Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimirlem28.1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) |
3 |
|
poimirlem28.2 |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
4 |
|
poimirlem28.3 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n ) |
5 |
|
poimirlem28.4 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> B =/= ( n - 1 ) ) |
6 |
|
fzfi |
|- ( 0 ... K ) e. Fin |
7 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
8 |
|
mapfi |
|- ( ( ( 0 ... K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 0 ... K ) ^m ( 1 ... N ) ) e. Fin ) |
9 |
6 7 8
|
mp2an |
|- ( ( 0 ... K ) ^m ( 1 ... N ) ) e. Fin |
10 |
|
fzfi |
|- ( 0 ... ( N - 1 ) ) e. Fin |
11 |
|
mapfi |
|- ( ( ( ( 0 ... K ) ^m ( 1 ... N ) ) e. Fin /\ ( 0 ... ( N - 1 ) ) e. Fin ) -> ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) e. Fin ) |
12 |
9 10 11
|
mp2an |
|- ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) e. Fin |
13 |
12
|
a1i |
|- ( ph -> ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) e. Fin ) |
14 |
|
2z |
|- 2 e. ZZ |
15 |
14
|
a1i |
|- ( ph -> 2 e. ZZ ) |
16 |
|
fzofi |
|- ( 0 ..^ K ) e. Fin |
17 |
|
mapfi |
|- ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin ) |
18 |
16 7 17
|
mp2an |
|- ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin |
19 |
|
mapfi |
|- ( ( ( 1 ... N ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin ) |
20 |
7 7 19
|
mp2an |
|- ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin |
21 |
|
f1of |
|- ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> f : ( 1 ... N ) --> ( 1 ... N ) ) |
22 |
21
|
ss2abi |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ { f | f : ( 1 ... N ) --> ( 1 ... N ) } |
23 |
|
ovex |
|- ( 1 ... N ) e. _V |
24 |
23 23
|
mapval |
|- ( ( 1 ... N ) ^m ( 1 ... N ) ) = { f | f : ( 1 ... N ) --> ( 1 ... N ) } |
25 |
22 24
|
sseqtrri |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) |
26 |
|
ssfi |
|- ( ( ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) ) -> { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) |
27 |
20 25 26
|
mp2an |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin |
28 |
|
xpfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin ) |
29 |
18 27 28
|
mp2an |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin |
30 |
|
fzfi |
|- ( 0 ... N ) e. Fin |
31 |
|
xpfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin /\ ( 0 ... N ) e. Fin ) -> ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin ) |
32 |
29 30 31
|
mp2an |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin |
33 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin ) |
34 |
32 33
|
ax-mp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin |
35 |
|
hashcl |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) e. NN0 ) |
36 |
35
|
nn0zd |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) e. ZZ ) |
37 |
34 36
|
mp1i |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) e. ZZ ) |
38 |
|
dfrex2 |
|- ( E. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) <-> -. A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) |
39 |
|
nfv |
|- F/ t ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) |
40 |
|
nfcv |
|- F/_ t 2 |
41 |
|
nfcv |
|- F/_ t || |
42 |
|
nfcv |
|- F/_ t # |
43 |
|
nfrab1 |
|- F/_ t { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } |
44 |
42 43
|
nffv |
|- F/_ t ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) |
45 |
40 41 44
|
nfbr |
|- F/ t 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) |
46 |
|
neq0 |
|- ( -. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) <-> E. s s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) |
47 |
|
iddvds |
|- ( 2 e. ZZ -> 2 || 2 ) |
48 |
14 47
|
ax-mp |
|- 2 || 2 |
49 |
|
vex |
|- s e. _V |
50 |
|
hashsng |
|- ( s e. _V -> ( # ` { s } ) = 1 ) |
51 |
49 50
|
ax-mp |
|- ( # ` { s } ) = 1 |
52 |
51
|
oveq2i |
|- ( 1 + ( # ` { s } ) ) = ( 1 + 1 ) |
53 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
54 |
52 53
|
eqtr4i |
|- ( 1 + ( # ` { s } ) ) = 2 |
55 |
48 54
|
breqtrri |
|- 2 || ( 1 + ( # ` { s } ) ) |
56 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } e. Fin ) |
57 |
|
diffi |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } e. Fin -> ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. Fin ) |
58 |
32 56 57
|
mp2b |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. Fin |
59 |
|
snfi |
|- { s } e. Fin |
60 |
|
disjdifr |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) i^i { s } ) = (/) |
61 |
|
hashun |
|- ( ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. Fin /\ { s } e. Fin /\ ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) i^i { s } ) = (/) ) -> ( # ` ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) ) = ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) ) |
62 |
58 59 60 61
|
mp3an |
|- ( # ` ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) ) = ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) |
63 |
|
difsnid |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) |
64 |
63
|
fveq2d |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( # ` ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) u. { s } ) ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
65 |
62 64
|
eqtr3id |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
66 |
65
|
adantl |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
67 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> N e. NN ) |
68 |
|
fveq2 |
|- ( t = u -> ( 2nd ` t ) = ( 2nd ` u ) ) |
69 |
68
|
breq2d |
|- ( t = u -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` u ) ) ) |
70 |
69
|
ifbid |
|- ( t = u -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) ) |
71 |
70
|
csbeq1d |
|- ( t = u -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
72 |
|
2fveq3 |
|- ( t = u -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` u ) ) ) |
73 |
|
2fveq3 |
|- ( t = u -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` u ) ) ) |
74 |
73
|
imaeq1d |
|- ( t = u -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) ) |
75 |
74
|
xpeq1d |
|- ( t = u -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
76 |
73
|
imaeq1d |
|- ( t = u -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) ) |
77 |
76
|
xpeq1d |
|- ( t = u -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
78 |
75 77
|
uneq12d |
|- ( t = u -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
79 |
72 78
|
oveq12d |
|- ( t = u -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
80 |
79
|
csbeq2dv |
|- ( t = u -> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
81 |
71 80
|
eqtrd |
|- ( t = u -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
82 |
81
|
mpteq2dv |
|- ( t = u -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
83 |
|
breq1 |
|- ( y = w -> ( y < ( 2nd ` u ) <-> w < ( 2nd ` u ) ) ) |
84 |
|
id |
|- ( y = w -> y = w ) |
85 |
|
oveq1 |
|- ( y = w -> ( y + 1 ) = ( w + 1 ) ) |
86 |
83 84 85
|
ifbieq12d |
|- ( y = w -> if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) = if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) ) |
