391
|
bitrdi |
|- ( t = s -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) ) |
| 393 |
392
|
elrab |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } <-> ( s e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) ) |
| 394 |
393
|
simprbi |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) |
| 395 |
374 394
|
syl |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) |
| 396 |
395
|
rgen |
|- A. s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x |
| 397 |
396
|
rgenw |
|- A. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) A. s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x |
| 398 |
|
invdisj |
|- ( A. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) A. s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x -> Disj_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) |
| 399 |
397 398
|
mp1i |
|- ( ph -> Disj_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) |
| 400 |
13 370 399
|
hashiun |
|- ( ph -> ( # ` U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
| 401 |
369 400
|
eqtr3d |
|- ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
| 402 |
|
fo1st |
|- 1st : _V -onto-> _V |
| 403 |
|
fofun |
|- ( 1st : _V -onto-> _V -> Fun 1st ) |
| 404 |
402 403
|
ax-mp |
|- Fun 1st |
| 405 |
|
ssv |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ _V |
| 406 |
|
fof |
|- ( 1st : _V -onto-> _V -> 1st : _V --> _V ) |
| 407 |
402 406
|
ax-mp |
|- 1st : _V --> _V |
| 408 |
407
|
fdmi |
|- dom 1st = _V |
| 409 |
405 408
|
sseqtrri |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ dom 1st |
| 410 |
|
fores |
|- ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ dom 1st ) -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) |
| 411 |
404 409 410
|
mp2an |
|- ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) |
| 412 |
|
fveqeq2 |
|- ( t = x -> ( ( 2nd ` t ) = N <-> ( 2nd ` x ) = N ) ) |
| 413 |
|
fveq2 |
|- ( t = x -> ( 1st ` t ) = ( 1st ` x ) ) |
| 414 |
413
|
csbeq1d |
|- ( t = x -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` x ) / s ]_ C ) |
| 415 |
414
|
eqeq2d |
|- ( t = x -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 416 |
415
|
rexbidv |
|- ( t = x -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 417 |
416
|
ralbidv |
|- ( t = x -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 418 |
|
2fveq3 |
|- ( t = x -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` x ) ) ) |
| 419 |
418
|
fveq1d |
|- ( t = x -> ( ( 1st ` ( 1st ` t ) ) ` N ) = ( ( 1st ` ( 1st ` x ) ) ` N ) ) |
| 420 |
419
|
eqeq1d |
|- ( t = x -> ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 <-> ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 ) ) |
| 421 |
|
2fveq3 |
|- ( t = x -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` x ) ) ) |
| 422 |
421
|
fveq1d |
|- ( t = x -> ( ( 2nd ` ( 1st ` t ) ) ` N ) = ( ( 2nd ` ( 1st ` x ) ) ` N ) ) |
| 423 |
422
|
eqeq1d |
|- ( t = x -> ( ( ( 2nd ` ( 1st ` t ) ) ` N ) = N <-> ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) |
| 424 |
417 420 423
|
3anbi123d |
|- ( t = x -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) ) |
| 425 |
412 424
|
anbi12d |
|- ( t = x -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) ) ) |
| 426 |
425
|
rexrab |
|- ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s <-> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) |
| 427 |
|
xp1st |
|- ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 428 |
427
|
anim1i |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) ) |
| 429 |
|
eleq1 |
|- ( ( 1st ` x ) = s -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) <-> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) ) |
| 430 |
|
csbeq1a |
|- ( s = ( 1st ` x ) -> C = [_ ( 1st ` x ) / s ]_ C ) |
| 431 |
430
|
eqcoms |
|- ( ( 1st ` x ) = s -> C = [_ ( 1st ` x ) / s ]_ C ) |
| 432 |
431
|
eqcomd |
|- ( ( 1st ` x ) = s -> [_ ( 1st ` x ) / s ]_ C = C ) |
| 433 |
432
|
eqeq2d |
|- ( ( 1st ` x ) = s -> ( i = [_ ( 1st ` x ) / s ]_ C <-> i = C ) ) |
| 434 |
433
|
rexbidv |
|- ( ( 1st ` x ) = s -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = C ) ) |
| 435 |
434
|
ralbidv |
|- ( ( 1st ` x ) = s -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C ) ) |
| 436 |
|
fveq2 |
|- ( ( 1st ` x ) = s -> ( 1st ` ( 1st ` x ) ) = ( 1st ` s ) ) |
| 437 |
436
|
fveq1d |
