| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | poimirlem28.1 | ⊢ ( 𝑝  =  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  𝐶 ) | 
						
							| 3 |  | poimirlem28.2 | ⊢ ( ( 𝜑  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  𝐵  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 4 |  | poimirlem28.3 | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... 𝑁 )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ∧  ( 𝑝 ‘ 𝑛 )  =  0 ) )  →  𝐵  <  𝑛 ) | 
						
							| 5 |  | poimirlem28.4 | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... 𝑁 )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ∧  ( 𝑝 ‘ 𝑛 )  =  𝐾 ) )  →  𝐵  ≠  ( 𝑛  −  1 ) ) | 
						
							| 6 |  | fzfi | ⊢ ( 0 ... 𝐾 )  ∈  Fin | 
						
							| 7 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 8 |  | mapfi | ⊢ ( ( ( 0 ... 𝐾 )  ∈  Fin  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin | 
						
							| 10 |  | fzfi | ⊢ ( 0 ... ( 𝑁  −  1 ) )  ∈  Fin | 
						
							| 11 |  | mapfi | ⊢ ( ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin  ∧  ( 0 ... ( 𝑁  −  1 ) )  ∈  Fin )  →  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) )  ∈  Fin ) | 
						
							| 12 | 9 10 11 | mp2an | ⊢ ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) )  ∈  Fin | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) )  ∈  Fin ) | 
						
							| 14 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 16 |  | fzofi | ⊢ ( 0 ..^ 𝐾 )  ∈  Fin | 
						
							| 17 |  | mapfi | ⊢ ( ( ( 0 ..^ 𝐾 )  ∈  Fin  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 18 | 16 7 17 | mp2an | ⊢ ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin | 
						
							| 19 |  | mapfi | ⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 20 | 7 7 19 | mp2an | ⊢ ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin | 
						
							| 21 |  | f1of | ⊢ ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) | 
						
							| 22 | 21 | ss2abi | ⊢ { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ⊆  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } | 
						
							| 23 |  | ovex | ⊢ ( 1 ... 𝑁 )  ∈  V | 
						
							| 24 | 23 23 | mapval | ⊢ ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) )  =  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } | 
						
							| 25 | 22 24 | sseqtrri | ⊢ { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ⊆  ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) ) | 
						
							| 26 |  | ssfi | ⊢ ( ( ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin  ∧  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ⊆  ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) ) )  →  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ∈  Fin ) | 
						
							| 27 | 20 25 26 | mp2an | ⊢ { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ∈  Fin | 
						
							| 28 |  | xpfi | ⊢ ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin  ∧  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ∈  Fin )  →  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∈  Fin ) | 
						
							| 29 | 18 27 28 | mp2an | ⊢ ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∈  Fin | 
						
							| 30 |  | fzfi | ⊢ ( 0 ... 𝑁 )  ∈  Fin | 
						
							| 31 |  | xpfi | ⊢ ( ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∈  Fin  ∧  ( 0 ... 𝑁 )  ∈  Fin )  →  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 32 | 29 30 31 | mp2an | ⊢ ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∈  Fin | 
						
							| 33 |  | rabfi | ⊢ ( ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∈  Fin  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  ∈  Fin ) | 
						
							| 34 | 32 33 | ax-mp | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  ∈  Fin | 
						
							| 35 |  | hashcl | ⊢ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  ∈  Fin  →  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } )  ∈  ℕ0 ) | 
						
							| 36 | 35 | nn0zd | ⊢ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  ∈  Fin  →  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } )  ∈  ℤ ) | 
						
							| 37 | 34 36 | mp1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } )  ∈  ℤ ) | 
						
							| 38 |  | dfrex2 | ⊢ ( ∃ 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ↔  ¬  ∀ 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ¬  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) | 
						
							| 39 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑡 2 | 
						
							| 41 |  | nfcv | ⊢ Ⅎ 𝑡  ∥ | 
						
							| 42 |  | nfcv | ⊢ Ⅎ 𝑡 ♯ | 
						
							| 43 |  | nfrab1 | ⊢ Ⅎ 𝑡 { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } | 
						
							| 44 | 42 43 | nffv | ⊢ Ⅎ 𝑡 ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) | 
						
