Metamath Proof Explorer


Theorem poimirlem27

Description: Lemma for poimir showing that the difference between admissible faces in the whole cube and admissible faces on the back face is even. Equation (7) of Kulpa p. 548. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0
|- ( ph -> N e. NN )
poimirlem28.1
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C )
poimirlem28.2
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) )
poimirlem28.3
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n )
poimirlem28.4
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> B =/= ( n - 1 ) )
Assertion poimirlem27
|- ( ph -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0
 |-  ( ph -> N e. NN )
2 poimirlem28.1
 |-  ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C )
3 poimirlem28.2
 |-  ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) )
4 poimirlem28.3
 |-  ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n )
5 poimirlem28.4
 |-  ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> B =/= ( n - 1 ) )
6 fzfi
 |-  ( 0 ... K ) e. Fin
7 fzfi
 |-  ( 1 ... N ) e. Fin
8 mapfi
 |-  ( ( ( 0 ... K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 0 ... K ) ^m ( 1 ... N ) ) e. Fin )
9 6 7 8 mp2an
 |-  ( ( 0 ... K ) ^m ( 1 ... N ) ) e. Fin
10 fzfi
 |-  ( 0 ... ( N - 1 ) ) e. Fin
11 mapfi
 |-  ( ( ( ( 0 ... K ) ^m ( 1 ... N ) ) e. Fin /\ ( 0 ... ( N - 1 ) ) e. Fin ) -> ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) e. Fin )
12 9 10 11 mp2an
 |-  ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) e. Fin
13 12 a1i
 |-  ( ph -> ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) e. Fin )
14 2z
 |-  2 e. ZZ
15 14 a1i
 |-  ( ph -> 2 e. ZZ )
16 fzofi
 |-  ( 0 ..^ K ) e. Fin
17 mapfi
 |-  ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin )
18 16 7 17 mp2an
 |-  ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin
19 mapfi
 |-  ( ( ( 1 ... N ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin )
20 7 7 19 mp2an
 |-  ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin
21 f1of
 |-  ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> f : ( 1 ... N ) --> ( 1 ... N ) )
22 21 ss2abi
 |-  { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ { f | f : ( 1 ... N ) --> ( 1 ... N ) }
23 ovex
 |-  ( 1 ... N ) e. _V
24 23 23 mapval
 |-  ( ( 1 ... N ) ^m ( 1 ... N ) ) = { f | f : ( 1 ... N ) --> ( 1 ... N ) }
25 22 24 sseqtrri
 |-  { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) )
26 ssfi
 |-  ( ( ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) ) -> { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin )
27 20 25 26 mp2an
 |-  { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin
28 xpfi
 |-  ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin )
29 18 27 28 mp2an
 |-  ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin
30 fzfi
 |-  ( 0 ... N ) e. Fin
31 xpfi
 |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin /\ ( 0 ... N ) e. Fin ) -> ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin )
32 29 30 31 mp2an
 |-  ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin
33 rabfi
 |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin )
34 32 33 ax-mp
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin
35 hashcl
 |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) e. NN0 )
36 35 nn0zd
 |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) e. ZZ )
37 34 36 mp1i
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) e. ZZ )
38 dfrex2
 |-  ( E. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) <-> -. A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) )
39 nfv
 |-  F/ t ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) )
40 nfcv
 |-  F/_ t 2
41 nfcv
 |-  F/_ t ||
42 nfcv
 |-  F/_ t #
43 nfrab1
 |-  F/_ t { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) }
44 42 43 nffv
 |-  F/_ t ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } )
45 40 41 44 nfbr
 |-  F/ t 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } )
46 neq0
 |-  ( -. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) <-> E. s s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } )
47 iddvds
 |-  ( 2 e. ZZ -> 2 || 2 )
48 14 47 ax-mp
 |-  2 || 2
49 vex
 |-  s e. _V
50 hashsng
 |-  ( s e. _V -> ( # ` { s } ) = 1 )
51 49 50 ax-mp
 |-  ( # ` { s } ) = 1
52 51 oveq2i
 |-  ( 1 + ( # ` { s } ) ) = ( 1 + 1 )
53 df-2
 |-  2 = ( 1 + 1 )
54 52 53 eqtr4i
 |-  ( 1 + ( # ` { s } ) ) = 2
55 48 54 breqtrri
 |-  2 || ( 1 + ( # ` { s } ) )
56 rabfi
 |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } e. Fin )
57 diffi
 |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } e. Fin -> ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. Fin )
58 32 56 57 mp2b
 |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. Fin
59 snfi
 |-  { s } e. Fin
60 disjdifr
 |-  ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) i^i { s } ) = (/)
61 hashun
 |-  ( ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. Fin /\ { s } e. Fin /\ ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) i^i { s } ) = (/) ) -> ( # ` ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) ) = ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) )
62 58 59 60 61 mp3an
 |-  ( # ` ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) ) = ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) )
63 difsnid
 |-  ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } )
64 63 fveq2d
 |-  ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( # ` ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) )
65 62 64 eqtr3id
 |-  ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) )
66 65 adantl
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) )
67 1 ad3antrrr
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> N e. NN )
68 fveq2
 |-  ( t = u -> ( 2nd ` t ) = ( 2nd ` u ) )
69 68 breq2d
 |-  ( t = u -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` u ) ) )
70 69 ifbid
 |-  ( t = u -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) )
71 70 csbeq1d
 |-  ( t = u -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
72 2fveq3
 |-  ( t = u -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` u ) ) )
73 2fveq3
 |-  ( t = u -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` u ) ) )
74 73 imaeq1d
 |-  ( t = u -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) )
75 74 xpeq1d
 |-  ( t = u -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) )