|- ( ( 1st ` x ) = s -> ( ( 1st ` ( 1st ` x ) ) ` N ) = ( ( 1st ` s ) ` N ) ) |
| 438 |
437
|
eqeq1d |
|- ( ( 1st ` x ) = s -> ( ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 <-> ( ( 1st ` s ) ` N ) = 0 ) ) |
| 439 |
|
fveq2 |
|- ( ( 1st ` x ) = s -> ( 2nd ` ( 1st ` x ) ) = ( 2nd ` s ) ) |
| 440 |
439
|
fveq1d |
|- ( ( 1st ` x ) = s -> ( ( 2nd ` ( 1st ` x ) ) ` N ) = ( ( 2nd ` s ) ` N ) ) |
| 441 |
440
|
eqeq1d |
|- ( ( 1st ` x ) = s -> ( ( ( 2nd ` ( 1st ` x ) ) ` N ) = N <-> ( ( 2nd ` s ) ` N ) = N ) ) |
| 442 |
435 438 441
|
3anbi123d |
|- ( ( 1st ` x ) = s -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) |
| 443 |
429 442
|
anbi12d |
|- ( ( 1st ` x ) = s -> ( ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
| 444 |
428 443
|
syl5ibcom |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
| 445 |
444
|
adantrl |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
| 446 |
445
|
expimpd |
|- ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
| 447 |
446
|
rexlimiv |
|- ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) |
| 448 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
| 449 |
175 448
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
| 450 |
|
opelxpi |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ N e. ( 0 ... N ) ) -> <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 451 |
449 450
|
sylan2 |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ph ) -> <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 452 |
451
|
ancoms |
|- ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 453 |
|
opelxp2 |
|- ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> N e. ( 0 ... N ) ) |
| 454 |
|
op2ndg |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 2nd ` <. s , N >. ) = N ) |
| 455 |
454
|
biantrurd |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) <-> ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) ) ) |
| 456 |
|
op1stg |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 1st ` <. s , N >. ) = s ) |
| 457 |
|
csbeq1a |
|- ( s = ( 1st ` <. s , N >. ) -> C = [_ ( 1st ` <. s , N >. ) / s ]_ C ) |
| 458 |
457
|
eqcoms |
|- ( ( 1st ` <. s , N >. ) = s -> C = [_ ( 1st ` <. s , N >. ) / s ]_ C ) |
| 459 |
458
|
eqcomd |
|- ( ( 1st ` <. s , N >. ) = s -> [_ ( 1st ` <. s , N >. ) / s ]_ C = C ) |
| 460 |
456 459
|
syl |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> [_ ( 1st ` <. s , N >. ) / s ]_ C = C ) |
| 461 |
460
|
eqeq2d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( i = [_ ( 1st ` <. s , N >. ) / s ]_ C <-> i = C ) ) |
| 462 |
461
|
rexbidv |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = C ) ) |
| 463 |
462
|
ralbidv |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C ) ) |
| 464 |
456
|
fveq2d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 1st ` ( 1st ` <. s , N >. ) ) = ( 1st ` s ) ) |
| 465 |
464
|
fveq1d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = ( ( 1st ` s ) ` N ) ) |
| 466 |
465
|
eqeq1d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 <-> ( ( 1st ` s ) ` N ) = 0 ) ) |
| 467 |
456
|
fveq2d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 2nd ` ( 1st ` <. s , N >. ) ) = ( 2nd ` s ) ) |
| 468 |
467
|
fveq1d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = ( ( 2nd ` s ) ` N ) ) |
| 469 |
468
|
eqeq1d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N <-> ( ( 2nd ` s ) ` N ) = N ) ) |
| 470 |
463 466 469
|
3anbi123d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) |
| 471 |
456
|
biantrud |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) ) |
| 472 |
455 470 471
|
3bitr3d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) ) |
| 473 |
49 453 472
|
sylancr |
|- ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) ) |
| 474 |
473
|
biimpa |
|- ( ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) |
| 475 |
|
fveqeq2 |
|- ( x = <. s , N >. -> ( ( 2nd ` x ) = N <-> ( 2nd ` <. s , N >. ) = N ) ) |
| 476 |
|
fveq2 |
|- ( x = <. s , N >. -> ( 1st ` x ) = ( 1st ` <. s , N >. ) ) |
| 477 |
476
|
csbeq1d |
|- ( x = <. s , N >. -> [_ ( 1st ` x ) / s ]_ C = [_ ( 1st ` <. s , N >. ) / s ]_ C ) |
| 478 |
477
|
eqeq2d |
|- ( x = <. s , N >. -> ( i = [_ ( 1st ` x ) / s ]_ C <-> i = [_ ( 1st ` <. s , N >. ) / s ]_ C ) ) |
| 479 |
478
|
rexbidv |
|- ( x = <. s , N >. -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C ) ) |
| 480 |
479
|
