Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimirlem28.1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 ) |
3 |
|
poimirlem28.2 |
⊢ ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) |
4 |
|
poimirlem28.3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) |
5 |
|
poimirlem28.4 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) ) |
6 |
|
fzfi |
⊢ ( 0 ... 𝐾 ) ∈ Fin |
7 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
8 |
|
mapfi |
⊢ ( ( ( 0 ... 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ) |
9 |
6 7 8
|
mp2an |
⊢ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin |
10 |
|
fzfi |
⊢ ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin |
11 |
|
mapfi |
⊢ ( ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) → ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∈ Fin ) |
12 |
9 10 11
|
mp2an |
⊢ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∈ Fin |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∈ Fin ) |
14 |
|
2z |
⊢ 2 ∈ ℤ |
15 |
14
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
16 |
|
fzofi |
⊢ ( 0 ..^ 𝐾 ) ∈ Fin |
17 |
|
mapfi |
⊢ ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ) |
18 |
16 7 17
|
mp2an |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin |
19 |
|
mapfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ) |
20 |
7 7 19
|
mp2an |
⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin |
21 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
22 |
21
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } |
23 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
24 |
23 23
|
mapval |
⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } |
25 |
22 24
|
sseqtrri |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) |
26 |
|
ssfi |
⊢ ( ( ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ) → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin ) |
27 |
20 25 26
|
mp2an |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin |
28 |
|
xpfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin ) |
29 |
18 27 28
|
mp2an |
⊢ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin |
30 |
|
fzfi |
⊢ ( 0 ... 𝑁 ) ∈ Fin |
31 |
|
xpfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin ∧ ( 0 ... 𝑁 ) ∈ Fin ) → ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin ) |
32 |
29 30 31
|
mp2an |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin |
33 |
|
rabfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin ) |
34 |
32 33
|
ax-mp |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin |
35 |
|
hashcl |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ∈ ℕ0 ) |
36 |
35
|
nn0zd |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ∈ ℤ ) |
37 |
34 36
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ∈ ℤ ) |
38 |
|
dfrex2 |
⊢ ( ∃ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ↔ ¬ ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) |
39 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) |
40 |
|
nfcv |
⊢ Ⅎ 𝑡 2 |
41 |
|
nfcv |
⊢ Ⅎ 𝑡 ∥ |
42 |
|
nfcv |
⊢ Ⅎ 𝑡 ♯ |
43 |
|
nfrab1 |
⊢ Ⅎ 𝑡 { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } |
44 |
42 43
|
nffv |
⊢ Ⅎ 𝑡 ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) |
45 |
40 41 44
|
nfbr |
⊢ Ⅎ 𝑡 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) |
46 |
|
neq0 |
⊢ ( ¬ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ ↔ ∃ 𝑠 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) |
47 |
|
iddvds |
⊢ ( 2 ∈ ℤ → 2 ∥ 2 ) |
48 |
14 47
|
ax-mp |
⊢ 2 ∥ 2 |
49 |
|
vex |
⊢ 𝑠 ∈ V |
50 |
|
hashsng |
⊢ ( 𝑠 ∈ V → ( ♯ ‘ { 𝑠 } ) = 1 ) |
51 |
49 50
|
ax-mp |
⊢ ( ♯ ‘ { 𝑠 } ) = 1 |
52 |
51
|
oveq2i |
⊢ ( 1 + ( ♯ ‘ { 𝑠 } ) ) = ( 1 + 1 ) |
53 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
54 |
52 53
|
eqtr4i |
⊢ ( 1 + ( ♯ ‘ { 𝑠 } ) ) = 2 |
55 |
48 54
|
breqtrri |
⊢ 2 ∥ ( 1 + ( ♯ ‘ { 𝑠 } ) ) |
56 |
|
rabfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∈ Fin ) |
57 |
|
diffi |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∈ Fin → ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ Fin ) |
58 |
32 56 57
|
mp2b |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ Fin |
59 |
|
snfi |
⊢ { 𝑠 } ∈ Fin |
60 |
|
disjdifr |
⊢ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∩ { 𝑠 } ) = ∅ |
61 |
|
hashun |
⊢ ( ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ Fin ∧ { 𝑠 } ∈ Fin ∧ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∩ { 𝑠 } ) = ∅ ) → ( ♯ ‘ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) = ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) ) |
62 |
58 59 60 61
|
mp3an |
⊢ ( ♯ ‘ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) = ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) |
63 |
|
difsnid |
⊢ ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) |
64 |
63
|
fveq2d |
⊢ ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( ♯ ‘ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) |
65 |
62 64
|
eqtr3id |
⊢ ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) |
66 |
65
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) |
67 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 𝑁 ∈ ℕ ) |
68 |
|
fveq2 |
⊢ ( 𝑡 = 𝑢 → ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑢 ) ) |
69 |
68
|
breq2d |
⊢ ( 𝑡 = 𝑢 → ( 𝑦 < ( 2nd ‘ 𝑡 ) ↔ 𝑦 < ( 2nd ‘ 𝑢 ) ) ) |
70 |
69
|
ifbid |
⊢ ( 𝑡 = 𝑢 → if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd ‘ 𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) ) |
71 |
70
|
csbeq1d |
⊢ ( 𝑡 = 𝑢 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < ( 2nd ‘ 𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
72 |
|
2fveq3 |
⊢ ( 𝑡 = 𝑢 → ( 1st ‘ ( 1st ‘ 𝑡 ) ) = ( 1st ‘ ( 1st ‘ 𝑢 ) ) ) |
73 |
|
2fveq3 |
⊢ ( 𝑡 = 𝑢 → ( 2nd ‘ ( 1st ‘ 𝑡 ) ) = ( 2nd ‘ ( 1st ‘ 𝑢 ) ) ) |
74 |
73
|
imaeq1d |
⊢ ( 𝑡 = 𝑢 → ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) ) |
75 |
74
|
xpeq1d |
⊢ ( 𝑡 = 𝑢 → ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
76 |
73
|
imaeq1d |
⊢ ( 𝑡 = 𝑢 → ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
77 |
76
|
xpeq1d |
⊢ ( 𝑡 = 𝑢 → ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
78 |
75 77
|
uneq12d |
⊢ ( 𝑡 = 𝑢 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
79 |
72 78
|
oveq12d |
⊢ ( 𝑡 = 𝑢 → ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
80 |
79
|
csbeq2dv |
⊢ ( 𝑡 = 𝑢 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < ( 2nd ‘ 𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
81 |
71 80
|
eqtrd |
⊢ ( 𝑡 = 𝑢 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < ( 2nd ‘ 𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
82 |
81
|
mpteq2dv |
⊢ ( 𝑡 = 𝑢 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
83 |
|
breq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 < ( 2nd ‘ 𝑢 ) ↔ 𝑤 < ( 2nd ‘ 𝑢 ) ) ) |