							| 45 | 40 41 44 | nfbr | ⊢ Ⅎ 𝑡 2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) | 
						
							| 46 |  | neq0 | ⊢ ( ¬  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  =  ∅  ↔  ∃ 𝑠 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) | 
						
							| 47 |  | iddvds | ⊢ ( 2  ∈  ℤ  →  2  ∥  2 ) | 
						
							| 48 | 14 47 | ax-mp | ⊢ 2  ∥  2 | 
						
							| 49 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 50 |  | hashsng | ⊢ ( 𝑠  ∈  V  →  ( ♯ ‘ { 𝑠 } )  =  1 ) | 
						
							| 51 | 49 50 | ax-mp | ⊢ ( ♯ ‘ { 𝑠 } )  =  1 | 
						
							| 52 | 51 | oveq2i | ⊢ ( 1  +  ( ♯ ‘ { 𝑠 } ) )  =  ( 1  +  1 ) | 
						
							| 53 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 54 | 52 53 | eqtr4i | ⊢ ( 1  +  ( ♯ ‘ { 𝑠 } ) )  =  2 | 
						
							| 55 | 48 54 | breqtrri | ⊢ 2  ∥  ( 1  +  ( ♯ ‘ { 𝑠 } ) ) | 
						
							| 56 |  | rabfi | ⊢ ( ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∈  Fin  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∈  Fin ) | 
						
							| 57 |  | diffi | ⊢ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∈  Fin  →  ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∈  Fin ) | 
						
							| 58 | 32 56 57 | mp2b | ⊢ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∈  Fin | 
						
							| 59 |  | snfi | ⊢ { 𝑠 }  ∈  Fin | 
						
							| 60 |  | disjdifr | ⊢ ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∩  { 𝑠 } )  =  ∅ | 
						
							| 61 |  | hashun | ⊢ ( ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∈  Fin  ∧  { 𝑠 }  ∈  Fin  ∧  ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∩  { 𝑠 } )  =  ∅ )  →  ( ♯ ‘ ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∪  { 𝑠 } ) )  =  ( ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) )  +  ( ♯ ‘ { 𝑠 } ) ) ) | 
						
							| 62 | 58 59 60 61 | mp3an | ⊢ ( ♯ ‘ ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∪  { 𝑠 } ) )  =  ( ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) )  +  ( ♯ ‘ { 𝑠 } ) ) | 
						
							| 63 |  | difsnid | ⊢ ( 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  →  ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∪  { 𝑠 } )  =  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  →  ( ♯ ‘ ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∪  { 𝑠 } ) )  =  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) | 
						
							| 65 | 62 64 | eqtr3id | ⊢ ( 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  →  ( ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) )  +  ( ♯ ‘ { 𝑠 } ) )  =  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  ( ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) )  +  ( ♯ ‘ { 𝑠 } ) )  =  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) | 
						
							| 67 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  𝑁  ∈  ℕ ) | 
						
							| 68 |  | fveq2 | ⊢ ( 𝑡  =  𝑢  →  ( 2nd  ‘ 𝑡 )  =  ( 2nd  ‘ 𝑢 ) ) | 
						
							| 69 | 68 | breq2d | ⊢ ( 𝑡  =  𝑢  →  ( 𝑦  <  ( 2nd  ‘ 𝑡 )  ↔  𝑦  <  ( 2nd  ‘ 𝑢 ) ) ) | 
						
							| 70 | 69 | ifbid | ⊢ ( 𝑡  =  𝑢  →  if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( 𝑦  <  ( 2nd  ‘ 𝑢 ) ,  𝑦 ,  ( 𝑦  +  1 ) ) ) | 
						
							| 71 | 70 | csbeq1d | ⊢ ( 𝑡  =  𝑢  →  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑢 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 72 |  | 2fveq3 | ⊢ ( 𝑡  =  𝑢  →  ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  =  ( 1st  ‘ ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 73 |  | 2fveq3 | ⊢ ( 𝑡  =  𝑢  →  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  =  ( 2nd  ‘ ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 74 | 73 | imaeq1d | ⊢ ( 𝑡  =  𝑢  →  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  =  ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) ) ) | 
						
							| 75 | 74 | xpeq1d | ⊢ ( 𝑡  =  𝑢  →  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) ) | 
						