76 73 imaeq1d
 |-  ( t = u -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) )
77 76 xpeq1d
 |-  ( t = u -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
78 75 77 uneq12d
 |-  ( t = u -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
79 72 78 oveq12d
 |-  ( t = u -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
80 79 csbeq2dv
 |-  ( t = u -> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
81 71 80 eqtrd
 |-  ( t = u -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
82 81 mpteq2dv
 |-  ( t = u -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
83 breq1
 |-  ( y = w -> ( y < ( 2nd ` u ) <-> w < ( 2nd ` u ) ) )
84 id
 |-  ( y = w -> y = w )
85 oveq1
 |-  ( y = w -> ( y + 1 ) = ( w + 1 ) )
86 83 84 85 ifbieq12d
 |-  ( y = w -> if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) = if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) )
87 86 csbeq1d
 |-  ( y = w -> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
88 oveq2
 |-  ( j = i -> ( 1 ... j ) = ( 1 ... i ) )
89 88 imaeq2d
 |-  ( j = i -> ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) )
90 89 xpeq1d
 |-  ( j = i -> ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) )
91 oveq1
 |-  ( j = i -> ( j + 1 ) = ( i + 1 ) )
92 91 oveq1d
 |-  ( j = i -> ( ( j + 1 ) ... N ) = ( ( i + 1 ) ... N ) )
93 92 imaeq2d
 |-  ( j = i -> ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) )
94 93 xpeq1d
 |-  ( j = i -> ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) )
95 90 94 uneq12d
 |-  ( j = i -> ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) )
96 95 oveq2d
 |-  ( j = i -> ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) )
97 96 cbvcsbv
 |-  [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) )
98 87 97 eqtrdi
 |-  ( y = w -> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) )
99 98 cbvmptv
 |-  ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) )
100 82 99 eqtrdi
 |-  ( t = u -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
101 100 eqeq2d
 |-  ( t = u -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> x = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
102 101 cbvrabv
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = { u e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
103 elmapi
 |-  ( x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) -> x : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
104 103 ad3antlr
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> x : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
105 simpr
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } )
106 simpl
 |-  ( ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> E. p e. ran x ( p ` n ) =/= 0 )
107 106 ralimi
 |-  ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 )
108 107 ad2antlr
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 )
109 fveq2
 |-  ( n = m -> ( p ` n ) = ( p ` m ) )
110 109 neeq1d
 |-  ( n = m -> ( ( p ` n ) =/= 0 <-> ( p ` m ) =/= 0 ) )
111 110 rexbidv
 |-  ( n = m -> ( E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` m ) =/= 0 ) )
112 fveq1
 |-  ( p = q -> ( p ` m ) = ( q ` m ) )
113 112 neeq1d
 |-  ( p = q -> ( ( p ` m ) =/= 0 <-> ( q ` m ) =/= 0 ) )
114 113 cbvrexvw
 |-  ( E. p e. ran x ( p ` m ) =/= 0 <-> E. q e. ran x ( q ` m ) =/= 0 )
115 111 114 bitrdi
 |-  ( n = m -> ( E. p e. ran x ( p ` n ) =/= 0 <-> E. q e. ran x ( q ` m ) =/= 0 ) )
116 115 rspccva
 |-  ( ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= 0 )
117 108 116 sylan
 |-  ( ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= 0 )
118 simpr
 |-  ( ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> E. p e. ran x ( p ` n ) =/= K )
119 118 ralimi
 |-  ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K )
120 119 ad2antlr
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K )
121 109 neeq1d
 |-  ( n = m -> ( ( p ` n ) =/= K <-> ( p ` m ) =/= K ) )
122 121 rexbidv
 |-  ( n = m -> ( E. p e. ran x ( p ` n ) =/= K <-> E. p e. ran x ( p ` m ) =/= K ) )
123 112 neeq1d
 |-  ( p = q -> ( ( p ` m ) =/= K <-> ( q ` m ) =/= K ) )
124 123 cbvrexvw
 |-  ( E. p e. ran x ( p ` m ) =/= K <-> E. q e. ran x ( q ` m ) =/= K )
125 122 124 bitrdi
 |-  ( n = m -> ( E. p e. ran x ( p ` n ) =/= K <-> E. q e. ran x ( q ` m ) =/= K ) )
126 125 rspccva
 |-  ( ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= K )
127 120 126 sylan
 |-  ( ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= K )
128 67 102 104 105 117 127 poimirlem22
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> E! z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } z =/= s )
129 eldifsn
 |-  ( z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) <-> ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } /\ z =/= s ) )
130 129 eubii
 |-  ( E! z z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) <-> E! z ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } /\ z =/= s ) )
131 58 elexi
 |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. _V
132 euhash1
 |-  ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. _V -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 <-> E! z z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) )
133 131 132 ax-mp
 |-  ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 <-> E! z z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) )
134 df-reu
 |-  ( E! z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } z =/= s <-> E! z ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } /\ z =/= s ) )
135 130 133 134 3bitr4ri
 |-  ( E! z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } z =/= s <-> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 )
136 128 135 sylib
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 )
137 136 oveq1d
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) = ( 1 + ( # ` { s } ) ) )
138 66 137 eqtr3d
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) = ( 1 + ( # ` { s } ) ) )
139 55 138 breqtrrid
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) )
140 139 ex
 |-  ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) )
141 140 exlimdv
 |-  ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( E. s s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) )
142 46 141 syl5bi
 |-  ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( -. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) )
143 dvds0
 |-  ( 2 e. ZZ -> 2 || 0 )