84 |
|
id |
⊢ ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) |
85 |
|
oveq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 + 1 ) = ( 𝑤 + 1 ) ) |
86 |
83 84 85
|
ifbieq12d |
⊢ ( 𝑦 = 𝑤 → if ( 𝑦 < ( 2nd ‘ 𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑤 < ( 2nd ‘ 𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) ) |
87 |
86
|
csbeq1d |
⊢ ( 𝑦 = 𝑤 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑤 < ( 2nd ‘ 𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
88 |
|
oveq2 |
⊢ ( 𝑗 = 𝑖 → ( 1 ... 𝑗 ) = ( 1 ... 𝑖 ) ) |
89 |
88
|
imaeq2d |
⊢ ( 𝑗 = 𝑖 → ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑖 ) ) ) |
90 |
89
|
xpeq1d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ) |
91 |
|
oveq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 + 1 ) = ( 𝑖 + 1 ) ) |
92 |
91
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑖 + 1 ) ... 𝑁 ) ) |
93 |
92
|
imaeq2d |
⊢ ( 𝑗 = 𝑖 → ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) ) |
94 |
93
|
xpeq1d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
95 |
90 94
|
uneq12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
96 |
95
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
97 |
96
|
cbvcsbv |
⊢ ⦋ if ( 𝑤 < ( 2nd ‘ 𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑤 < ( 2nd ‘ 𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
98 |
87 97
|
eqtrdi |
⊢ ( 𝑦 = 𝑤 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑤 < ( 2nd ‘ 𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
99 |
98
|
cbvmptv |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑤 < ( 2nd ‘ 𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
100 |
82 99
|
eqtrdi |
⊢ ( 𝑡 = 𝑢 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑤 < ( 2nd ‘ 𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
101 |
100
|
eqeq2d |
⊢ ( 𝑡 = 𝑢 → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝑥 = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑤 < ( 2nd ‘ 𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) ) |
102 |
101
|
cbvrabv |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = { 𝑢 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑤 < ( 2nd ‘ 𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } |
103 |
|
elmapi |
⊢ ( 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑥 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
104 |
103
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 𝑥 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
105 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) |
106 |
|
simpl |
⊢ ( ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) |
107 |
106
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) |
108 |
107
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) |
109 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑝 ‘ 𝑛 ) = ( 𝑝 ‘ 𝑚 ) ) |
110 |
109
|
neeq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ( 𝑝 ‘ 𝑚 ) ≠ 0 ) ) |
111 |
110
|
rexbidv |
⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑚 ) ≠ 0 ) ) |
112 |
|
fveq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ‘ 𝑚 ) = ( 𝑞 ‘ 𝑚 ) ) |
113 |
112
|
neeq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ‘ 𝑚 ) ≠ 0 ↔ ( 𝑞 ‘ 𝑚 ) ≠ 0 ) ) |
114 |
113
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑚 ) ≠ 0 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞 ‘ 𝑚 ) ≠ 0 ) |
115 |
111 114
|
bitrdi |
⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞 ‘ 𝑚 ) ≠ 0 ) ) |
116 |
115
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞 ‘ 𝑚 ) ≠ 0 ) |
117 |
108 116
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞 ‘ 𝑚 ) ≠ 0 ) |
118 |
|
simpr |
⊢ ( ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) |
119 |
118
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) |
120 |
119
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) |
121 |
109
|
neeq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ↔ ( 𝑝 ‘ 𝑚 ) ≠ 𝐾 ) ) |
122 |
121
|
rexbidv |
⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑚 ) ≠ 𝐾 ) ) |
123 |
112
|
neeq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ‘ 𝑚 ) ≠ 𝐾 ↔ ( 𝑞 ‘ 𝑚 ) ≠ 𝐾 ) ) |
124 |
123
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑚 ) ≠ 𝐾 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞 ‘ 𝑚 ) ≠ 𝐾 ) |
125 |
122 124
|
bitrdi |
⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞 ‘ 𝑚 ) ≠ 𝐾 ) ) |
126 |
125
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞 ‘ 𝑚 ) ≠ 𝐾 ) |
127 |
120 126
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞 ‘ 𝑚 ) ≠ 𝐾 ) |
128 |
67 102 104 105 117 127
|
poimirlem22 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ∃! 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } 𝑧 ≠ 𝑠 ) |
129 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ↔ ( 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∧ 𝑧 ≠ 𝑠 ) ) |
130 |
129
|
eubii |
⊢ ( ∃! 𝑧 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ↔ ∃! 𝑧 ( 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∧ 𝑧 ≠ 𝑠 ) ) |
131 |
58
|
elexi |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ V |
132 |
|
euhash1 |
⊢ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ V → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 ↔ ∃! 𝑧 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) ) |
133 |
131 132
|
ax-mp |
⊢ ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 ↔ ∃! 𝑧 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) |
134 |
|
df-reu |
⊢ ( ∃! 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } 𝑧 ≠ 𝑠 ↔ ∃! 𝑧 ( 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∧ 𝑧 ≠ 𝑠 ) ) |
135 |
130 133 134
|
3bitr4ri |
⊢ ( ∃! 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } 𝑧 ≠ 𝑠 ↔ ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 ) |
136 |
128 135
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 ) |
137 |
136
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) = ( 1 + ( ♯ ‘ { 𝑠 } ) ) ) |
138 |
66 137
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) = ( 1 + ( ♯ ‘ { 𝑠 } ) ) ) |
139 |
55 138
|
breqtrrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) |
140 |
139
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) ) |
141 |
140
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → ( ∃ 𝑠 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) ) |
142 |
46 141
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → ( ¬ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) ) |
143 |
|
dvds0 |
⊢ ( 2 ∈ ℤ → 2 ∥ 0 ) |
144 |
14 143
|
ax-mp |
⊢ 2 ∥ 0 |
145 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
146 |
144 145
|
breqtrri |
⊢ 2 ∥ ( ♯ ‘ ∅ ) |
147 |
|
fveq2 |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) = ( ♯ ‘ ∅ ) ) |
148 |
146 147
|
breqtrrid |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) |