							| 76 | 73 | imaeq1d | ⊢ ( 𝑡  =  𝑢  →  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 77 | 76 | xpeq1d | ⊢ ( 𝑡  =  𝑢  →  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 78 | 75 77 | uneq12d | ⊢ ( 𝑡  =  𝑢  →  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 79 | 72 78 | oveq12d | ⊢ ( 𝑡  =  𝑢  →  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 80 | 79 | csbeq2dv | ⊢ ( 𝑡  =  𝑢  →  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑢 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑢 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 81 | 71 80 | eqtrd | ⊢ ( 𝑡  =  𝑢  →  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑢 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 82 | 81 | mpteq2dv | ⊢ ( 𝑡  =  𝑢  →  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑢 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 83 |  | breq1 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦  <  ( 2nd  ‘ 𝑢 )  ↔  𝑤  <  ( 2nd  ‘ 𝑢 ) ) ) | 
						
							| 84 |  | id | ⊢ ( 𝑦  =  𝑤  →  𝑦  =  𝑤 ) | 
						
							| 85 |  | oveq1 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦  +  1 )  =  ( 𝑤  +  1 ) ) | 
						
							| 86 | 83 84 85 | ifbieq12d | ⊢ ( 𝑦  =  𝑤  →  if ( 𝑦  <  ( 2nd  ‘ 𝑢 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( 𝑤  <  ( 2nd  ‘ 𝑢 ) ,  𝑤 ,  ( 𝑤  +  1 ) ) ) | 
						
							| 87 | 86 | csbeq1d | ⊢ ( 𝑦  =  𝑤  →  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑢 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑤  <  ( 2nd  ‘ 𝑢 ) ,  𝑤 ,  ( 𝑤  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 88 |  | oveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 1 ... 𝑗 )  =  ( 1 ... 𝑖 ) ) | 
						
							| 89 | 88 | imaeq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  =  ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑖 ) ) ) | 
						
							| 90 | 89 | xpeq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑖 ) )  ×  { 1 } ) ) | 
						
							| 91 |  | oveq1 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  +  1 )  =  ( 𝑖  +  1 ) ) | 
						
							| 92 | 91 | oveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑗  +  1 ) ... 𝑁 )  =  ( ( 𝑖  +  1 ) ... 𝑁 ) ) | 
						
							| 93 | 92 | imaeq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑖  +  1 ) ... 𝑁 ) ) ) | 
						
							| 94 | 93 | xpeq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑖  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 95 | 90 94 | uneq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑖 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑖  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑖 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑖  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 97 | 96 | cbvcsbv | ⊢ ⦋ if ( 𝑤  <  ( 2nd  ‘ 𝑢 ) ,  𝑤 ,  ( 𝑤  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑤  <  ( 2nd  ‘ 𝑢 ) ,  𝑤 ,  ( 𝑤  +  1 ) )  /  𝑖 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑖 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑖  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 98 | 87 97 | eqtrdi | ⊢ ( 𝑦  =  𝑤  →  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑢 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑤  <  ( 2nd  ‘ 𝑢 ) ,  𝑤 ,  ( 𝑤  +  1 ) )  /  𝑖 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑖 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑖  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 99 | 98 | cbvmptv | ⊢ ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑢 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  ( 𝑤  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑤  <  ( 2nd  ‘ 𝑢 ) ,  𝑤 ,  ( 𝑤  +  1 ) )  /  𝑖 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑖 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑖  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 100 | 82 99 | eqtrdi | ⊢ ( 𝑡  =  𝑢  →  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  ( 𝑤  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑤  <  ( 2nd  ‘ 𝑢 ) ,  𝑤 ,  ( 𝑤  +  1 ) )  /  𝑖 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑖 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑖  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 101 | 100 | eqeq2d | ⊢ ( 𝑡  =  𝑢  →  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↔  𝑥  =  ( 𝑤  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑤  <  ( 2nd  ‘ 𝑢 ) ,  𝑤 ,  ( 𝑤  +  1 ) )  /  𝑖 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑖 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑖  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) ) | 
						
							| 102 | 101 | cbvrabv | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  =  { 𝑢  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑤  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑤  <  ( 2nd  ‘ 𝑢 ) ,  𝑤 ,  ( 𝑤  +  1 ) )  /  𝑖 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( 1 ... 𝑖 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  “  ( ( 𝑖  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } | 
						