87 |
86
|
csbeq1d |
|- ( y = w -> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
88 |
|
oveq2 |
|- ( j = i -> ( 1 ... j ) = ( 1 ... i ) ) |
89 |
88
|
imaeq2d |
|- ( j = i -> ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) ) |
90 |
89
|
xpeq1d |
|- ( j = i -> ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) ) |
91 |
|
oveq1 |
|- ( j = i -> ( j + 1 ) = ( i + 1 ) ) |
92 |
91
|
oveq1d |
|- ( j = i -> ( ( j + 1 ) ... N ) = ( ( i + 1 ) ... N ) ) |
93 |
92
|
imaeq2d |
|- ( j = i -> ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) ) |
94 |
93
|
xpeq1d |
|- ( j = i -> ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) |
95 |
90 94
|
uneq12d |
|- ( j = i -> ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) |
96 |
95
|
oveq2d |
|- ( j = i -> ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
97 |
96
|
cbvcsbv |
|- [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) |
98 |
87 97
|
eqtrdi |
|- ( y = w -> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
99 |
98
|
cbvmptv |
|- ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` u ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
100 |
82 99
|
eqtrdi |
|- ( t = u -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
101 |
100
|
eqeq2d |
|- ( t = u -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> x = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
102 |
101
|
cbvrabv |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = { u e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( w e. ( 0 ... ( N - 1 ) ) |-> [_ if ( w < ( 2nd ` u ) , w , ( w + 1 ) ) / i ]_ ( ( 1st ` ( 1st ` u ) ) oF + ( ( ( ( 2nd ` ( 1st ` u ) ) " ( 1 ... i ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` u ) ) " ( ( i + 1 ) ... N ) ) X. { 0 } ) ) ) ) } |
103 |
|
elmapi |
|- ( x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) -> x : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
104 |
103
|
ad3antlr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> x : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
105 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) |
106 |
|
simpl |
|- ( ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> E. p e. ran x ( p ` n ) =/= 0 ) |
107 |
106
|
ralimi |
|- ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 ) |
108 |
107
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 ) |
109 |
|
fveq2 |
|- ( n = m -> ( p ` n ) = ( p ` m ) ) |
110 |
109
|
neeq1d |
|- ( n = m -> ( ( p ` n ) =/= 0 <-> ( p ` m ) =/= 0 ) ) |
111 |
110
|
rexbidv |
|- ( n = m -> ( E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` m ) =/= 0 ) ) |
112 |
|
fveq1 |
|- ( p = q -> ( p ` m ) = ( q ` m ) ) |
113 |
112
|
neeq1d |
|- ( p = q -> ( ( p ` m ) =/= 0 <-> ( q ` m ) =/= 0 ) ) |
114 |
113
|
cbvrexvw |
|- ( E. p e. ran x ( p ` m ) =/= 0 <-> E. q e. ran x ( q ` m ) =/= 0 ) |
115 |
111 114
|
bitrdi |
|- ( n = m -> ( E. p e. ran x ( p ` n ) =/= 0 <-> E. q e. ran x ( q ` m ) =/= 0 ) ) |
116 |
115
|
rspccva |
|- ( ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= 0 ) |
117 |
108 116
|
sylan |
|- ( ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= 0 ) |
118 |
|
simpr |
|- ( ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> E. p e. ran x ( p ` n ) =/= K ) |
119 |
118
|
ralimi |
|- ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) |
120 |
119
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) |
121 |
109
|
neeq1d |
|- ( n = m -> ( ( p ` n ) =/= K <-> ( p ` m ) =/= K ) ) |
122 |
121
|
rexbidv |
|- ( n = m -> ( E. p e. ran x ( p ` n ) =/= K <-> E. p e. ran x ( p ` m ) =/= K ) ) |
123 |
112
|
neeq1d |
|- ( p = q -> ( ( p ` m ) =/= K <-> ( q ` m ) =/= K ) ) |
124 |
123
|
cbvrexvw |
|- ( E. p e. ran x ( p ` m ) =/= K <-> E. q e. ran x ( q ` m ) =/= K ) |
125 |
122 124
|
bitrdi |
|- ( n = m -> ( E. p e. ran x ( p ` n ) =/= K <-> E. q e. ran x ( q ` m ) =/= K ) ) |
126 |
125
|
rspccva |
|- ( ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= K ) |
127 |
120 126
|
sylan |
|- ( ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) /\ m e. ( 1 ... N ) ) -> E. q e. ran x ( q ` m ) =/= K ) |
128 |
67 102 104 105 117 127
|
poimirlem22 |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> E! z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } z =/= s ) |
129 |
|
eldifsn |
|- ( z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) <-> ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } /\ z =/= s ) ) |
130 |
129
|
eubii |
|- ( E! z z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) <-> E! z ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } /\ z =/= s ) ) |
131 |
58
|
elexi |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. _V |
132 |
|
euhash1 |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) e. _V -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 <-> E! z z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) ) |
133 |
131 132
|
ax-mp |
|- ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 <-> E! z z e. ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) |
134 |
|
df-reu |
|- ( E! z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } z =/= s <-> E! z ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } /\ z =/= s ) ) |
135 |
130 133 134
|
3bitr4ri |
|- ( E! z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } z =/= s <-> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 ) |
136 |
128 135
|
sylib |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) = 1 ) |
137 |
136
|
oveq1d |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } \ { s } ) ) + ( # ` { s } ) ) = ( 1 + ( # ` { s } ) ) ) |
138 |
66 137
|
eqtr3d |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) = ( 1 + ( # ` { s } ) ) ) |
139 |
55 138
|
breqtrrid |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) /\ s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
140 |
139
|
ex |
|- ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) ) |
141 |
140
|
exlimdv |
|- ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( E. s s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) ) |
142 |
46 141
|
syl5bi |
|- ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( -. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) ) |
143 |
|
dvds0 |
|- ( 2 e. ZZ -> 2 || 0 ) |
144 |
14 143
|
ax-mp |
|- 2 || 0 |
145 |
|
hash0 |
|- ( # ` (/) ) = 0 |
146 |
144 145
|
breqtrri |
|- 2 || ( # ` (/) ) |
147 |
|
fveq2 |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) = ( # ` (/) ) ) |
148 |
146 147
|
breqtrrid |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = (/) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
149 |
142 148
|
pm2.61d2 |
|- ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) |
150 |
149
|
ex |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) ) |
151 |
150
|
adantld |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) ) ) |
152 |
|
iba |
|- ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) ) |
153 |
152
|
rabbidv |
|- ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) |
154 |
153
|
fveq2d |
|- ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) = ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
155 |
154
|
breq2d |
|- ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) <-> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) |
156 |
151 155
|
mpbidi |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) |
157 |
156
|
a1d |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) ) |
158 |
39 45 157
|
rexlimd |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( E. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) |
159 |
38 158
|
syl5bir |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( -. A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) ) |
160 |
|
simpr |
|- ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) -> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) |
161 |
160
|
con3i |
|- ( -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> -. ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) |
162 |
161
|
ralimi |
|- ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) |
163 |
|
rabeq0 |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = (/) <-> A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) |
164 |
162 163
|
sylibr |
|- ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = (/) ) |
165 |
164
|
fveq2d |
|- ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = ( # ` (/) ) ) |
166 |
146 165
|
breqtrrid |
|- ( A. t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -. ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
167 |
159 166
|
pm2.61d2 |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> 2 || ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
168 |
13 15 37 167
|
fsumdvds |
|- ( ph -> 2 || sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
169 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin ) |
170 |
32 169
|
ax-mp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin |
171 |
|
simp1 |
|- ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) |
172 |
|
sneq |
|- ( ( 2nd ` t ) = N -> { ( 2nd ` t ) } = { N } ) |
173 |
172
|
difeq2d |
|- ( ( 2nd ` t ) = N -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) = ( ( 0 ... N ) \ { N } ) ) |
174 |
|
difun2 |
|- ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) |
175 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
176 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
177 |
175 176
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
178 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( n e. ( 0 ... N ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) ) ) |
179 |
177 178
|
syl |
|- ( ph -> ( n e. ( 0 ... N ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) ) ) |
180 |
|
elun |
|- ( n e. ( ( 0 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n e. { N } ) ) |
181 |
|
velsn |
|- ( n e. { N } <-> n = N ) |
182 |
181
|
orbi2i |
|- ( ( n e. ( 0 ... ( N - 1 ) ) \/ n e. { N } ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) ) |
183 |
180 182
|
bitri |
|- ( n e. ( ( 0 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 0 ... ( N - 1 ) ) \/ n = N ) ) |
184 |
179 183
|
bitr4di |
|- ( ph -> ( n e. ( 0 ... N ) <-> n e. ( ( 0 ... ( N - 1 ) ) u. { N } ) ) ) |
185 |
184
|
eqrdv |
|- ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) |
186 |
185
|
difeq1d |
|- ( ph -> ( ( 0 ... N ) \ { N } ) = ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ { N } ) ) |
187 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
188 |
|
uzid |
|- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
189 |
|
uznfz |
|- ( N e. ( ZZ>= ` N ) -> -. N e. ( 0 ... ( N - 1 ) ) ) |
190 |
187 188 189
|
3syl |
|- ( ph -> -. N e. ( 0 ... ( N - 1 ) ) ) |
191 |
|
disjsn |
|- ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 0 ... ( N - 1 ) ) ) |
192 |
|
disj3 |
|- ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> ( 0 ... ( N - 1 ) ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) ) |
193 |
191 192
|
bitr3i |
|- ( -. N e. ( 0 ... ( N - 1 ) ) <-> ( 0 ... ( N - 1 ) ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) ) |
194 |
190 193
|
sylib |
|- ( ph -> ( 0 ... ( N - 1 ) ) = ( ( 0 ... ( N - 1 ) ) \ { N } ) ) |
195 |
174 186 194
|
3eqtr4a |
|- ( ph -> ( ( 0 ... N ) \ { N } ) = ( 0 ... ( N - 1 ) ) ) |
196 |
173 195
|
sylan9eqr |
|- ( ( ph /\ ( 2nd ` t ) = N ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) = ( 0 ... ( N - 1 ) ) ) |
197 |
196
|
rexeqdv |
|- ( ( ph /\ ( 2nd ` t ) = N ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
198 |
197
|
biimprd |
|- ( ( ph /\ ( 2nd ` t ) = N ) -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
199 |
198
|
ralimdv |
|- ( ( ph /\ ( 2nd ` t ) = N ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
200 |
199
|
expimpd |
|- ( ph -> ( ( ( 2nd ` t ) = N /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
201 |
171 200
|
sylan2i |
|- ( ph -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
202 |
201
|
adantr |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
203 |
202
|
ss2rabdv |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) |
204 |
|
hashssdif |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) ) |
205 |
170 203 204
|
sylancr |
|- ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) ) |
206 |
1
|
adantr |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> N e. NN ) |
207 |
3
|
adantlr |
|- ( ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
208 |
|
xp1st |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
209 |
|
xp1st |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` t ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
210 |
|
elmapi |
|- ( ( 1st ` ( 1st ` t ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` t ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
211 |
208 209 210
|
3syl |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` ( 1st ` t ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
212 |
211
|
adantl |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 1st ` ( 1st ` t ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
213 |
|
xp2nd |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` t ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
214 |
|
fvex |
|- ( 2nd ` ( 1st ` t ) ) e. _V |
215 |
|
f1oeq1 |
|- ( f = ( 2nd ` ( 1st ` t ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
216 |
214 215
|
elab |
|- ( ( 2nd ` ( 1st ` t ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
217 |
213 216
|
sylib |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
218 |
208 217
|
syl |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
219 |
218
|
adantl |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 2nd ` ( 1st ` t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
220 |
|
xp2nd |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` t ) e. ( 0 ... N ) ) |
221 |
220
|
adantl |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 2nd ` t ) e. ( 0 ... N ) ) |
222 |
206 2 207 212 219 221
|
poimirlem24 |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
223 |
208
|
adantl |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
224 |
|