149 |
142 148
|
pm2.61d2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) |
150 |
149
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) ) |
151 |
150
|
adantld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) ) |
152 |
|
iba |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) ) ) |
153 |
152
|
rabbidv |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) |
154 |
153
|
fveq2d |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) |
155 |
154
|
breq2d |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ↔ 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) ) |
156 |
151 155
|
mpbidi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) ) |
157 |
156
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) ) ) |
158 |
39 45 157
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ∃ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) ) |
159 |
38 158
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ¬ ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) ) |
160 |
|
simpr |
⊢ ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) → ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) |
161 |
160
|
con3i |
⊢ ( ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → ¬ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) ) |
162 |
161
|
ralimi |
⊢ ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) ) |
163 |
|
rabeq0 |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } = ∅ ↔ ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) ) |
164 |
162 163
|
sylibr |
⊢ ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } = ∅ ) |
165 |
164
|
fveq2d |
⊢ ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) = ( ♯ ‘ ∅ ) ) |
166 |
146 165
|
breqtrrid |
⊢ ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) |
167 |
159 166
|
pm2.61d2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) |
168 |
13 15 37 167
|
fsumdvds |
⊢ ( 𝜑 → 2 ∥ Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) |
169 |
|
rabfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∈ Fin ) |
170 |
32 169
|
ax-mp |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∈ Fin |
171 |
|
simp1 |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
172 |
|
sneq |
⊢ ( ( 2nd ‘ 𝑡 ) = 𝑁 → { ( 2nd ‘ 𝑡 ) } = { 𝑁 } ) |
173 |
172
|
difeq2d |
⊢ ( ( 2nd ‘ 𝑡 ) = 𝑁 → ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) = ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) ) |
174 |
|
difun2 |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) |
175 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
176 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
177 |
175 176
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
178 |
|
fzm1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) ) |
179 |
177 178
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) ) |
180 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) ) |
181 |
|
velsn |
⊢ ( 𝑛 ∈ { 𝑁 } ↔ 𝑛 = 𝑁 ) |
182 |
181
|
orbi2i |
⊢ ( ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) |
183 |
180 182
|
bitri |
⊢ ( 𝑛 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) |
184 |
179 183
|
bitr4di |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ 𝑛 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) ) |
185 |
184
|
eqrdv |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |
186 |
185
|
difeq1d |
⊢ ( 𝜑 → ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) = ( ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) ) |
187 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
188 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
189 |
|
uznfz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) → ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
190 |
187 188 189
|
3syl |
⊢ ( 𝜑 → ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
191 |
|
disjsn |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
192 |
|
disj3 |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ( 0 ... ( 𝑁 − 1 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) ) |
193 |
191 192
|
bitr3i |
⊢ ( ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ... ( 𝑁 − 1 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) ) |
194 |
190 193
|
sylib |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) ) |
195 |
174 186 194
|
3eqtr4a |
⊢ ( 𝜑 → ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
196 |
173 195
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) = 𝑁 ) → ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
197 |
196
|
rexeqdv |
⊢ ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) = 𝑁 ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
198 |
197
|
biimprd |
⊢ ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) = 𝑁 ) → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
199 |
198
|
ralimdv |
⊢ ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) = 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
200 |
199
|
expimpd |
⊢ ( 𝜑 → ( ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
201 |
171 200
|
sylan2i |
⊢ ( 𝜑 → ( ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
202 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
203 |
202
|
ss2rabdv |
⊢ ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) |
204 |
|
hashssdif |
⊢ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∈ Fin ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) ) |
205 |
170 203 204
|
sylancr |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) ) |
206 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
207 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) |
208 |
|
xp1st |
⊢ ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
209 |
|
xp1st |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
210 |
|
elmapi |
⊢ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
211 |
208 209 210
|
3syl |
⊢ ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 1st ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
212 |
211
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 1st ‘ ( 1st ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
213 |
|
xp2nd |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
214 |
|
fvex |
⊢ ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ∈ V |
215 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 2nd ‘ ( 1st ‘ 𝑡 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 1st ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
216 |
214 215
|
elab |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 1st ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
217 |
213 216
|
sylib |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
218 |
208 217
|
syl |
⊢ ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd ‘ ( 1st ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