							| 103 |  | elmapi | ⊢ ( 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑥 : ( 0 ... ( 𝑁  −  1 ) ) ⟶ ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 104 | 103 | ad3antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  𝑥 : ( 0 ... ( 𝑁  −  1 ) ) ⟶ ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 105 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) | 
						
							| 106 |  | simpl | ⊢ ( ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 )  →  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) | 
						
							| 107 | 106 | ralimi | ⊢ ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 )  →  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) | 
						
							| 108 | 107 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) | 
						
							| 109 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑝 ‘ 𝑛 )  =  ( 𝑝 ‘ 𝑚 ) ) | 
						
							| 110 | 109 | neeq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ( 𝑝 ‘ 𝑚 )  ≠  0 ) ) | 
						
							| 111 | 110 | rexbidv | ⊢ ( 𝑛  =  𝑚  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑚 )  ≠  0 ) ) | 
						
							| 112 |  | fveq1 | ⊢ ( 𝑝  =  𝑞  →  ( 𝑝 ‘ 𝑚 )  =  ( 𝑞 ‘ 𝑚 ) ) | 
						
							| 113 | 112 | neeq1d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝑝 ‘ 𝑚 )  ≠  0  ↔  ( 𝑞 ‘ 𝑚 )  ≠  0 ) ) | 
						
							| 114 | 113 | cbvrexvw | ⊢ ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑚 )  ≠  0  ↔  ∃ 𝑞  ∈  ran  𝑥 ( 𝑞 ‘ 𝑚 )  ≠  0 ) | 
						
							| 115 | 111 114 | bitrdi | ⊢ ( 𝑛  =  𝑚  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ∃ 𝑞  ∈  ran  𝑥 ( 𝑞 ‘ 𝑚 )  ≠  0 ) ) | 
						
							| 116 | 115 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  𝑚  ∈  ( 1 ... 𝑁 ) )  →  ∃ 𝑞  ∈  ran  𝑥 ( 𝑞 ‘ 𝑚 )  ≠  0 ) | 
						
							| 117 | 108 116 | sylan | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  ∧  𝑚  ∈  ( 1 ... 𝑁 ) )  →  ∃ 𝑞  ∈  ran  𝑥 ( 𝑞 ‘ 𝑚 )  ≠  0 ) | 
						
							| 118 |  | simpr | ⊢ ( ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 )  →  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) | 
						
							| 119 | 118 | ralimi | ⊢ ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 )  →  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) | 
						
							| 120 | 119 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) | 
						
							| 121 | 109 | neeq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑝 ‘ 𝑛 )  ≠  𝐾  ↔  ( 𝑝 ‘ 𝑚 )  ≠  𝐾 ) ) | 
						
							| 122 | 121 | rexbidv | ⊢ ( 𝑛  =  𝑚  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾  ↔  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑚 )  ≠  𝐾 ) ) | 
						
							| 123 | 112 | neeq1d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝑝 ‘ 𝑚 )  ≠  𝐾  ↔  ( 𝑞 ‘ 𝑚 )  ≠  𝐾 ) ) | 
						
							| 124 | 123 | cbvrexvw | ⊢ ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑚 )  ≠  𝐾  ↔  ∃ 𝑞  ∈  ran  𝑥 ( 𝑞 ‘ 𝑚 )  ≠  𝐾 ) | 
						
							| 125 | 122 124 | bitrdi | ⊢ ( 𝑛  =  𝑚  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾  ↔  ∃ 𝑞  ∈  ran  𝑥 ( 𝑞 ‘ 𝑚 )  ≠  𝐾 ) ) | 
						
							| 126 | 125 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾  ∧  𝑚  ∈  ( 1 ... 𝑁 ) )  →  ∃ 𝑞  ∈  ran  𝑥 ( 𝑞 ‘ 𝑚 )  ≠  𝐾 ) | 
						
							| 127 | 120 126 | sylan | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  ∧  𝑚  ∈  ( 1 ... 𝑁 ) )  →  ∃ 𝑞  ∈  ran  𝑥 ( 𝑞 ‘ 𝑚 )  ≠  𝐾 ) | 
						