144 14 143 ax-mp
 |-  2 || 0
145 hash0
 |-  ( # ` (/) ) = 0
146 144 145 breqtrri
 |-  2 || ( # ` (/) )
147 fveq2
 |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) = ( # ` (/) ) )
148 146 147 breqtrrid
 |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) )
149 142 148 pm2.61d2
 |-  ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) )
150 149 ex
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) )
151 150 adantld
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) )
152 iba
 |-  ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) )
153 152 rabbidv
 |-  ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } )
154 153 fveq2d
 |-  ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) )
155 154 breq2d
 |-  ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) <-> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) )
156 151 155 mpbidi
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) )
157 156 a1d
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) )
158 39 45 157 rexlimd
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( E. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) )
159 38 158 syl5bir
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( -. A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) )
160 simpr
 |-  ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) -> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) )
161 160 con3i
 |-  ( -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> -. ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) )
162 161 ralimi
 |-  ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) )
163 rabeq0
 |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = (/) <-> A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) )
164 162 163 sylibr
 |-  ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = (/) )
165 164 fveq2d
 |-  ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = ( # ` (/) ) )
166 146 165 breqtrrid
 |-  ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) )
167 159 166 pm2.61d2
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) )
168 13 15 37 167 fsumdvds
 |-  ( ph -> 2 || sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) )
169 rabfi
 |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin )
170 32 169 ax-mp
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin
171 simp1
 |-  ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C )
172 sneq
 |-  ( ( 2nd ` t ) = N -> { ( 2nd ` t ) } = { N } )
173 172 difeq2d
 |-  ( ( 2nd ` t ) = N -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) = ( ( 0 ... N ) \ { N } ) )
174 difun2
 |-  ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 0 ... ( N - 1 ) ) \ { N } )
175 1 nnnn0d
 |-  ( ph -> N e. NN0 )
176 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
177 175 176 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` 0 ) )
178 fzm1
 |-  ( N e. ( ZZ>= ` 0 ) -> ( n e. ( 0 ... N ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) ) )
179 177 178 syl
 |-  ( ph -> ( n e. ( 0 ... N ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) ) )
180 elun
 |-  ( n e. ( ( 0 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n e. { N } ) )
181 velsn
 |-  ( n e. { N } <-> n = N )
182 181 orbi2i
 |-  ( ( n e. ( 0 ... ( N - 1 ) ) \/ n e. { N } ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) )
183 180 182 bitri
 |-  ( n e. ( ( 0 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) )
184 179 183 bitr4di
 |-  ( ph -> ( n e. ( 0 ... N ) <-> n e. ( ( 0 ... ( N - 1 ) ) u. { N } ) ) )
185 184 eqrdv
 |-  ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) )
186 185 difeq1d
 |-  ( ph -> ( ( 0 ... N ) \ { N } ) = ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ { N } ) )
187 1 nnzd
 |-  ( ph -> N e. ZZ )
188 uzid
 |-  ( N e. ZZ -> N e. ( ZZ>= ` N ) )
189 uznfz
 |-  ( N e. ( ZZ>= ` N ) -> -. N e. ( 0 ... ( N - 1 ) ) )
190 187 188 189 3syl
 |-  ( ph -> -. N e. ( 0 ... ( N - 1 ) ) )
191 disjsn
 |-  ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 0 ... ( N - 1 ) ) )
192 disj3
 |-  ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> ( 0 ... ( N - 1 ) ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) )
193 191 192 bitr3i
 |-  ( -. N e. ( 0 ... ( N - 1 ) ) <-> ( 0 ... ( N - 1 ) ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) )
194 190 193 sylib
 |-  ( ph -> ( 0 ... ( N - 1 ) ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) )
195 174 186 194 3eqtr4a
 |-  ( ph -> ( ( 0 ... N ) \ { N } ) = ( 0 ... ( N - 1 ) ) )
196 173 195 sylan9eqr
 |-  ( ( ph /\ ( 2nd ` t ) = N ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) = ( 0 ... ( N - 1 ) ) )
197 196 rexeqdv
 |-  ( ( ph /\ ( 2nd ` t ) = N ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) )
198 197 biimprd
 |-  ( ( ph /\ ( 2nd ` t ) = N ) -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) )
199 198 ralimdv
 |-  ( ( ph /\ ( 2nd ` t ) = N ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) )
200 199 expimpd
 |-  ( ph -> ( ( ( 2nd ` t ) = N /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) )
201 171 200 sylan2i
 |-  ( ph -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) )
202 201 adantr
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) )
203 202 ss2rabdv
 |-  ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } )
204 hashssdif
 |-  ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) )
205 170 203 204 sylancr
 |-  ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) )
206 1 adantr
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> N e. NN )
207 3 adantlr
 |-  ( ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) )
208 xp1st
 |-  ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
209 xp1st
 |-  ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` t ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
210 elmapi
 |-  ( ( 1st ` ( 1st ` t ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` t ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
211 208 209 210 3syl
 |-  ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` ( 1st ` t ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
212 211 adantl
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 1st ` ( 1st ` t ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
213 xp2nd
 |-  ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` t ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
214 fvex
 |-  ( 2nd ` ( 1st ` t ) ) e. _V