219 |
218
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 2nd ‘ ( 1st ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
220 |
|
xp2nd |
⊢ ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) |
221 |
220
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) |
222 |
206 2 207 212 219 221
|
poimirlem24 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ 〈 ( 1st ‘ ( 1st ‘ 𝑡 ) ) , ( 2nd ‘ ( 1st ‘ 𝑡 ) ) 〉 / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |
223 |
208
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
224 |
|
1st2nd2 |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ 𝑡 ) = 〈 ( 1st ‘ ( 1st ‘ 𝑡 ) ) , ( 2nd ‘ ( 1st ‘ 𝑡 ) ) 〉 ) |
225 |
224
|
csbeq1d |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ 〈 ( 1st ‘ ( 1st ‘ 𝑡 ) ) , ( 2nd ‘ ( 1st ‘ 𝑡 ) ) 〉 / 𝑠 ⦌ 𝐶 ) |
226 |
225
|
eqeq2d |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 〈 ( 1st ‘ ( 1st ‘ 𝑡 ) ) , ( 2nd ‘ ( 1st ‘ 𝑡 ) ) 〉 / 𝑠 ⦌ 𝐶 ) ) |
227 |
226
|
rexbidv |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ 〈 ( 1st ‘ ( 1st ‘ 𝑡 ) ) , ( 2nd ‘ ( 1st ‘ 𝑡 ) ) 〉 / 𝑠 ⦌ 𝐶 ) ) |
228 |
227
|
ralbidv |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ 〈 ( 1st ‘ ( 1st ‘ 𝑡 ) ) , ( 2nd ‘ ( 1st ‘ 𝑡 ) ) 〉 / 𝑠 ⦌ 𝐶 ) ) |
229 |
228
|
anbi1d |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ 〈 ( 1st ‘ ( 1st ‘ 𝑡 ) ) , ( 2nd ‘ ( 1st ‘ 𝑡 ) ) 〉 / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |
230 |
223 229
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ 〈 ( 1st ‘ ( 1st ‘ 𝑡 ) ) , ( 2nd ‘ ( 1st ‘ 𝑡 ) ) 〉 / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |
231 |
222 230
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |
232 |
103
|
frnd |
⊢ ( 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) → ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
233 |
232
|
anim2i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ) |
234 |
|
dfss3 |
⊢ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ↔ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ) |
235 |
|
vex |
⊢ 𝑛 ∈ V |
236 |
|
eqid |
⊢ ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) = ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) |
237 |
236
|
elrnmpt |
⊢ ( 𝑛 ∈ V → ( 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ↔ ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) ) |
238 |
235 237
|
ax-mp |
⊢ ( 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ↔ ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) |
239 |
238
|
ralbii |
⊢ ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ↔ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) |
240 |
234 239
|
sylbb |
⊢ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) → ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) |
241 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
242 |
|
fzss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) ) |
243 |
|
ssralv |
⊢ ( ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) ) |
244 |
241 242 243
|
mp2b |
⊢ ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) |
245 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
246 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
247 |
245 246
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
248 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
249 |
187 248
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
250 |
|
uzid |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
251 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
252 |
249 250 251
|
3syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
253 |
247 252
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
254 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
255 |
253 254
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
256 |
255
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
257 |
256
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
258 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
259 |
|
ssel2 |
⊢ ( ( ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → 𝑝 ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
260 |
|
elmapi |
⊢ ( 𝑝 ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
261 |
259 260
|
syl |
⊢ ( ( ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
262 |
258 261
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
263 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ ) |
264 |
263
|
zred |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℝ ) |
265 |
264
|
ltnrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ¬ 𝑛 < 𝑛 ) |
266 |
|
breq1 |
⊢ ( 𝑛 = 𝐵 → ( 𝑛 < 𝑛 ↔ 𝐵 < 𝑛 ) ) |
267 |
266
|
notbid |
⊢ ( 𝑛 = 𝐵 → ( ¬ 𝑛 < 𝑛 ↔ ¬ 𝐵 < 𝑛 ) ) |
268 |
265 267
|
syl5ibcom |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 = 𝐵 → ¬ 𝐵 < 𝑛 ) ) |
269 |
268
|
necon2ad |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝐵 < 𝑛 → 𝑛 ≠ 𝐵 ) ) |
270 |
269
|
3ad2ant1 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → ( 𝐵 < 𝑛 → 𝑛 ≠ 𝐵 ) ) |
271 |
270
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → ( 𝐵 < 𝑛 → 𝑛 ≠ 𝐵 ) ) |
272 |
4 271
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → 𝑛 ≠ 𝐵 ) |
273 |
272
|
3exp2 |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) → ( ( 𝑝 ‘ 𝑛 ) = 0 → 𝑛 ≠ 𝐵 ) ) ) ) |
274 |
273
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑝 ‘ 𝑛 ) = 0 → 𝑛 ≠ 𝐵 ) ) |
275 |
274
|
necon2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑛 = 𝐵 → ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
276 |
275
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑛 = 𝐵 → ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
277 |
262 276
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → ( 𝑛 = 𝐵 → ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
278 |
277
|
reximdva |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
279 |
257 278
|
syldan |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
280 |
279
|
ralimdva |
⊢ ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) → ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
281 |
280
|
imp |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) |
282 |
244 281
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) |
283 |
282
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
284 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
285 |
1 284
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
286 |
|
fzm1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) ) |
287 |
285 286
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) ) |
288 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) ) |
289 |
181
|
orbi2i |
⊢ ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) |
290 |
288 289
|
bitri |
⊢ ( 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) |
291 |
287 290
|
bitr4di |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) ) |