							| 128 | 67 102 104 105 117 127 | poimirlem22 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  ∃! 𝑧  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } 𝑧  ≠  𝑠 ) | 
						
							| 129 |  | eldifsn | ⊢ ( 𝑧  ∈  ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ↔  ( 𝑧  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∧  𝑧  ≠  𝑠 ) ) | 
						
							| 130 | 129 | eubii | ⊢ ( ∃! 𝑧 𝑧  ∈  ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ↔  ∃! 𝑧 ( 𝑧  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∧  𝑧  ≠  𝑠 ) ) | 
						
							| 131 | 58 | elexi | ⊢ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∈  V | 
						
							| 132 |  | euhash1 | ⊢ ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } )  ∈  V  →  ( ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) )  =  1  ↔  ∃! 𝑧 𝑧  ∈  ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) ) ) | 
						
							| 133 | 131 132 | ax-mp | ⊢ ( ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) )  =  1  ↔  ∃! 𝑧 𝑧  ∈  ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) ) | 
						
							| 134 |  | df-reu | ⊢ ( ∃! 𝑧  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } 𝑧  ≠  𝑠  ↔  ∃! 𝑧 ( 𝑧  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∧  𝑧  ≠  𝑠 ) ) | 
						
							| 135 | 130 133 134 | 3bitr4ri | ⊢ ( ∃! 𝑧  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } 𝑧  ≠  𝑠  ↔  ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) )  =  1 ) | 
						
							| 136 | 128 135 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) )  =  1 ) | 
						
							| 137 | 136 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  ( ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ∖  { 𝑠 } ) )  +  ( ♯ ‘ { 𝑠 } ) )  =  ( 1  +  ( ♯ ‘ { 𝑠 } ) ) ) | 
						
							| 138 | 66 137 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  =  ( 1  +  ( ♯ ‘ { 𝑠 } ) ) ) | 
						
							| 139 | 55 138 | breqtrrid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  ∧  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) | 
						
							| 140 | 139 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  ( 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) ) | 
						
							| 141 | 140 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  ( ∃ 𝑠 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) ) | 
						
							| 142 | 46 141 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  ( ¬  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  =  ∅  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) ) | 
						
							| 143 |  | dvds0 | ⊢ ( 2  ∈  ℤ  →  2  ∥  0 ) | 
						
							| 144 | 14 143 | ax-mp | ⊢ 2  ∥  0 | 
						
							| 145 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 146 | 144 145 | breqtrri | ⊢ 2  ∥  ( ♯ ‘ ∅ ) | 
						
							| 147 |  | fveq2 | ⊢ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  =  ∅  →  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 148 | 146 147 | breqtrrid | ⊢ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  =  ∅  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) | 
						
							| 149 | 142 148 | pm2.61d2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) | 
						
							| 150 | 149 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 )  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) ) | 
						
							| 151 | 150 | adantld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  ( ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) ) ) | 
						
							| 152 |  | iba | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↔  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) ) ) | 
						
							| 153 | 152 | rabbidv | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  =  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) | 
						
							| 154 | 153 | fveq2d | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  =  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) | 
						
							| 155 | 154 | breq2d | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  ( 2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } )  ↔  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) ) | 
						
							| 156 | 151 155 | mpbidi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  ( ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) ) | 
						
							| 157 | 156 | a1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) ) ) | 
						
							| 158 | 39 45 157 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  ( ∃ 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) ) | 
						
							| 159 | 38 158 | biimtrrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  ( ¬  ∀ 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ¬  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) ) | 
						
							| 160 |  | simpr | ⊢ ( ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) )  →  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) | 
						
							| 161 | 160 | con3i | ⊢ ( ¬  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  ¬  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) ) | 
						
							| 162 | 161 | ralimi | ⊢ ( ∀ 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ¬  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  ∀ 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ¬  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) ) | 
						
							| 163 |  | rabeq0 | ⊢ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  =  ∅  ↔  ∀ 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ¬  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) ) | 
						
							| 164 | 162 163 | sylibr | ⊢ ( ∀ 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ¬  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  =  ∅ ) | 
						
							| 165 | 164 | fveq2d | ⊢ ( ∀ 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ¬  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 166 | 146 165 | breqtrrid | ⊢ ( ∀ 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ¬  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) )  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) | 
						