ralbidv |
|- ( x = <. s , N >. -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C ) ) |
| 481 |
|
2fveq3 |
|- ( x = <. s , N >. -> ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` <. s , N >. ) ) ) |
| 482 |
481
|
fveq1d |
|- ( x = <. s , N >. -> ( ( 1st ` ( 1st ` x ) ) ` N ) = ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) ) |
| 483 |
482
|
eqeq1d |
|- ( x = <. s , N >. -> ( ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 <-> ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 ) ) |
| 484 |
|
2fveq3 |
|- ( x = <. s , N >. -> ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` <. s , N >. ) ) ) |
| 485 |
484
|
fveq1d |
|- ( x = <. s , N >. -> ( ( 2nd ` ( 1st ` x ) ) ` N ) = ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) ) |
| 486 |
485
|
eqeq1d |
|- ( x = <. s , N >. -> ( ( ( 2nd ` ( 1st ` x ) ) ` N ) = N <-> ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) |
| 487 |
480 483 486
|
3anbi123d |
|- ( x = <. s , N >. -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) ) |
| 488 |
475 487
|
anbi12d |
|- ( x = <. s , N >. -> ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) <-> ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) ) ) |
| 489 |
|
fveqeq2 |
|- ( x = <. s , N >. -> ( ( 1st ` x ) = s <-> ( 1st ` <. s , N >. ) = s ) ) |
| 490 |
488 489
|
anbi12d |
|- ( x = <. s , N >. -> ( ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) ) |
| 491 |
490
|
rspcev |
|- ( ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) |
| 492 |
474 491
|
syldan |
|- ( ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) |
| 493 |
452 492
|
sylan |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) |
| 494 |
493
|
expl |
|- ( ph -> ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) ) |
| 495 |
447 494
|
impbid2 |
|- ( ph -> ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
| 496 |
426 495
|
bitrid |
|- ( ph -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
| 497 |
496
|
abbidv |
|- ( ph -> { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) } ) |
| 498 |
|
dfimafn |
|- ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ dom 1st ) -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y } ) |
| 499 |
404 409 498
|
mp2an |
|- ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y } |
| 500 |
|
nfv |
|- F/ s ( 2nd ` t ) = N |
| 501 |
|
nfcv |
|- F/_ s ( 0 ... ( N - 1 ) ) |
| 502 |
|
nfcsb1v |
|- F/_ s [_ ( 1st ` t ) / s ]_ C |
| 503 |
502
|
nfeq2 |
|- F/ s i = [_ ( 1st ` t ) / s ]_ C |
| 504 |
501 503
|
nfrexw |
|- F/ s E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C |
| 505 |
501 504
|
nfralw |
|- F/ s A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C |
| 506 |
|
nfv |
|- F/ s ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 |
| 507 |
|
nfv |
|- F/ s ( ( 2nd ` ( 1st ` t ) ) ` N ) = N |
| 508 |
505 506 507
|
nf3an |
|- F/ s ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) |
| 509 |
500 508
|
nfan |
|- F/ s ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) |
| 510 |
|
nfcv |
|- F/_ s ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) |
| 511 |
509 510
|
nfrabw |
|- F/_ s { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } |
| 512 |
|
nfv |
|- F/ s ( 1st ` x ) = y |
| 513 |
511 512
|
nfrexw |
|- F/ s E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y |
| 514 |
|
nfv |
|- F/ y E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s |
| 515 |
|
eqeq2 |
|- ( y = s -> ( ( 1st ` x ) = y <-> ( 1st ` x ) = s ) ) |
| 516 |
515
|
rexbidv |
|- ( y = s -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y <-> E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s ) ) |
| 517 |
513 514 516
|
cbvabw |
|- { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y } = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s } |
| 518 |
499 517
|
eqtri |
|- ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s } |
| 519 |
|
df-rab |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) } |
| 520 |
497 518 519
|
3eqtr4g |
|- ( ph -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
| 521 |
|
foeq3 |
|- ( ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) |
| 522 |
520 521
|
syl |
|- ( ph -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) |
| 523 |
411 522
|
mpbii |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
| 524 |
|
fof |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