292 |
291
|
eqrdv |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |
293 |
292
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
294 |
|
ralunb |
⊢ ( ∀ 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
295 |
293 294
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) ) |
296 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑝 ‘ 𝑛 ) = ( 𝑝 ‘ 𝑁 ) ) |
297 |
296
|
neeq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) |
298 |
297
|
rexbidv |
⊢ ( 𝑛 = 𝑁 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) |
299 |
298
|
ralsng |
⊢ ( 𝑁 ∈ ℕ → ( ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) |
300 |
1 299
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) |
301 |
300
|
anbi2d |
⊢ ( 𝜑 → ( ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
302 |
295 301
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
303 |
302
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
304 |
|
0z |
⊢ 0 ∈ ℤ |
305 |
|
1z |
⊢ 1 ∈ ℤ |
306 |
|
fzshftral |
⊢ ( ( 0 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ] ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) ) |
307 |
304 305 306
|
mp3an13 |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ] ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) ) |
308 |
187 248 307
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ] ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) ) |
309 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
310 |
309
|
a1i |
⊢ ( 𝜑 → ( 0 + 1 ) = 1 ) |
311 |
310 247
|
oveq12d |
⊢ ( 𝜑 → ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
312 |
311
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ] ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ] ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) ) |
313 |
308 312
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ] ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) ) |
314 |
|
ovex |
⊢ ( 𝑚 − 1 ) ∈ V |
315 |
|
eqeq1 |
⊢ ( 𝑛 = ( 𝑚 − 1 ) → ( 𝑛 = 𝐵 ↔ ( 𝑚 − 1 ) = 𝐵 ) ) |
316 |
315
|
rexbidv |
⊢ ( 𝑛 = ( 𝑚 − 1 ) → ( ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ) ) |
317 |
314 316
|
sbcie |
⊢ ( [ ( 𝑚 − 1 ) / 𝑛 ] ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ) |
318 |
317
|
ralbii |
⊢ ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ] ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ) |
319 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 − 1 ) = ( 𝑛 − 1 ) ) |
320 |
319
|
eqeq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 − 1 ) = 𝐵 ↔ ( 𝑛 − 1 ) = 𝐵 ) ) |
321 |
320
|
rexbidv |
⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) ) |
322 |
321
|
cbvralvw |
⊢ ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) |
323 |
318 322
|
bitri |
⊢ ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ] ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) |
324 |
313 323
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) ) |
325 |
324
|
biimpa |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) |
326 |
325
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) |
327 |
5
|
necomd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝐾 ) ) → ( 𝑛 − 1 ) ≠ 𝐵 ) |
328 |
327
|
3exp2 |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) → ( ( 𝑝 ‘ 𝑛 ) = 𝐾 → ( 𝑛 − 1 ) ≠ 𝐵 ) ) ) ) |
329 |
328
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑝 ‘ 𝑛 ) = 𝐾 → ( 𝑛 − 1 ) ≠ 𝐵 ) ) |
330 |
329
|
necon2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑛 − 1 ) = 𝐵 → ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) |
331 |
330
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑛 − 1 ) = 𝐵 → ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) |
332 |
262 331
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → ( ( 𝑛 − 1 ) = 𝐵 → ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) |
333 |
332
|
reximdva |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) |
334 |
333
|
ralimdva |
⊢ ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) |
335 |
334
|
imp |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) |
336 |
326 335
|
syldan |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) |
337 |
336
|
biantrud |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) |
338 |
|
r19.26 |
⊢ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ↔ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) |
339 |
337 338
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) |
340 |
283 303 339
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) |
341 |
233 240 340
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) |
342 |
341
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) ) |
343 |
342
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) ) ) |
344 |
343
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) ) ) |
345 |
344
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) ) ) |
346 |
195
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
347 |
346
|
biimpd |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
348 |
347
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
349 |
173
|
rexeqdv |
⊢ ( ( 2nd ‘ 𝑡 ) = 𝑁 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
350 |
349
|
ralbidv |
⊢ ( ( 2nd ‘ 𝑡 ) = 𝑁 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
351 |
350
|
imbi1d |
⊢ ( ( 2nd ‘ 𝑡 ) = 𝑁 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
352 |
348 351
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝑡 ) = 𝑁 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
353 |
352
|
com23 |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( ( 2nd ‘ 𝑡 ) = 𝑁 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
354 |
353
|
imp |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ( 2nd ‘ 𝑡 ) = 𝑁 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
355 |
354
|
adantrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
356 |
355
|
pm4.71rd |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |
357 |
|
an12 |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
358 |
|
3anass |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) |
359 |
358
|
anbi2i |
⊢ ( ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
360 |
357 359
|
bitr4i |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) |
361 |
356 360
|
bitrdi |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
362 |
361
|
notbid |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
363 |
362
|
pm5.32da |
⊢ ( 𝜑 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |
364 |
363
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |
365 |
231 345 364
|
3bitr3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |
366 |
365
|
rabbidva |
⊢ ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) } ) |
367 |
|
iunrab |
⊢ ∪ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } |
368 |
|
difrab |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) } |
369 |
366 367 368
|
3eqtr4g |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } = ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) |
370 |
369
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) = ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) ) |
371 |
32 33
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin ) |
372 |
|
simpl |
⊢ ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) → 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
373 |
372
|
a1i |
⊢ ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) → 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) ) |
374 |
373
|
ss2rabi |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } |
375 |
374
|
sseli |
⊢ ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } → 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) |
376 |
|
fveq2 |
⊢ ( 𝑡 = 𝑠 → ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑠 ) ) |
377 |
376
|
breq2d |
⊢ ( 𝑡 = 𝑠 → ( 𝑦 < ( 2nd ‘ 𝑡 ) ↔ 𝑦 < ( 2nd ‘ 𝑠 ) ) ) |
378 |
377
|
ifbid |
⊢ ( 𝑡 = 𝑠 → if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) ) |
379 |
378
|
csbeq1d |
⊢ ( 𝑡 = 𝑠 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
380 |
|
2fveq3 |
⊢ ( 𝑡 = 𝑠 → ( 1st ‘ ( 1st ‘ 𝑡 ) ) = ( 1st ‘ ( 1st ‘ 𝑠 ) ) ) |
381 |
|
2fveq3 |
⊢ ( 𝑡 = 𝑠 → ( 2nd ‘ ( 1st ‘ 𝑡 ) ) = ( 2nd ‘ ( 1st ‘ 𝑠 ) ) ) |
382 |
381
|
imaeq1d |
⊢ ( 𝑡 = 𝑠 → ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) ) |
383 |
382
|
xpeq1d |
⊢ ( 𝑡 = 𝑠 → ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
384 |
381
|
imaeq1d |
⊢ ( 𝑡 = 𝑠 → ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
385 |
384
|
xpeq1d |
⊢ ( 𝑡 = 𝑠 → ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
386 |
383 385
|
uneq12d |
⊢ ( 𝑡 = 𝑠 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
387 |
380 386
|
oveq12d |
⊢ ( 𝑡 = 𝑠 → ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
388 |
387
|
csbeq2dv |
⊢ ( 𝑡 = 𝑠 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
389 |
379 388
|
eqtrd |
⊢ ( 𝑡 = 𝑠 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
390 |
389
|
mpteq2dv |
⊢ ( 𝑡 = 𝑠 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
391 |
390
|
eqeq2d |
⊢ ( 𝑡 = 𝑠 → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) ) |
392 |
|
eqcom |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 ) |
393 |
391 392
|
bitrdi |
⊢ ( 𝑡 = 𝑠 → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 ) ) |
394 |
393
|
elrab |
⊢ ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ↔ ( 𝑠 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 ) ) |
395 |
394
|
simprbi |
⊢ ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 ) |
396 |
375 395
|
syl |
⊢ ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 ) |
397 |
396
|
rgen |
⊢ ∀ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 |
398 |
397
|
rgenw |
⊢ ∀ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∀ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 |
399 |
|
invdisj |
⊢ ( ∀ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∀ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 → Disj 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) |
400 |
398 399
|
mp1i |
⊢ ( 𝜑 → Disj 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) |
401 |
13 371 400
|
hashiun |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) = Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) |
402 |
370 401
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) ) |
403 |
|
fo1st |
⊢ 1st : V –onto→ V |
404 |
|
fofun |
⊢ ( 1st : V –onto→ V → Fun 1st ) |
405 |
403 404
|
ax-mp |
⊢ Fun 1st |
406 |
|
ssv |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ V |
407 |
|
fof |
⊢ ( 1st : V –onto→ V → 1st : V ⟶ V ) |
408 |
403 407
|
ax-mp |
⊢ 1st : V ⟶ V |
409 |
408
|
fdmi |
⊢ dom 1st = V |
410 |
406 409
|
sseqtrri |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ dom 1st |
411 |
|
fores |
⊢ ( ( Fun 1st ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ dom 1st ) → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) |
412 |
405 410 411
|
mp2an |
⊢ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) |
413 |
|
fveqeq2 |
⊢ ( 𝑡 = 𝑥 → ( ( 2nd ‘ 𝑡 ) = 𝑁 ↔ ( 2nd ‘ 𝑥 ) = 𝑁 ) ) |
414 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑥 ) ) |
415 |
414
|
csbeq1d |
⊢ ( 𝑡 = 𝑥 → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
416 |
415
|
eqeq2d |
⊢ ( 𝑡 = 𝑥 → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
417 |
416
|
rexbidv |
⊢ ( 𝑡 = 𝑥 → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
418 |
417
|
ralbidv |
⊢ ( 𝑡 = 𝑥 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
419 |
|
2fveq3 |
⊢ ( 𝑡 = 𝑥 → ( 1st ‘ ( 1st ‘ 𝑡 ) ) = ( 1st ‘ ( 1st ‘ 𝑥 ) ) ) |
420 |
419
|
fveq1d |
⊢ ( 𝑡 = 𝑥 → ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) ) |
421 |
420
|
eqeq1d |
⊢ ( 𝑡 = 𝑥 → ( ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ) ) |
422 |
|
2fveq3 |
⊢ ( 𝑡 = 𝑥 → ( 2nd ‘ ( 1st ‘ 𝑡 ) ) = ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ) |
423 |
422
|
fveq1d |
⊢ ( 𝑡 = 𝑥 → ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) ) |
424 |
423
|
eqeq1d |
⊢ ( 𝑡 = 𝑥 → ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) |
425 |
418 421 424
|
3anbi123d |
⊢ ( 𝑡 = 𝑥 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) |
426 |
413 425
|
anbi12d |
⊢ ( 𝑡 = 𝑥 → ( ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
427 |
426
|
rexrab |
⊢ ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑠 ↔ ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
428 |
|
xp1st |
⊢ ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st ‘ 𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
429 |
428
|
anim1i |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( ( 1st ‘ 𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) |
430 |
|
eleq1 |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ( 1st ‘ 𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ↔ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ) |
431 |
|
csbeq1a |
⊢ ( 𝑠 = ( 1st ‘ 𝑥 ) → 𝐶 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
432 |
431
|
eqcoms |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → 𝐶 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
433 |
432
|
eqcomd |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 = 𝐶 ) |
434 |
433
|
eqeq2d |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑖 = 𝐶 ) ) |
435 |
434
|
rexbidv |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) ) |
436 |
435
|
ralbidv |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) ) |
437 |
|
fveq2 |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( 1st ‘ ( 1st ‘ 𝑥 ) ) = ( 1st ‘ 𝑠 ) ) |
438 |
437
|