							| 167 | 159 166 | pm2.61d2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  2  ∥  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) | 
						
							| 168 | 13 15 37 167 | fsumdvds | ⊢ ( 𝜑  →  2  ∥  Σ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) | 
						
							| 169 |  | rabfi | ⊢ ( ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∈  Fin  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∈  Fin ) | 
						
							| 170 | 32 169 | ax-mp | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∈  Fin | 
						
							| 171 |  | simp1 | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 172 |  | sneq | ⊢ ( ( 2nd  ‘ 𝑡 )  =  𝑁  →  { ( 2nd  ‘ 𝑡 ) }  =  { 𝑁 } ) | 
						
							| 173 | 172 | difeq2d | ⊢ ( ( 2nd  ‘ 𝑡 )  =  𝑁  →  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑁 } ) ) | 
						
							| 174 |  | difun2 | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ∖  { 𝑁 } )  =  ( ( 0 ... ( 𝑁  −  1 ) )  ∖  { 𝑁 } ) | 
						
							| 175 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 176 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 177 | 175 176 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 178 |  | fzm1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  𝑛  =  𝑁 ) ) ) | 
						
							| 179 | 177 178 | syl | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  𝑛  =  𝑁 ) ) ) | 
						
							| 180 |  | elun | ⊢ ( 𝑛  ∈  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ↔  ( 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  𝑛  ∈  { 𝑁 } ) ) | 
						
							| 181 |  | velsn | ⊢ ( 𝑛  ∈  { 𝑁 }  ↔  𝑛  =  𝑁 ) | 
						
							| 182 | 181 | orbi2i | ⊢ ( ( 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  𝑛  ∈  { 𝑁 } )  ↔  ( 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  𝑛  =  𝑁 ) ) | 
						
							| 183 | 180 182 | bitri | ⊢ ( 𝑛  ∈  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ↔  ( 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  𝑛  =  𝑁 ) ) | 
						
							| 184 | 179 183 | bitr4di | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  ↔  𝑛  ∈  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ) ) | 
						
							| 185 | 184 | eqrdv | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  =  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ) | 
						
							| 186 | 185 | difeq1d | ⊢ ( 𝜑  →  ( ( 0 ... 𝑁 )  ∖  { 𝑁 } )  =  ( ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ∖  { 𝑁 } ) ) | 
						
							| 187 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 188 |  | uzid | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 189 |  | uznfz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑁 )  →  ¬  𝑁  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 190 | 187 188 189 | 3syl | ⊢ ( 𝜑  →  ¬  𝑁  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 191 |  | disjsn | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ∩  { 𝑁 } )  =  ∅  ↔  ¬  𝑁  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 192 |  | disj3 | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ∩  { 𝑁 } )  =  ∅  ↔  ( 0 ... ( 𝑁  −  1 ) )  =  ( ( 0 ... ( 𝑁  −  1 ) )  ∖  { 𝑁 } ) ) | 
						
							| 193 | 191 192 | bitr3i | ⊢ ( ¬  𝑁  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ( 0 ... ( 𝑁  −  1 ) )  =  ( ( 0 ... ( 𝑁  −  1 ) )  ∖  { 𝑁 } ) ) | 
						
							| 194 | 190 193 | sylib | ⊢ ( 𝜑  →  ( 0 ... ( 𝑁  −  1 ) )  =  ( ( 0 ... ( 𝑁  −  1 ) )  ∖  { 𝑁 } ) ) | 
						
							| 195 | 174 186 194 | 3eqtr4a | ⊢ ( 𝜑  →  ( ( 0 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 196 | 173 195 | sylan9eqr | ⊢ ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  =  𝑁 )  →  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  =  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 197 | 196 | rexeqdv | ⊢ ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  =  𝑁 )  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 198 | 197 | biimprd | ⊢ ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  =  𝑁 )  →  ( ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 199 | 198 | ralimdv | ⊢ ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  =  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 200 | 199 | expimpd | ⊢ ( 𝜑  →  ( ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 201 | 171 200 | sylan2i | ⊢ ( 𝜑  →  ( ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 202 | 201 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 203 | 202 | ss2rabdv | ⊢ ( 𝜑  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ⊆  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } ) | 
						