215 f1oeq1
 |-  ( f = ( 2nd ` ( 1st ` t ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
216 214 215 elab
 |-  ( ( 2nd ` ( 1st ` t ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
217 213 216 sylib
 |-  ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
218 208 217 syl
 |-  ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
219 218 adantl
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
220 xp2nd
 |-  ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` t ) e. ( 0 ... N ) )
221 220 adantl
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 2nd ` t ) e. ( 0 ... N ) )
222 206 2 207 212 219 221 poimirlem24
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) )
223 208 adantl
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
224 1st2nd2
 |-  ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` t ) = <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. )
225 224 csbeq1d
 |-  ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> [_ ( 1st ` t ) / s ]_ C = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C )
226 225 eqeq2d
 |-  ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) )
227 226 rexbidv
 |-  ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) )
228 227 ralbidv
 |-  ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) )
229 228 anbi1d
 |-  ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) )
230 223 229 syl
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) )
231 222 230 bitr4d
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) )
232 103 frnd
 |-  ( x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) -> ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) )
233 232 anim2i
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) )
234 dfss3
 |-  ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) <-> A. n e. ( 0 ... ( N - 1 ) ) n e. ran ( p e. ran x |-> B ) )
235 vex
 |-  n e. _V
236 eqid
 |-  ( p e. ran x |-> B ) = ( p e. ran x |-> B )
237 236 elrnmpt
 |-  ( n e. _V -> ( n e. ran ( p e. ran x |-> B ) <-> E. p e. ran x n = B ) )
238 235 237 ax-mp
 |-  ( n e. ran ( p e. ran x |-> B ) <-> E. p e. ran x n = B )
239 238 ralbii
 |-  ( A. n e. ( 0 ... ( N - 1 ) ) n e. ran ( p e. ran x |-> B ) <-> A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B )
240 234 239 sylbb
 |-  ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) -> A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B )
241 1eluzge0
 |-  1 e. ( ZZ>= ` 0 )
242 fzss1
 |-  ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) )
243 ssralv
 |-  ( ( 1 ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B ) )
244 241 242 243 mp2b
 |-  ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B )
245 1 nncnd
 |-  ( ph -> N e. CC )
246 npcan1
 |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N )
247 245 246 syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) = N )
248 peano2zm
 |-  ( N e. ZZ -> ( N - 1 ) e. ZZ )
249 187 248 syl
 |-  ( ph -> ( N - 1 ) e. ZZ )
250 uzid
 |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
251 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
252 249 250 251 3syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
253 247 252 eqeltrrd
 |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) )
254 fzss2
 |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) )
255 253 254 syl
 |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) )
256 255 sselda
 |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n e. ( 1 ... N ) )
257 256 adantlr
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... ( N - 1 ) ) ) -> n e. ( 1 ... N ) )
258 simplr
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) )
259 ssel2
 |-  ( ( ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) /\ p e. ran x ) -> p e. ( ( 0 ... K ) ^m ( 1 ... N ) ) )
260 elmapi
 |-  ( p e. ( ( 0 ... K ) ^m ( 1 ... N ) ) -> p : ( 1 ... N ) --> ( 0 ... K ) )
261 259 260 syl
 |-  ( ( ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) /\ p e. ran x ) -> p : ( 1 ... N ) --> ( 0 ... K ) )
262 258 261 sylan
 |-  ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p e. ran x ) -> p : ( 1 ... N ) --> ( 0 ... K ) )
263 elfzelz
 |-  ( n e. ( 1 ... N ) -> n e. ZZ )
264 263 zred
 |-  ( n e. ( 1 ... N ) -> n e. RR )
265 264 ltnrd
 |-  ( n e. ( 1 ... N ) -> -. n < n )
266 breq1
 |-  ( n = B -> ( n < n <-> B < n ) )
267 266 notbid
 |-  ( n = B -> ( -. n < n <-> -. B < n ) )
268 265 267 syl5ibcom
 |-  ( n e. ( 1 ... N ) -> ( n = B -> -. B < n ) )
269 268 necon2ad
 |-  ( n e. ( 1 ... N ) -> ( B < n -> n =/= B ) )
270 269 3ad2ant1
 |-  ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) -> ( B < n -> n =/= B ) )
271 270 adantl
 |-  ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> ( B < n -> n =/= B ) )
272 4 271 mpd
 |-  ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> n =/= B )
273 272 3exp2
 |-  ( ph -> ( n e. ( 1 ... N ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) -> ( ( p ` n ) = 0 -> n =/= B ) ) ) )
274 273 imp31
 |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( p ` n ) = 0 -> n =/= B ) )
275 274 necon2d
 |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( n = B -> ( p ` n ) =/= 0 ) )
276 275 adantllr
 |-  ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( n = B -> ( p ` n ) =/= 0 ) )
277 262 276 syldan
 |-  ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p e. ran x ) -> ( n = B -> ( p ` n ) =/= 0 ) )
278 277 reximdva
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( E. p e. ran x n = B -> E. p e. ran x ( p ` n ) =/= 0 ) )
279 257 278 syldan
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( E. p e. ran x n = B -> E. p e. ran x ( p ` n ) =/= 0 ) )
280 279 ralimdva
 |-  ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) -> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 ) )
281 280 imp
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 )
282 244 281 sylan2
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 )
283 282 biantrurd
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) )
284 nnuz
 |-  NN = ( ZZ>= ` 1 )
285 1 284 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` 1 ) )
286 fzm1
 |-  ( N e. ( ZZ>= ` 1 ) -> ( n e. ( 1 ... N ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) ) )
287 285 286 syl
 |-  ( ph -> ( n e. ( 1 ... N ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) ) )
288 elun
 |-  ( n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n e. { N } ) )