fveq1d |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) ) |
439 |
438
|
eqeq1d |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ) ) |
440 |
|
fveq2 |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( 2nd ‘ ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ 𝑠 ) ) |
441 |
440
|
fveq1d |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) ) |
442 |
441
|
eqeq1d |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) |
443 |
436 439 442
|
3anbi123d |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) |
444 |
430 443
|
anbi12d |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ( ( 1st ‘ 𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
445 |
429 444
|
syl5ibcom |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( ( 1st ‘ 𝑥 ) = 𝑠 → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
446 |
445
|
adantrl |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) → ( ( 1st ‘ 𝑥 ) = 𝑠 → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
447 |
446
|
expimpd |
⊢ ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
448 |
447
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) |
449 |
|
nn0fz0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
450 |
175 449
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
451 |
|
opelxpi |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → 〈 𝑠 , 𝑁 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) |
452 |
450 451
|
sylan2 |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝜑 ) → 〈 𝑠 , 𝑁 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) |
453 |
452
|
ancoms |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → 〈 𝑠 , 𝑁 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) |
454 |
|
opelxp2 |
⊢ ( 〈 𝑠 , 𝑁 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
455 |
|
op2ndg |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ) |
456 |
455
|
biantrurd |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
457 |
|
op1stg |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑠 ) |
458 |
|
csbeq1a |
⊢ ( 𝑠 = ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) → 𝐶 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ) |
459 |
458
|
eqcoms |
⊢ ( ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑠 → 𝐶 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ) |
460 |
459
|
eqcomd |
⊢ ( ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑠 → ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 = 𝐶 ) |
461 |
457 460
|
syl |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 = 𝐶 ) |
462 |
461
|
eqeq2d |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ↔ 𝑖 = 𝐶 ) ) |
463 |
462
|
rexbidv |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) ) |
464 |
463
|
ralbidv |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) ) |
465 |
457
|
fveq2d |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) = ( 1st ‘ 𝑠 ) ) |
466 |
465
|
fveq1d |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) ) |
467 |
466
|
eqeq1d |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ) ) |
468 |
457
|
fveq2d |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) = ( 2nd ‘ 𝑠 ) ) |
469 |
468
|
fveq1d |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) ) |
470 |
469
|
eqeq1d |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) |
471 |
464 467 470
|
3anbi123d |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) |
472 |
457
|
biantrud |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑠 ) ) ) |
473 |
456 471 472
|
3bitr3d |
⊢ ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ( ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑠 ) ) ) |
474 |
49 454 473
|
sylancr |
⊢ ( 〈 𝑠 , 𝑁 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ( ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑠 ) ) ) |
475 |
474
|
biimpa |
⊢ ( ( 〈 𝑠 , 𝑁 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ( ( ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑠 ) ) |
476 |
|
fveqeq2 |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ( 2nd ‘ 𝑥 ) = 𝑁 ↔ ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ) ) |
477 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) |
478 |
477
|
csbeq1d |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ) |
479 |
478
|
eqeq2d |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ) ) |
480 |
479
|
rexbidv |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ) ) |
481 |
480
|
ralbidv |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ) ) |
482 |
|
2fveq3 |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( 1st ‘ ( 1st ‘ 𝑥 ) ) = ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ) |
483 |
482
|
fveq1d |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) ) |
484 |
483
|
eqeq1d |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ) ) |
485 |
|
2fveq3 |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( 2nd ‘ ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ) |
486 |
485
|
fveq1d |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) ) |
487 |
486
|
eqeq1d |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) |
488 |
481 484 487
|
3anbi123d |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) |
489 |
476 488
|
anbi12d |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
490 |
|
fveqeq2 |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ( 1st ‘ 𝑥 ) = 𝑠 ↔ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑠 ) ) |
491 |
489 490
|
anbi12d |
⊢ ( 𝑥 = 〈 𝑠 , 𝑁 〉 → ( ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ↔ ( ( ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑠 ) ) ) |
492 |
491
|
rspcev |
⊢ ( ( 〈 𝑠 , 𝑁 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ( ( 2nd ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 〈 𝑠 , 𝑁 〉 ) = 𝑠 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
493 |
475 492
|
syldan |
⊢ ( ( 〈 𝑠 , 𝑁 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
494 |
453 493
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
495 |
494
|
expl |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ) ) |
496 |
448 495
|
impbid2 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
497 |
427 496
|
syl5bb |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑠 ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) ) |
498 |
497
|
abbidv |
⊢ ( 𝜑 → { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) } ) |
499 |
|
dfimafn |
⊢ ( ( Fun 1st ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ dom 1st ) → ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑦 } ) |
500 |
405 410 499
|
mp2an |
⊢ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑦 } |
501 |
|
nfv |
⊢ Ⅎ 𝑠 ( 2nd ‘ 𝑡 ) = 𝑁 |
502 |
|
nfcv |
⊢ Ⅎ 𝑠 ( 0 ... ( 𝑁 − 1 ) ) |
503 |
|
nfcsb1v |
⊢ Ⅎ 𝑠 ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
504 |
503
|
nfeq2 |