| 525 |
523 524
|
syl |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
| 526 |
|
fvres |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( 1st ` x ) ) |
| 527 |
|
fvres |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) = ( 1st ` y ) ) |
| 528 |
526 527
|
eqeqan12d |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) ) |
| 529 |
|
simpl |
|- ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> ( 2nd ` t ) = N ) |
| 530 |
529
|
a1i |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> ( 2nd ` t ) = N ) ) |
| 531 |
530
|
ss2rabi |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } |
| 532 |
531
|
sseli |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } ) |
| 533 |
412
|
elrab |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } <-> ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` x ) = N ) ) |
| 534 |
532 533
|
sylib |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` x ) = N ) ) |
| 535 |
531
|
sseli |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } ) |
| 536 |
|
fveqeq2 |
|- ( t = y -> ( ( 2nd ` t ) = N <-> ( 2nd ` y ) = N ) ) |
| 537 |
536
|
elrab |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } <-> ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` y ) = N ) ) |
| 538 |
535 537
|
sylib |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` y ) = N ) ) |
| 539 |
|
eqtr3 |
|- ( ( ( 2nd ` x ) = N /\ ( 2nd ` y ) = N ) -> ( 2nd ` x ) = ( 2nd ` y ) ) |
| 540 |
|
xpopth |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) <-> x = y ) ) |
| 541 |
540
|
biimpd |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) ) |
| 542 |
541
|
ancomsd |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 2nd ` x ) = ( 2nd ` y ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> x = y ) ) |
| 543 |
542
|
expdimp |
|- ( ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) |
| 544 |
539 543
|
sylan2 |
|- ( ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) /\ ( ( 2nd ` x ) = N /\ ( 2nd ` y ) = N ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) |
| 545 |
544
|
an4s |
|- ( ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` x ) = N ) /\ ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` y ) = N ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) |
| 546 |
534 538 545
|
syl2an |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) |
| 547 |
528 546
|
sylbid |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) ) |
| 548 |
547
|
rgen2 |
|- A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) |
| 549 |
525 548
|
jctir |
|- ( ph -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } /\ A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) ) ) |
| 550 |
|
dff13 |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } /\ A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) ) ) |
| 551 |
549 550
|
sylibr |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
| 552 |
|
df-f1o |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } /\ ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) |
| 553 |
551 523 552
|
sylanbrc |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
| 554 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. Fin ) |
| 555 |
32 554
|
ax-mp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. Fin |
| 556 |
555
|
elexi |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. _V |
| 557 |
556
|
f1oen |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
| 558 |
553 557
|
syl |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
| 559 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } e. Fin ) |
| 560 |
29 559
|
ax-mp |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } e. Fin |
| 561 |
|
hashen |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. Fin /\ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } e. Fin ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) |
| 562 |
555 560 561
|
mp2an |
|- ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
| 563 |
558 562
|
sylibr |
|- ( ph -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) |
| 564 |
563
|
oveq2d |
|- ( ph -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) ) |
| 565 |
205 401 564
|
3eqtr3d |
|- ( ph -> sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) ) |
| 566 |
168 565
|
breqtrd |
|- ( ph -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) ) |