289 181 orbi2i
 |-  ( ( n e. ( 1 ... ( N - 1 ) ) \/ n e. { N } ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) )
290 288 289 bitri
 |-  ( n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) )
291 287 290 bitr4di
 |-  ( ph -> ( n e. ( 1 ... N ) <-> n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) ) )
292 291 eqrdv
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) )
293 292 raleqdv
 |-  ( ph -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> A. n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) E. p e. ran x ( p ` n ) =/= 0 ) )
294 ralunb
 |-  ( A. n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 ) )
295 293 294 bitrdi
 |-  ( ph -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 ) ) )
296 fveq2
 |-  ( n = N -> ( p ` n ) = ( p ` N ) )
297 296 neeq1d
 |-  ( n = N -> ( ( p ` n ) =/= 0 <-> ( p ` N ) =/= 0 ) )
298 297 rexbidv
 |-  ( n = N -> ( E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` N ) =/= 0 ) )
299 298 ralsng
 |-  ( N e. NN -> ( A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` N ) =/= 0 ) )
300 1 299 syl
 |-  ( ph -> ( A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` N ) =/= 0 ) )
301 300 anbi2d
 |-  ( ph -> ( ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 ) <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) )
302 295 301 bitrd
 |-  ( ph -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) )
303 302 ad2antrr
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) )
304 0z
 |-  0 e. ZZ
305 1z
 |-  1 e. ZZ
306 fzshftral
 |-  ( ( 0 e. ZZ /\ ( N - 1 ) e. ZZ /\ 1 e. ZZ ) -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) )
307 304 305 306 mp3an13
 |-  ( ( N - 1 ) e. ZZ -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) )
308 187 248 307 3syl
 |-  ( ph -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) )
309 0p1e1
 |-  ( 0 + 1 ) = 1
310 309 a1i
 |-  ( ph -> ( 0 + 1 ) = 1 )
311 310 247 oveq12d
 |-  ( ph -> ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) )
312 311 raleqdv
 |-  ( ph -> ( A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) )
313 308 312 bitrd
 |-  ( ph -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) )
314 ovex
 |-  ( m - 1 ) e. _V
315 eqeq1
 |-  ( n = ( m - 1 ) -> ( n = B <-> ( m - 1 ) = B ) )
316 315 rexbidv
 |-  ( n = ( m - 1 ) -> ( E. p e. ran x n = B <-> E. p e. ran x ( m - 1 ) = B ) )
317 314 316 sbcie
 |-  ( [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> E. p e. ran x ( m - 1 ) = B )
318 317 ralbii
 |-  ( A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> A. m e. ( 1 ... N ) E. p e. ran x ( m - 1 ) = B )
319 oveq1
 |-  ( m = n -> ( m - 1 ) = ( n - 1 ) )
320 319 eqeq1d
 |-  ( m = n -> ( ( m - 1 ) = B <-> ( n - 1 ) = B ) )
321 320 rexbidv
 |-  ( m = n -> ( E. p e. ran x ( m - 1 ) = B <-> E. p e. ran x ( n - 1 ) = B ) )
322 321 cbvralvw
 |-  ( A. m e. ( 1 ... N ) E. p e. ran x ( m - 1 ) = B <-> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B )
323 318 322 bitri
 |-  ( A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B )
324 313 323 bitrdi
 |-  ( ph -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) )
325 324 biimpa
 |-  ( ( ph /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B )
326 325 adantlr
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B )
327 5 necomd
 |-  ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> ( n - 1 ) =/= B )
328 327 3exp2
 |-  ( ph -> ( n e. ( 1 ... N ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) -> ( ( p ` n ) = K -> ( n - 1 ) =/= B ) ) ) )
329 328 imp31
 |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( p ` n ) = K -> ( n - 1 ) =/= B ) )
330 329 necon2d
 |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( n - 1 ) = B -> ( p ` n ) =/= K ) )
331 330 adantllr
 |-  ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( n - 1 ) = B -> ( p ` n ) =/= K ) )
332 262 331 syldan
 |-  ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p e. ran x ) -> ( ( n - 1 ) = B -> ( p ` n ) =/= K ) )
333 332 reximdva
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( E. p e. ran x ( n - 1 ) = B -> E. p e. ran x ( p ` n ) =/= K ) )
334 333 ralimdva
 |-  ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) )
335 334 imp
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K )
336 326 335 syldan
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K )
337 336 biantrud
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) ) )
338 r19.26
 |-  ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) <-> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) )
339 337 338 bitr4di
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) )
340 283 303 339 3bitr2d
 |-  ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) )
341 233 240 340 syl2an
 |-  ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) )
342 341 pm5.32da
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) <-> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) )
343 342 anbi2d
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) )
344 343 rexbidva
 |-  ( ph -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) )
345 344 adantr
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) )
346 195 rexeqdv
 |-  ( ph -> ( E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) )
347 346 biimpd
 |-  ( ph -> ( E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) )
348 347 ralimdv
 |-  ( ph -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) )
349 173 rexeqdv
 |-  ( ( 2nd ` t ) = N -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C ) )
350 349 ralbidv
 |-  ( ( 2nd ` t ) = N -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C ) )
351 350 imbi1d
 |-  ( ( 2nd ` t ) = N -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) )
352 348 351 syl5ibrcom
 |-  ( ph -> ( ( 2nd ` t ) = N -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) )
353 352 com23
 |-  ( ph -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( ( 2nd ` t ) = N -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) )
354 353 imp
 |-  ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( 2nd ` t ) = N -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) )
355 354 adantrd
 |-  ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) )
356 355 pm4.71rd
 |-  ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) )
357 an12
 |-  ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) )
358 3anass
 |-  ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) )