⊢ Ⅎ 𝑠 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
505 |
502 504
|
nfrex |
⊢ Ⅎ 𝑠 ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
506 |
502 505
|
nfralw |
⊢ Ⅎ 𝑠 ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
507 |
|
nfv |
⊢ Ⅎ 𝑠 ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 |
508 |
|
nfv |
⊢ Ⅎ 𝑠 ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 |
509 |
506 507 508
|
nf3an |
⊢ Ⅎ 𝑠 ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) |
510 |
501 509
|
nfan |
⊢ Ⅎ 𝑠 ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) |
511 |
|
nfcv |
⊢ Ⅎ 𝑠 ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) |
512 |
510 511
|
nfrabw |
⊢ Ⅎ 𝑠 { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } |
513 |
|
nfv |
⊢ Ⅎ 𝑠 ( 1st ‘ 𝑥 ) = 𝑦 |
514 |
512 513
|
nfrex |
⊢ Ⅎ 𝑠 ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑦 |
515 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑠 |
516 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑠 → ( ( 1st ‘ 𝑥 ) = 𝑦 ↔ ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
517 |
516
|
rexbidv |
⊢ ( 𝑦 = 𝑠 → ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
518 |
514 515 517
|
cbvabw |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑦 } = { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑠 } |
519 |
500 518
|
eqtri |
⊢ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st ‘ 𝑥 ) = 𝑠 } |
520 |
|
df-rab |
⊢ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } = { 𝑠 ∣ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) } |
521 |
498 519 520
|
3eqtr4g |
⊢ ( 𝜑 → ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) |
522 |
|
foeq3 |
⊢ ( ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ↔ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) |
523 |
521 522
|
syl |
⊢ ( 𝜑 → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ↔ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) |
524 |
412 523
|
mpbii |
⊢ ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) |
525 |
|
fof |
⊢ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) |
526 |
524 525
|
syl |
⊢ ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) |
527 |
|
fvres |
⊢ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( 1st ‘ 𝑥 ) ) |
528 |
|
fvres |
⊢ ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) = ( 1st ‘ 𝑦 ) ) |
529 |
527 528
|
eqeqan12d |
⊢ ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
530 |
|
simpl |
⊢ ( ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( 2nd ‘ 𝑡 ) = 𝑁 ) |
531 |
530
|
a1i |
⊢ ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( 2nd ‘ 𝑡 ) = 𝑁 ) ) |
532 |
531
|
ss2rabi |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd ‘ 𝑡 ) = 𝑁 } |
533 |
532
|
sseli |
⊢ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd ‘ 𝑡 ) = 𝑁 } ) |
534 |
413
|
elrab |
⊢ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd ‘ 𝑡 ) = 𝑁 } ↔ ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd ‘ 𝑥 ) = 𝑁 ) ) |
535 |
533 534
|
sylib |
⊢ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd ‘ 𝑥 ) = 𝑁 ) ) |
536 |
532
|
sseli |
⊢ ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd ‘ 𝑡 ) = 𝑁 } ) |
537 |
|
fveqeq2 |
⊢ ( 𝑡 = 𝑦 → ( ( 2nd ‘ 𝑡 ) = 𝑁 ↔ ( 2nd ‘ 𝑦 ) = 𝑁 ) ) |
538 |
537
|
elrab |
⊢ ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd ‘ 𝑡 ) = 𝑁 } ↔ ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd ‘ 𝑦 ) = 𝑁 ) ) |
539 |
536 538
|
sylib |
⊢ ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd ‘ 𝑦 ) = 𝑁 ) ) |
540 |
|
eqtr3 |
⊢ ( ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( 2nd ‘ 𝑦 ) = 𝑁 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) |
541 |
|
xpopth |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) |
542 |
541
|
biimpd |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
543 |
542
|
ancomsd |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∧ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
544 |
543
|
expdimp |
⊢ ( ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
545 |
540 544
|
sylan2 |
⊢ ( ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) ∧ ( ( 2nd ‘ 𝑥 ) = 𝑁 ∧ ( 2nd ‘ 𝑦 ) = 𝑁 ) ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
546 |
545
|
an4s |
⊢ ( ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd ‘ 𝑥 ) = 𝑁 ) ∧ ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd ‘ 𝑦 ) = 𝑁 ) ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
547 |
535 539 546
|
syl2an |
⊢ ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
548 |
529 547
|
sylbid |
⊢ ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
549 |
548
|
rgen2 |
⊢ ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
550 |
526 549
|
jctir |
⊢ ( 𝜑 → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∧ ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
551 |
|
dff13 |
⊢ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ↔ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∧ ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
552 |
550 551
|
sylibr |
⊢ ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) |
553 |
|
df-f1o |
⊢ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ↔ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∧ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) |
554 |
552 524 553
|
sylanbrc |
⊢ ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) |
555 |
|
rabfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ Fin ) |
556 |
32 555
|
ax-mp |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ Fin |
557 |
556
|
elexi |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ V |
558 |
557
|
f1oen |
⊢ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) |
559 |
554 558
|
syl |
⊢ ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) |
560 |
|
rabfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∈ Fin ) |
561 |
29 560
|
ax-mp |
⊢ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∈ Fin |
562 |
|
hashen |
⊢ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ Fin ∧ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∈ Fin ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ↔ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) |
563 |
556 561 562
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ↔ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) |
564 |
559 563
|
sylibr |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) |
565 |
564
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd ‘ 𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) ) |
566 |
205 402 565
|
3eqtr3d |
⊢ ( 𝜑 → Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑛 ) ≠ 𝐾 ) ) ) } ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) ) |
567 |
168 566
|
breqtrd |
⊢ ( 𝜑 → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st ‘ 𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) ) |