1st2nd2 |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` t ) = <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. ) |
225 |
224
|
csbeq1d |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> [_ ( 1st ` t ) / s ]_ C = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) |
226 |
225
|
eqeq2d |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) ) |
227 |
226
|
rexbidv |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) ) |
228 |
227
|
ralbidv |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C ) ) |
229 |
228
|
anbi1d |
|- ( ( 1st ` t ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
230 |
223 229
|
syl |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ <. ( 1st ` ( 1st ` t ) ) , ( 2nd ` ( 1st ` t ) ) >. / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
231 |
222 230
|
bitr4d |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
232 |
103
|
frnd |
|- ( x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) -> ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
233 |
232
|
anim2i |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) ) |
234 |
|
dfss3 |
|- ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) <-> A. n e. ( 0 ... ( N - 1 ) ) n e. ran ( p e. ran x |-> B ) ) |
235 |
|
vex |
|- n e. _V |
236 |
|
eqid |
|- ( p e. ran x |-> B ) = ( p e. ran x |-> B ) |
237 |
236
|
elrnmpt |
|- ( n e. _V -> ( n e. ran ( p e. ran x |-> B ) <-> E. p e. ran x n = B ) ) |
238 |
235 237
|
ax-mp |
|- ( n e. ran ( p e. ran x |-> B ) <-> E. p e. ran x n = B ) |
239 |
238
|
ralbii |
|- ( A. n e. ( 0 ... ( N - 1 ) ) n e. ran ( p e. ran x |-> B ) <-> A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) |
240 |
234 239
|
sylbb |
|- ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) -> A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) |
241 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
242 |
|
fzss1 |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) ) |
243 |
|
ssralv |
|- ( ( 1 ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B ) ) |
244 |
241 242 243
|
mp2b |
|- ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B ) |
245 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
246 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
247 |
245 246
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
248 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
249 |
187 248
|
syl |
|- ( ph -> ( N - 1 ) e. ZZ ) |
250 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
251 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
252 |
249 250 251
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
253 |
247 252
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
254 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
255 |
253 254
|
syl |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
256 |
255
|
sselda |
|- ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n e. ( 1 ... N ) ) |
257 |
256
|
adantlr |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... ( N - 1 ) ) ) -> n e. ( 1 ... N ) ) |
258 |
|
simplr |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
259 |
|
ssel2 |
|- ( ( ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) /\ p e. ran x ) -> p e. ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
260 |
|
elmapi |
|- ( p e. ( ( 0 ... K ) ^m ( 1 ... N ) ) -> p : ( 1 ... N ) --> ( 0 ... K ) ) |
261 |
259 260
|
syl |
|- ( ( ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) /\ p e. ran x ) -> p : ( 1 ... N ) --> ( 0 ... K ) ) |
262 |
258 261
|
sylan |
|- ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p e. ran x ) -> p : ( 1 ... N ) --> ( 0 ... K ) ) |
263 |
|
elfzelz |
|- ( n e. ( 1 ... N ) -> n e. ZZ ) |
264 |
263
|
zred |
|- ( n e. ( 1 ... N ) -> n e. RR ) |
265 |
264
|
ltnrd |
|- ( n e. ( 1 ... N ) -> -. n < n ) |
266 |
|
breq1 |
|- ( n = B -> ( n < n <-> B < n ) ) |
267 |
266
|
notbid |
|- ( n = B -> ( -. n < n <-> -. B < n ) ) |
268 |
265 267
|
syl5ibcom |
|- ( n e. ( 1 ... N ) -> ( n = B -> -. B < n ) ) |
269 |
268
|
necon2ad |
|- ( n e. ( 1 ... N ) -> ( B < n -> n =/= B ) ) |
270 |
269
|
3ad2ant1 |
|- ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) -> ( B < n -> n =/= B ) ) |
271 |
270
|
adantl |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> ( B < n -> n =/= B ) ) |
272 |
4 271
|
mpd |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> n =/= B ) |
273 |
272
|
3exp2 |
|- ( ph -> ( n e. ( 1 ... N ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) -> ( ( p ` n ) = 0 -> n =/= B ) ) ) ) |
274 |
273
|
imp31 |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( p ` n ) = 0 -> n =/= B ) ) |
275 |
274
|
necon2d |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( n = B -> ( p ` n ) =/= 0 ) ) |
276 |
275
|
adantllr |
|- ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( n = B -> ( p ` n ) =/= 0 ) ) |
277 |
262 276
|
syldan |
|- ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p e. ran x ) -> ( n = B -> ( p ` n ) =/= 0 ) ) |
278 |
277
|
reximdva |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( E. p e. ran x n = B -> E. p e. ran x ( p ` n ) =/= 0 ) ) |
279 |
257 278
|
syldan |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( E. p e. ran x n = B -> E. p e. ran x ( p ` n ) =/= 0 ) ) |
280 |
279
|
ralimdva |
|- ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) -> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 ) ) |
281 |
280
|
imp |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 ) |
282 |
244 281
|
sylan2 |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 ) |
283 |
282
|
biantrurd |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) ) |
284 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
285 |
1 284
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
286 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( n e. ( 1 ... N ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) ) ) |
287 |
285 286
|
syl |
|- ( ph -> ( n e. ( 1 ... N ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) ) ) |
288 |
|
elun |
|- ( n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n e. { N } ) ) |
289 |
181
|
orbi2i |
|- ( ( n e. ( 1 ... ( N - 1 ) ) \/ n e. { N } ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) ) |
290 |
288 289
|
bitri |
|- ( n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 1 ... ( N - 1 ) ) \/ n = N ) ) |
291 |
287 290
|
bitr4di |
|- ( ph -> ( n e. ( 1 ... N ) <-> n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) ) ) |
292 |
291
|
eqrdv |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) |
293 |
292
|
raleqdv |
|- ( ph -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> A. n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) E. p e. ran x ( p ` n ) =/= 0 ) ) |
294 |
|
ralunb |
|- ( A. n e. ( ( 1 ... ( N - 1 ) ) u. { N } ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 ) ) |
295 |
293 294
|
bitrdi |
|- ( ph -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 ) ) ) |
296 |
|
fveq2 |
|- ( n = N -> ( p ` n ) = ( p ` N ) ) |
297 |
296
|
neeq1d |
|- ( n = N -> ( ( p ` n ) =/= 0 <-> ( p ` N ) =/= 0 ) ) |
298 |
297
|
rexbidv |
|- ( n = N -> ( E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` N ) =/= 0 ) ) |