359 358 anbi2i
 |-  ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) )
360 357 359 bitr4i
 |-  ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) )
361 356 360 bitrdi
 |-  ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) )
362 361 notbid
 |-  ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) )
363 362 pm5.32da
 |-  ( ph -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) )
364 363 adantr
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) )
365 231 345 364 3bitr3d
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) )
366 365 rabbidva
 |-  ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) } )
367 iunrab
 |-  U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) }
368 difrab
 |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) }
369 366 367 368 3eqtr4g
 |-  ( ph -> U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) )
370 369 fveq2d
 |-  ( ph -> ( # ` U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) )
371 32 33 mp1i
 |-  ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin )
372 simpl
 |-  ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) -> x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
373 372 a1i
 |-  ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) -> x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
374 373 ss2rabi
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
375 374 sseli
 |-  ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } -> s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } )
376 fveq2
 |-  ( t = s -> ( 2nd ` t ) = ( 2nd ` s ) )
377 376 breq2d
 |-  ( t = s -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` s ) ) )
378 377 ifbid
 |-  ( t = s -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) )
379 378 csbeq1d
 |-  ( t = s -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
380 2fveq3
 |-  ( t = s -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` s ) ) )
381 2fveq3
 |-  ( t = s -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` s ) ) )
382 381 imaeq1d
 |-  ( t = s -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) )
383 382 xpeq1d
 |-  ( t = s -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) )
384 381 imaeq1d
 |-  ( t = s -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) )
385 384 xpeq1d
 |-  ( t = s -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
386 383 385 uneq12d
 |-  ( t = s -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
387 380 386 oveq12d
 |-  ( t = s -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
388 387 csbeq2dv
 |-  ( t = s -> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
389 379 388 eqtrd
 |-  ( t = s -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
390 389 mpteq2dv
 |-  ( t = s -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
391 390 eqeq2d
 |-  ( t = s -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
392 eqcom
 |-  ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x )
393 391 392 bitrdi
 |-  ( t = s -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) )
394 393 elrab
 |-  ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } <-> ( s e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) )
395 394 simprbi
 |-  ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x )
396 375 395 syl
 |-  ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x )
397 396 rgen
 |-  A. s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x
398 397 rgenw
 |-  A. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) A. s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x
399 invdisj
 |-  ( A. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) A. s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x -> Disj_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } )
400 398 399 mp1i
 |-  ( ph -> Disj_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } )
401 13 371 400 hashiun
 |-  ( ph -> ( # ` U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) )
402 370 401 eqtr3d
 |-  ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) )
403 fo1st
 |-  1st : _V -onto-> _V
404 fofun
 |-  ( 1st : _V -onto-> _V -> Fun 1st )
405 403 404 ax-mp
 |-  Fun 1st
406 ssv
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ _V
407 fof
 |-  ( 1st : _V -onto-> _V -> 1st : _V --> _V )
408 403 407 ax-mp
 |-  1st : _V --> _V
409 408 fdmi
 |-  dom 1st = _V
410 406 409 sseqtrri
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ dom 1st
411 fores
 |-  ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ dom 1st ) -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) )
412 405 410 411 mp2an
 |-  ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } )
413 fveqeq2
 |-  ( t = x -> ( ( 2nd ` t ) = N <-> ( 2nd ` x ) = N ) )
414 fveq2
 |-  ( t = x -> ( 1st ` t ) = ( 1st ` x ) )
415 414 csbeq1d
 |-  ( t = x -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` x ) / s ]_ C )
416 415 eqeq2d
 |-  ( t = x -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ ( 1st ` x ) / s ]_ C ) )
417 416 rexbidv
 |-  ( t = x -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C ) )
418 417 ralbidv
 |-  ( t = x -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C ) )
419 2fveq3
 |-  ( t = x -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` x ) ) )
420 419 fveq1d
 |-  ( t = x -> ( ( 1st ` ( 1st ` t ) ) ` N ) = ( ( 1st ` ( 1st ` x ) ) ` N ) )
421 420 eqeq1d
 |-  ( t = x -> ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 <-> ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 ) )
422 2fveq3
 |-  ( t = x -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` x ) ) )
423 422 fveq1d
 |-  ( t = x -> ( ( 2nd ` ( 1st ` t ) ) ` N ) = ( ( 2nd ` ( 1st ` x ) ) ` N ) )
424 423 eqeq1d
 |-  ( t = x -> ( ( ( 2nd ` ( 1st ` t ) ) ` N ) = N <-> ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) )
425 418 421 424 3anbi123d
 |-  ( t = x -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) )
426 413 425 anbi12d
 |-  ( t = x -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) ) )
427 426 rexrab
 |-  ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s <-> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) )
428 xp1st
 |-  ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
429 428 anim1i
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) )
430 eleq1
 |-  ( ( 1st ` x ) = s -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) <-> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) )
431 csbeq1a
 |-  ( s = ( 1st ` x ) -> C = [_ ( 1st ` x ) / s ]_ C )
432 431 eqcoms
 |-  ( ( 1st ` x ) = s -> C = [_ ( 1st ` x ) / s ]_ C )
433 432 eqcomd
 |-  ( ( 1st ` x ) = s -> [_ ( 1st ` x ) / s ]_ C = C )
434 433 eqeq2d
 |-  ( ( 1st ` x ) = s -> ( i = [_ ( 1st ` x ) / s ]_ C <-> i = C ) )
435 434 rexbidv
 |-  ( ( 1st ` x ) = s -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = C ) )
436 435 ralbidv
 |-  ( ( 1st ` x ) = s -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C ) )
437 fveq2
 |-  ( ( 1st ` x ) = s -> ( 1st ` ( 1st ` x ) ) = ( 1st ` s ) )
438 437 fveq1d
 |-  ( ( 1st ` x ) = s -> ( ( 1st ` ( 1st ` x ) ) ` N ) = ( ( 1st ` s ) ` N ) )
439 438 eqeq1d
 |-  ( ( 1st ` x ) = s -> ( ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 <-> ( ( 1st ` s ) ` N ) = 0 ) )
440 fveq2
 |-  ( ( 1st ` x ) = s -> ( 2nd ` ( 1st ` x ) ) = ( 2nd ` s ) )
441 440 fveq1d
 |-  ( ( 1st ` x ) = s -> ( ( 2nd ` ( 1st ` x ) ) ` N ) = ( ( 2nd ` s ) ` N ) )
442 441 eqeq1d
 |-  ( ( 1st ` x ) = s -> ( ( ( 2nd ` ( 1st ` x ) ) ` N ) = N <-> ( ( 2nd ` s ) ` N ) = N ) )
443 436 439 442 3anbi123d
 |-  ( ( 1st ` x ) = s -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) )
444 430 443 anbi12d
 |-  ( ( 1st ` x ) = s -> ( ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) )
445 429 444 syl5ibcom
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) )
446 445 adantrl
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) )
447 446 expimpd
 |-  ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) )
448 447 rexlimiv
 |-  ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) )
449 nn0fz0
 |-  ( N e. NN0 <-> N e. ( 0 ... N ) )
450 175 449 sylib
 |-  ( ph -> N e. ( 0 ... N ) )
451 opelxpi
 |-  ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ N e. ( 0 ... N ) ) -> <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
452 450 451 sylan2
 |-  ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ph ) -> <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
453 452 ancoms
 |-  ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
454 opelxp2
 |-  ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> N e. ( 0 ... N ) )
455 op2ndg
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 2nd ` <. s , N >. ) = N )
456 455 biantrurd
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) <-> ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) ) )
457 op1stg
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 1st ` <. s , N >. ) = s )
458 csbeq1a
 |-  ( s = ( 1st ` <. s , N >. ) -> C = [_ ( 1st ` <. s , N >. ) / s ]_ C )
459 458 eqcoms
 |-  ( ( 1st ` <. s , N >. ) = s -> C = [_ ( 1st ` <. s , N >. ) / s ]_ C )
460 459 eqcomd
 |-  ( ( 1st ` <. s , N >. ) = s -> [_ ( 1st ` <. s , N >. ) / s ]_ C = C )
461 457 460 syl
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> [_ ( 1st ` <. s , N >. ) / s ]_ C = C )
462 461 eqeq2d
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( i = [_ ( 1st ` <. s , N >. ) / s ]_ C <-> i = C ) )
463 462 rexbidv
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = C ) )
464 463 ralbidv
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C ) )
465 457 fveq2d
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 1st ` ( 1st ` <. s , N >. ) ) = ( 1st ` s ) )
466 465 fveq1d
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = ( ( 1st ` s ) ` N ) )
467 466 eqeq1d
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 <-> ( ( 1st ` s ) ` N ) = 0 ) )
468 457 fveq2d
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 2nd ` ( 1st ` <. s , N >. ) ) = ( 2nd ` s ) )
469 468 fveq1d
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = ( ( 2nd ` s ) ` N ) )
470 469 eqeq1d
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N <-> ( ( 2nd ` s ) ` N ) = N ) )
471 464 467 470 3anbi123d
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) )
472 457 biantrud
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) )
473 456 471 472 3bitr3d
 |-  ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) )
474 49 454 473 sylancr
 |-  ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) )
475 474 biimpa
 |-  ( ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) )
476 fveqeq2
 |-  ( x = <. s , N >. -> ( ( 2nd ` x ) = N <-> ( 2nd ` <. s , N >. ) = N ) )
477 fveq2
 |-  ( x = <. s , N >. -> ( 1st ` x ) = ( 1st ` <. s , N >. ) )
478 477 csbeq1d
 |-  ( x = <. s , N >. -> [_ ( 1st ` x ) / s ]_ C = [_ ( 1st ` <. s , N >. ) / s ]_ C )
479 478 eqeq2d
 |-  ( x = <. s , N >. -> ( i = [_ ( 1st ` x ) / s ]_ C <-> i = [_ ( 1st ` <. s , N >. ) / s ]_ C ) )
480 479 rexbidv
 |-  ( x = <. s , N >. -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C ) )
481 480 ralbidv
 |-  ( x = <. s , N >. -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C ) )
482 2fveq3
 |-  ( x = <. s , N >. -> ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` <. s , N >. ) ) )
483 482 fveq1d
 |-  ( x = <. s , N >. -> ( ( 1st ` ( 1st ` x ) ) ` N ) = ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) )
484 483 eqeq1d
 |-  ( x = <. s , N >. -> ( ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 <-> ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 ) )
485 2fveq3
 |-  ( x = <. s , N >. -> ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` <. s , N >. ) ) )
486 485 fveq1d
 |-  ( x = <. s , N >. -> ( ( 2nd ` ( 1st ` x ) ) ` N ) = ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) )
487 486 eqeq1d
 |-  ( x = <. s , N >. -> ( ( ( 2nd ` ( 1st ` x ) ) ` N ) = N <-> ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) )
488 481 484 487 3anbi123d
 |-  ( x = <. s , N >. -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) )
489 476 488 anbi12d
 |-  ( x = <. s , N >. -> ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) <-> ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) ) )
490 fveqeq2
 |-  ( x = <. s , N >. -> ( ( 1st ` x ) = s <-> ( 1st ` <. s , N >. ) = s ) )
491 489 490 anbi12d
 |-  ( x = <. s , N >. -> ( ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) )
492 491 rspcev
 |-  ( ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) )
493 475 492 syldan
 |-  ( ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) )
494 453 493 sylan
 |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) )
495 494 expl
 |-  ( ph -> ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) )
496 448 495 impbid2
 |-  ( ph -> ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) )