299 |
298
|
ralsng |
|- ( N e. NN -> ( A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` N ) =/= 0 ) ) |
300 |
1 299
|
syl |
|- ( ph -> ( A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 <-> E. p e. ran x ( p ` N ) =/= 0 ) ) |
301 |
300
|
anbi2d |
|- ( ph -> ( ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. { N } E. p e. ran x ( p ` n ) =/= 0 ) <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) ) |
302 |
295 301
|
bitrd |
|- ( ph -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) ) |
303 |
302
|
ad2antrr |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... ( N - 1 ) ) E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` N ) =/= 0 ) ) ) |
304 |
|
0z |
|- 0 e. ZZ |
305 |
|
1z |
|- 1 e. ZZ |
306 |
|
fzshftral |
|- ( ( 0 e. ZZ /\ ( N - 1 ) e. ZZ /\ 1 e. ZZ ) -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) ) |
307 |
304 305 306
|
mp3an13 |
|- ( ( N - 1 ) e. ZZ -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) ) |
308 |
187 248 307
|
3syl |
|- ( ph -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) ) |
309 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
310 |
309
|
a1i |
|- ( ph -> ( 0 + 1 ) = 1 ) |
311 |
310 247
|
oveq12d |
|- ( ph -> ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
312 |
311
|
raleqdv |
|- ( ph -> ( A. m e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) ) |
313 |
308 312
|
bitrd |
|- ( ph -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B ) ) |
314 |
|
ovex |
|- ( m - 1 ) e. _V |
315 |
|
eqeq1 |
|- ( n = ( m - 1 ) -> ( n = B <-> ( m - 1 ) = B ) ) |
316 |
315
|
rexbidv |
|- ( n = ( m - 1 ) -> ( E. p e. ran x n = B <-> E. p e. ran x ( m - 1 ) = B ) ) |
317 |
314 316
|
sbcie |
|- ( [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> E. p e. ran x ( m - 1 ) = B ) |
318 |
317
|
ralbii |
|- ( A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> A. m e. ( 1 ... N ) E. p e. ran x ( m - 1 ) = B ) |
319 |
|
oveq1 |
|- ( m = n -> ( m - 1 ) = ( n - 1 ) ) |
320 |
319
|
eqeq1d |
|- ( m = n -> ( ( m - 1 ) = B <-> ( n - 1 ) = B ) ) |
321 |
320
|
rexbidv |
|- ( m = n -> ( E. p e. ran x ( m - 1 ) = B <-> E. p e. ran x ( n - 1 ) = B ) ) |
322 |
321
|
cbvralvw |
|- ( A. m e. ( 1 ... N ) E. p e. ran x ( m - 1 ) = B <-> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) |
323 |
318 322
|
bitri |
|- ( A. m e. ( 1 ... N ) [. ( m - 1 ) / n ]. E. p e. ran x n = B <-> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) |
324 |
313 323
|
bitrdi |
|- ( ph -> ( A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B <-> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) ) |
325 |
324
|
biimpa |
|- ( ( ph /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) |
326 |
325
|
adantlr |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) |
327 |
5
|
necomd |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> ( n - 1 ) =/= B ) |
328 |
327
|
3exp2 |
|- ( ph -> ( n e. ( 1 ... N ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) -> ( ( p ` n ) = K -> ( n - 1 ) =/= B ) ) ) ) |
329 |
328
|
imp31 |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( p ` n ) = K -> ( n - 1 ) =/= B ) ) |
330 |
329
|
necon2d |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( n - 1 ) = B -> ( p ` n ) =/= K ) ) |
331 |
330
|
adantllr |
|- ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( ( n - 1 ) = B -> ( p ` n ) =/= K ) ) |
332 |
262 331
|
syldan |
|- ( ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) /\ p e. ran x ) -> ( ( n - 1 ) = B -> ( p ` n ) =/= K ) ) |
333 |
332
|
reximdva |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( E. p e. ran x ( n - 1 ) = B -> E. p e. ran x ( p ` n ) =/= K ) ) |
334 |
333
|
ralimdva |
|- ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) ) |
335 |
334
|
imp |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 1 ... N ) E. p e. ran x ( n - 1 ) = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) |
336 |
326 335
|
syldan |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) |
337 |
336
|
biantrud |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) ) ) |
338 |
|
r19.26 |
|- ( A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) <-> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 /\ A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= K ) ) |
339 |
337 338
|
bitr4di |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( A. n e. ( 1 ... N ) E. p e. ran x ( p ` n ) =/= 0 <-> A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) |
340 |
283 303 339
|
3bitr2d |
|- ( ( ( ph /\ ran x C_ ( ( 0 ... K ) ^m ( 1 ... N ) ) ) /\ A. n e. ( 0 ... ( N - 1 ) ) E. p e. ran x n = B ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) |
341 |
233 240 340
|
syl2an |
|- ( ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) /\ ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) |
342 |
341
|
pm5.32da |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) <-> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) |
343 |
342
|
anbi2d |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) ) |
344 |
343
|
rexbidva |
|- ( ph -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) ) |
345 |
344
|
adantr |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) ) ) |
346 |
195
|
rexeqdv |
|- ( ph -> ( E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
347 |
346
|
biimpd |
|- ( ph -> ( E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
348 |
347
|
ralimdv |
|- ( ph -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
349 |
173
|
rexeqdv |
|- ( ( 2nd ` t ) = N -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
350 |
349
|
ralbidv |
|- ( ( 2nd ` t ) = N -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
351 |
350
|
imbi1d |
|- ( ( 2nd ` t ) = N -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { N } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
352 |
348 351
|
syl5ibrcom |
|- ( ph -> ( ( 2nd ` t ) = N -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
353 |
352
|
com23 |
|- ( ph -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( ( 2nd ` t ) = N -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
354 |
353
|
imp |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( 2nd ` t ) = N -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
355 |
354
|
adantrd |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
356 |
355
|
pm4.71rd |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
357 |
|
an12 |
|- ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) |
358 |
|
3anass |
|- ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) |
359 |
358
|
anbi2i |
|- ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) |
360 |
357 359
|
bitr4i |
|- ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) |
361 |
356 360
|
bitrdi |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) |
362 |
361
|
notbid |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) |
363 |
362
|
pm5.32da |
|- ( ph -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
364 |
363
|
adantr |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
365 |
231 345 364
|