497 427 496 syl5bb
 |-  ( ph -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) )
498 497 abbidv
 |-  ( ph -> { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) } )
499 dfimafn
 |-  ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ dom 1st ) -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y } )
500 405 410 499 mp2an
 |-  ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y }
501 nfv
 |-  F/ s ( 2nd ` t ) = N
502 nfcv
 |-  F/_ s ( 0 ... ( N - 1 ) )
503 nfcsb1v
 |-  F/_ s [_ ( 1st ` t ) / s ]_ C
504 503 nfeq2
 |-  F/ s i = [_ ( 1st ` t ) / s ]_ C
505 502 504 nfrex
 |-  F/ s E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C
506 502 505 nfralw
 |-  F/ s A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C
507 nfv
 |-  F/ s ( ( 1st ` ( 1st ` t ) ) ` N ) = 0
508 nfv
 |-  F/ s ( ( 2nd ` ( 1st ` t ) ) ` N ) = N
509 506 507 508 nf3an
 |-  F/ s ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N )
510 501 509 nfan
 |-  F/ s ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) )
511 nfcv
 |-  F/_ s ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) )
512 510 511 nfrabw
 |-  F/_ s { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) }
513 nfv
 |-  F/ s ( 1st ` x ) = y
514 512 513 nfrex
 |-  F/ s E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y
515 nfv
 |-  F/ y E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s
516 eqeq2
 |-  ( y = s -> ( ( 1st ` x ) = y <-> ( 1st ` x ) = s ) )
517 516 rexbidv
 |-  ( y = s -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y <-> E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s ) )
518 514 515 517 cbvabw
 |-  { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y } = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s }
519 500 518 eqtri
 |-  ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s }
520 df-rab
 |-  { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) }
521 498 519 520 3eqtr4g
 |-  ( ph -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } )
522 foeq3
 |-  ( ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) )
523 521 522 syl
 |-  ( ph -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) )
524 412 523 mpbii
 |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } )
525 fof
 |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } )
526 524 525 syl
 |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } )
527 fvres
 |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( 1st ` x ) )
528 fvres
 |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) = ( 1st ` y ) )
529 527 528 eqeqan12d
 |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) )
530 simpl
 |-  ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> ( 2nd ` t ) = N )
531 530 a1i
 |-  ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> ( 2nd ` t ) = N ) )
532 531 ss2rabi
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N }
533 532 sseli
 |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } )
534 413 elrab
 |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } <-> ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` x ) = N ) )
535 533 534 sylib
 |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` x ) = N ) )
536 532 sseli
 |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } )
537 fveqeq2
 |-  ( t = y -> ( ( 2nd ` t ) = N <-> ( 2nd ` y ) = N ) )
538 537 elrab
 |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } <-> ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` y ) = N ) )
539 536 538 sylib
 |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` y ) = N ) )
540 eqtr3
 |-  ( ( ( 2nd ` x ) = N /\ ( 2nd ` y ) = N ) -> ( 2nd ` x ) = ( 2nd ` y ) )
541 xpopth
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) <-> x = y ) )
542 541 biimpd
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) )
543 542 ancomsd
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 2nd ` x ) = ( 2nd ` y ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> x = y ) )
544 543 expdimp
 |-  ( ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) )
545 540 544 sylan2
 |-  ( ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) /\ ( ( 2nd ` x ) = N /\ ( 2nd ` y ) = N ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) )
546 545 an4s
 |-  ( ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` x ) = N ) /\ ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` y ) = N ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) )
547 535 539 546 syl2an
 |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) )
548 529 547 sylbid
 |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) )
549 548 rgen2
 |-  A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y )
550 526 549 jctir
 |-  ( ph -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } /\ A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) ) )
551 dff13
 |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } /\ A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) ) )
552 550 551 sylibr
 |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } )
553 df-f1o
 |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } /\ ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) )
554 552 524 553 sylanbrc
 |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } )
555 rabfi
 |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. Fin )
556 32 555 ax-mp
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. Fin
557 556 elexi
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. _V
558 557 f1oen
 |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } )
559 554 558 syl
 |-  ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } )
560 rabfi
 |-  ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } e. Fin )
561 29 560 ax-mp
 |-  { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } e. Fin
562 hashen
 |-  ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. Fin /\ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } e. Fin ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) )
563 556 561 562 mp2an
 |-  ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } )
564 559 563 sylibr
 |-  ( ph -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) )
565 564 oveq2d
 |-  ( ph -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) )
566 205 402 565 3eqtr3d
 |-  ( ph -> sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) )
567 168 566 breqtrd
 |-  ( ph -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) )