3bitr3d |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) ) ) |
366 |
365
|
rabbidva |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) } ) |
367 |
|
iunrab |
|- U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } |
368 |
|
difrab |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) ) } |
369 |
366 367 368
|
3eqtr4g |
|- ( ph -> U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } = ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) |
370 |
369
|
fveq2d |
|- ( ph -> ( # ` U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) ) |
371 |
32 33
|
mp1i |
|- ( ( ph /\ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } e. Fin ) |
372 |
|
simpl |
|- ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) -> x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
373 |
372
|
a1i |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) -> x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
374 |
373
|
ss2rabi |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } |
375 |
374
|
sseli |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } -> s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) |
376 |
|
fveq2 |
|- ( t = s -> ( 2nd ` t ) = ( 2nd ` s ) ) |
377 |
376
|
breq2d |
|- ( t = s -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` s ) ) ) |
378 |
377
|
ifbid |
|- ( t = s -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) ) |
379 |
378
|
csbeq1d |
|- ( t = s -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
380 |
|
2fveq3 |
|- ( t = s -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` s ) ) ) |
381 |
|
2fveq3 |
|- ( t = s -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` s ) ) ) |
382 |
381
|
imaeq1d |
|- ( t = s -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) ) |
383 |
382
|
xpeq1d |
|- ( t = s -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
384 |
381
|
imaeq1d |
|- ( t = s -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) ) |
385 |
384
|
xpeq1d |
|- ( t = s -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
386 |
383 385
|
uneq12d |
|- ( t = s -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
387 |
380 386
|
oveq12d |
|- ( t = s -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
388 |
387
|
csbeq2dv |
|- ( t = s -> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
389 |
379 388
|
eqtrd |
|- ( t = s -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
390 |
389
|
mpteq2dv |
|- ( t = s -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
391 |
390
|
eqeq2d |
|- ( t = s -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
392 |
|
eqcom |
|- ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) |
393 |
391 392
|
bitrdi |
|- ( t = s -> ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) ) |
394 |
393
|
elrab |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } <-> ( s e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) ) |
395 |
394
|
simprbi |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) |
396 |
375 395
|
syl |
|- ( s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x ) |
397 |
396
|
rgen |
|- A. s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x |
398 |
397
|
rgenw |
|- A. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) A. s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x |
399 |
|
invdisj |
|- ( A. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) A. s e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` s ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` s ) ) oF + ( ( ( ( 2nd ` ( 1st ` s ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` s ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = x -> Disj_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) |
400 |
398 399
|
mp1i |
|- ( ph -> Disj_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) |
401 |
13 371 400
|
hashiun |
|- ( ph -> ( # ` U_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
402 |
370 401
|
eqtr3d |
|- ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) ) |
403 |
|
fo1st |
|- 1st : _V -onto-> _V |
404 |
|
fofun |
|- ( 1st : _V -onto-> _V -> Fun 1st ) |
405 |
403 404
|
ax-mp |
|- Fun 1st |
406 |
|
ssv |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ _V |
407 |
|
fof |
|- ( 1st : _V -onto-> _V -> 1st : _V --> _V ) |
408 |
403 407
|
ax-mp |
|- 1st : _V --> _V |
409 |
408
|
fdmi |
|- dom 1st = _V |
410 |
406 409
|
sseqtrri |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ dom 1st |
411 |
|
fores |
|- ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ dom 1st ) -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) |
412 |
405 410 411
|
mp2an |
|- ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) |
413 |
|
fveqeq2 |
|- ( t = x -> ( ( 2nd ` t ) = N <-> ( 2nd ` x ) = N ) ) |
414 |
|
fveq2 |
|- ( t = x -> ( 1st ` t ) = ( 1st ` x ) ) |
415 |
414
|
csbeq1d |
|- ( t = x -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` x ) / s ]_ C ) |
416 |
415
|
eqeq2d |
|- ( t = x -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ ( 1st ` x ) / s ]_ C ) ) |
417 |
416
|
rexbidv |
|- ( t = x -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
418 |
417
|
ralbidv |
|- ( t = x -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
419 |
|
2fveq3 |
|- ( t = x -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` x ) ) ) |
420 |
419
|
fveq1d |
|- ( t = x -> ( ( 1st ` ( 1st ` t ) ) ` N ) = ( ( 1st ` ( 1st ` x ) ) ` N ) ) |
421 |
420
|
eqeq1d |
|- ( t = x -> ( ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 <-> ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 ) ) |
422 |
|
2fveq3 |
|- ( t = x -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` x ) ) ) |
423 |
422
|
fveq1d |
|- ( t = x -> ( ( 2nd ` ( 1st ` t ) ) ` N ) = ( ( 2nd ` ( 1st ` x ) ) ` N ) ) |
424 |
423
|
eqeq1d |
|- ( t = x -> ( ( ( 2nd ` ( 1st ` t ) ) ` N ) = N <-> ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) |
425 |
418 421 424
|
3anbi123d |
|- ( t = x -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) ) |
426 |
413 425
|
anbi12d |
|- ( t = x -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) <-> ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) ) ) |
427 |
426
|
rexrab |
|- ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s <-> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) |
428 |
|
xp1st |
|- ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
429 |
428
|
anim1i |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) ) |
430 |
|
eleq1 |
|- ( ( 1st ` x ) = s -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) <-> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) ) |
431 |
|
csbeq1a |
|- ( s = ( 1st ` x ) -> C = [_ ( 1st ` x ) / s ]_ C ) |
432 |
431
|
eqcoms |
|- ( ( 1st ` x ) = s -> C = [_ ( 1st ` x ) / s ]_ C ) |
433 |
432
|
eqcomd |
|- ( ( 1st ` x ) = s -> [_ ( 1st ` x ) / s ]_ C = C ) |
434 |
433
|
eqeq2d |
|- ( ( 1st ` x ) = s -> ( i = [_ ( 1st ` x ) / s ]_ C <-> i = C ) ) |
435 |
434
|
rexbidv |
|- ( ( 1st ` x ) = s -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = C ) ) |
436 |
435
|
ralbidv |
|- ( ( 1st ` x ) = s -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C ) ) |
437 |
|
fveq2 |
|- ( ( 1st ` x ) = s -> ( 1st ` ( 1st ` x ) ) = ( 1st ` s ) ) |
438 |
437
|
fveq1d |
|- ( ( 1st ` x ) = s -> ( ( 1st ` ( 1st ` x ) ) ` N ) = ( ( 1st ` s ) ` N ) ) |
439 |
438
|
eqeq1d |
|- ( ( 1st ` x ) = s -> ( ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 <-> ( ( 1st ` s ) ` N ) = 0 ) ) |
440 |
|
fveq2 |
|- ( ( 1st ` x ) = s -> ( 2nd ` ( 1st ` x ) ) = ( 2nd ` s ) ) |
441 |
440
|
fveq1d |
|- ( ( 1st ` x ) = s -> ( ( 2nd ` ( 1st ` x ) ) ` N ) = ( ( 2nd ` s ) ` N ) ) |
442 |
441
|
eqeq1d |
|- ( ( 1st ` x ) = s -> ( ( ( 2nd ` ( 1st ` x ) ) ` N ) = N <-> ( ( 2nd ` s ) ` N ) = N ) ) |
443 |
436 439 442
|
3anbi123d |
|- ( ( 1st ` x ) = s -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) |
444 |
430 443
|
anbi12d |
|- ( ( 1st ` x ) = s -> ( ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
445 |
429 444
|
syl5ibcom |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
446 |
445
|
adantrl |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
447 |
446
|
expimpd |
|- ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
448 |
447
|
rexlimiv |
|- ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) |
449 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
450 |
175 449
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
451 |
|
opelxpi |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ N e. ( 0 ... N ) ) -> <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
452 |
450 451
|
sylan2 |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ph ) -> <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
453 |
452
|
ancoms |
|- ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
454 |
|
opelxp2 |
|- ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> N e. ( 0 ... N ) ) |
455 |
|
op2ndg |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 2nd ` <. s , N >. ) = N ) |
456 |
455
|
biantrurd |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) <-> ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) ) ) |
457 |
|
op1stg |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 1st ` <. s , N >. ) = s ) |
458 |
|
csbeq1a |
|- ( s = ( 1st ` <. s , N >. ) -> C = [_ ( 1st ` <. s , N >. ) / s ]_ C ) |
459 |
458
|
eqcoms |
|- ( ( 1st ` <. s , N >. ) = s -> C = [_ ( 1st ` <. s , N >. ) / s ]_ C ) |
460 |
459
|
eqcomd |
|- ( ( 1st ` <. s , N >. ) = s -> [_ ( 1st ` <. s , N >. ) / s ]_ C = C ) |
461 |
457 460
|
syl |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> [_ ( 1st ` <. s , N >. ) / s ]_ C = C ) |
462 |
461
|
eqeq2d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( i = [_ ( 1st ` <. s , N >. ) / s ]_ C <-> i = C ) ) |
463 |
462
|
rexbidv |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = C ) ) |
464 |
463
|
ralbidv |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C ) ) |
465 |
457
|
fveq2d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 1st ` ( 1st ` <. s , N >. ) ) = ( 1st ` s ) ) |
466 |
465
|
fveq1d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = ( ( 1st ` s ) ` N ) ) |
467 |
466
|
eqeq1d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 <-> ( ( 1st ` s ) ` N ) = 0 ) ) |
468 |
457
|
fveq2d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( 2nd ` ( 1st ` <. s , N >. ) ) = ( 2nd ` s ) ) |
469 |
468
|
fveq1d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = ( ( 2nd ` s ) ` N ) ) |
470 |
469
|
eqeq1d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N <-> ( ( 2nd ` s ) ` N ) = N ) ) |
471 |
464 467 470
|
3anbi123d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) |
472 |
457
|
biantrud |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) ) |
473 |
456 471 472
|
3bitr3d |
|- ( ( s e. _V /\ N e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) ) |
474 |
49 454 473
|
sylancr |
|- ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) ) |
475 |
474
|
biimpa |
|- ( ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) |
476 |
|
fveqeq2 |
|- ( x = <. s , N >. -> ( ( 2nd ` x ) = N <-> ( 2nd ` <. s , N >. ) = N ) ) |
477 |
|
fveq2 |
|- ( x = <. s , N >. -> ( 1st ` x ) = ( 1st ` <. s , N >. ) ) |
478 |
477
|
csbeq1d |
|- ( x = <. s , N >. -> [_ ( 1st ` x ) / s ]_ C = [_ ( 1st ` <. s , N >. ) / s ]_ C ) |
479 |
478
|
eqeq2d |
|- ( x = <. s , N >. -> ( i = [_ ( 1st ` x ) / s ]_ C <-> i = [_ ( 1st ` <. s , N >. ) / s ]_ C ) ) |
480 |
479
|
rexbidv |
|- ( x = <. s , N >. -> ( E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C ) ) |
481 |
480
|
ralbidv |
|- ( x = <. s , N >. -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C ) ) |
482 |
|
2fveq3 |
|- ( x = <. s , N >. -> ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` <. s , N >. ) ) ) |
483 |
482
|
fveq1d |
|- ( x = <. s , N >. -> ( ( 1st ` ( 1st ` x ) ) ` N ) = ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) ) |
484 |
483
|
eqeq1d |
|- ( x = <. s , N >. -> ( ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 <-> ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 ) ) |
485 |
|
2fveq3 |
|- ( x = <. s , N >. -> ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` <. s , N >. ) ) ) |
486 |
485
|
fveq1d |
|- ( x = <. s , N >. -> ( ( 2nd ` ( 1st ` x ) ) ` N ) = ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) ) |
487 |
486
|
eqeq1d |
|- ( x = <. s , N >. -> ( ( ( 2nd ` ( 1st ` x ) ) ` N ) = N <-> ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) |
488 |
481 484 487
|
3anbi123d |
|- ( x = <. s , N >. -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) ) |
489 |
476 488
|
anbi12d |
|- ( x = <. s , N >. -> ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) <-> ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) ) ) |
490 |
|
fveqeq2 |
|- ( x = <. s , N >. -> ( ( 1st ` x ) = s <-> ( 1st ` <. s , N >. ) = s ) ) |
491 |
489 490
|
anbi12d |
|- ( x = <. s , N >. -> ( ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) <-> ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) ) |
492 |
491
|
rspcev |
|- ( ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( ( ( 2nd ` <. s , N >. ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` <. s , N >. ) / s ]_ C /\ ( ( 1st ` ( 1st ` <. s , N >. ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` <. s , N >. ) ) ` N ) = N ) ) /\ ( 1st ` <. s , N >. ) = s ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) |
493 |
475 492
|
syldan |
|- ( ( <. s , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) |
494 |
453 493
|
sylan |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) |
495 |
494
|
expl |
|- ( ph -> ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) ) ) |
496 |
448 495
|
impbid2 |
|- ( ph -> ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( ( 2nd ` x ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 1st ` ( 1st ` x ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` x ) ) ` N ) = N ) ) /\ ( 1st ` x ) = s ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
497 |
427 496
|
syl5bb |
|- ( ph -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) ) ) |
498 |
497
|
abbidv |
|- ( ph -> { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) } ) |
499 |
|
dfimafn |
|- ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ dom 1st ) -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y } ) |
500 |
405 410 499
|
mp2an |
|- ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y } |
501 |
|
nfv |
|- F/ s ( 2nd ` t ) = N |
502 |
|
nfcv |
|- F/_ s ( 0 ... ( N - 1 ) ) |
503 |
|
nfcsb1v |
|- F/_ s [_ ( 1st ` t ) / s ]_ C |
504 |
503
|
nfeq2 |
|- F/ s i = [_ ( 1st ` t ) / s ]_ C |
505 |
502 504
|
nfrex |
|- F/ s E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C |
506 |
502 505
|
nfralw |
|- F/ s A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C |
507 |
|
nfv |
|- F/ s ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 |
508 |
|
nfv |
|- F/ s ( ( 2nd ` ( 1st ` t ) ) ` N ) = N |
509 |
506 507 508
|
nf3an |
|- F/ s ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) |
510 |
501 509
|
nfan |
|- F/ s ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) |
511 |
|
nfcv |
|- F/_ s ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) |
512 |
510 511
|
nfrabw |
|- F/_ s { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } |
513 |
|
nfv |
|- F/ s ( 1st ` x ) = y |
514 |
512 513
|
nfrex |
|- F/ s E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y |
515 |
|
nfv |
|- F/ y E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s |
516 |
|
eqeq2 |
|- ( y = s -> ( ( 1st ` x ) = y <-> ( 1st ` x ) = s ) ) |
517 |
516
|
rexbidv |
|- ( y = s -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y <-> E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s ) ) |
518 |
514 515 517
|
cbvabw |
|- { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = y } = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s } |
519 |
500 518
|
eqtri |
|- ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( 1st ` x ) = s } |
520 |
|
df-rab |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) ) } |
521 |
498 519 520
|
3eqtr4g |
|- ( ph -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
522 |
|
foeq3 |
|- ( ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) |
523 |
521 522
|
syl |
|- ( ph -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) |
524 |
412 523
|
mpbii |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
525 |
|
fof |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
526 |
524 525
|
syl |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
527 |
|
fvres |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( 1st ` x ) ) |
528 |
|
fvres |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) = ( 1st ` y ) ) |
529 |
527 528
|
eqeqan12d |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) ) |
530 |
|
simpl |
|- ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> ( 2nd ` t ) = N ) |
531 |
530
|
a1i |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) -> ( 2nd ` t ) = N ) ) |
532 |
531
|
ss2rabi |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } |
533 |
532
|
sseli |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } ) |
534 |
413
|
elrab |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } <-> ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` x ) = N ) ) |
535 |
533 534
|
sylib |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` x ) = N ) ) |
536 |
532
|
sseli |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } ) |
537 |
|
fveqeq2 |
|- ( t = y -> ( ( 2nd ` t ) = N <-> ( 2nd ` y ) = N ) ) |
538 |
537
|
elrab |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( 2nd ` t ) = N } <-> ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` y ) = N ) ) |
539 |
536 538
|
sylib |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -> ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` y ) = N ) ) |
540 |
|
eqtr3 |
|- ( ( ( 2nd ` x ) = N /\ ( 2nd ` y ) = N ) -> ( 2nd ` x ) = ( 2nd ` y ) ) |
541 |
|
xpopth |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) <-> x = y ) ) |
542 |
541
|
biimpd |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) ) |
543 |
542
|
ancomsd |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 2nd ` x ) = ( 2nd ` y ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> x = y ) ) |
544 |
543
|
expdimp |
|- ( ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) |
545 |
540 544
|
sylan2 |
|- ( ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) /\ ( ( 2nd ` x ) = N /\ ( 2nd ` y ) = N ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) |
546 |
545
|
an4s |
|- ( ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` x ) = N ) /\ ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( 2nd ` y ) = N ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) |
547 |
535 539 546
|
syl2an |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) |
548 |
529 547
|
sylbid |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) ) |
549 |
548
|
rgen2 |
|- A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) |
550 |
526 549
|
jctir |
|- ( ph -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } /\ A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) ) ) |
551 |
|
dff13 |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } /\ A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ` y ) -> x = y ) ) ) |
552 |
550 551
|
sylibr |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
553 |
|
df-f1o |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } /\ ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) |
554 |
552 524 553
|
sylanbrc |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
555 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. Fin ) |
556 |
32 555
|
ax-mp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. Fin |
557 |
556
|
elexi |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. _V |
558 |
557
|
f1oen |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
559 |
554 558
|
syl |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
560 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } e. Fin ) |
561 |
29 560
|
ax-mp |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } e. Fin |
562 |
|
hashen |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } e. Fin /\ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } e. Fin ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) |
563 |
556 561 562
|
mp2an |
|- ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) |
564 |
559 563
|
sylibr |
|- ( ph -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) |
565 |
564
|
oveq2d |
|- ( ph -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( ( 2nd ` t ) = N /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = [_ ( 1st ` t ) / s ]_ C /\ ( ( 1st ` ( 1st ` t ) ) ` N ) = 0 /\ ( ( 2nd ` ( 1st ` t ) ) ` N ) = N ) ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) ) |
566 |
205 402 565
|
3eqtr3d |
|- ( ph -> sum_ x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ A. n e. ( 1 ... N ) ( E. p e. ran x ( p ` n ) =/= 0 /\ E. p e. ran x ( p ` n ) =/= K ) ) ) } ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) ) |
567 |
168 566
|
breqtrd |
|- ( ph -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... ( N - 1 ) ) i = C /\ ( ( 1st ` s ) ` N ) = 0 /\ ( ( 2nd ` s ) ` N ) = N ) } ) ) ) |