							| 204 |  | hashssdif | ⊢ ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∈  Fin  ∧  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ⊆  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  →  ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) )  =  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ) ) | 
						
							| 205 | 170 203 204 | sylancr | ⊢ ( 𝜑  →  ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) )  =  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ) ) | 
						
							| 206 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 207 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  𝐵  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 208 |  | xp1st | ⊢ ( 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) | 
						
							| 209 |  | xp1st | ⊢ ( ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∈  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 210 |  | elmapi | ⊢ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∈  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  →  ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 211 | 208 209 210 | 3syl | ⊢ ( 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 212 | 211 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 213 |  | xp2nd | ⊢ ( ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) | 
						
							| 214 |  | fvex | ⊢ ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  ∈  V | 
						
							| 215 |  | f1oeq1 | ⊢ ( 𝑓  =  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  →  ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ↔  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) | 
						
							| 216 | 214 215 | elab | ⊢ ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ↔  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 217 | 213 216 | sylib | ⊢ ( ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 218 | 208 217 | syl | ⊢ ( 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 219 | 218 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 220 |  | xp2nd | ⊢ ( 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 221 | 220 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 222 | 206 2 207 212 219 221 | poimirlem24 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ,  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) 〉  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) ) | 
						
							| 223 | 208 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) | 
						
							| 224 |  | 1st2nd2 | ⊢ ( ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 1st  ‘ 𝑡 )  =  〈 ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ,  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) 〉 ) | 
						
							| 225 | 224 | csbeq1d | ⊢ ( ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ,  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 226 | 225 | eqeq2d | ⊢ ( ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 〈 ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ,  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 227 | 226 | rexbidv | ⊢ ( ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ,  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 228 | 227 | ralbidv | ⊢ ( ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ,  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 229 | 228 | anbi1d | ⊢ ( ( 1st  ‘ 𝑡 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ,  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) 〉  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) ) | 
						
							| 230 | 223 229 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ,  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) 〉  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) ) | 
						
							| 231 | 222 230 | bitr4d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) ) | 
						
							| 232 | 103 | frnd | ⊢ ( 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) )  →  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 233 | 232 | anim2i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 234 |  | dfss3 | ⊢ ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ↔  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑛  ∈  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 ) ) | 
						
							| 235 |  | vex | ⊢ 𝑛  ∈  V | 
						
							| 236 |  | eqid | ⊢ ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  =  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 ) | 
						
							| 237 | 236 | elrnmpt | ⊢ ( 𝑛  ∈  V  →  ( 𝑛  ∈  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ↔  ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) ) | 
						
							| 238 | 235 237 | ax-mp | ⊢ ( 𝑛  ∈  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ↔  ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) | 
						
							| 239 | 238 | ralbii | ⊢ ( ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑛  ∈  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ↔  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) | 
						
							| 240 | 234 239 | sylbb | ⊢ ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  →  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) | 
						
							| 241 |  | 1eluzge0 | ⊢ 1  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 242 |  | fzss1 | ⊢ ( 1  ∈  ( ℤ≥ ‘ 0 )  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 243 |  | ssralv | ⊢ ( ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... ( 𝑁  −  1 ) )  →  ( ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  →  ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) ) | 
						
							| 244 | 241 242 243 | mp2b | ⊢ ( ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  →  ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) | 
						
							| 245 | 1 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 246 |  | npcan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 247 | 245 246 | syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 248 |  | peano2zm | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 249 |  | uzid | ⊢ ( ( 𝑁  −  1 )  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 250 |  | peano2uz | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 251 | 187 248 249 250 | 4syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 252 | 247 251 | eqeltrrd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 253 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 254 | 252 253 | syl | ⊢ ( 𝜑  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 255 | 254 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 256 | 255 | adantlr | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 257 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 258 |  | ssel2 | ⊢ ( ( ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∧  𝑝  ∈  ran  𝑥 )  →  𝑝  ∈  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 259 |  | elmapi | ⊢ ( 𝑝  ∈  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  →  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 260 | 258 259 | syl | ⊢ ( ( ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∧  𝑝  ∈  ran  𝑥 )  →  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 261 | 257 260 | sylan | ⊢ ( ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑝  ∈  ran  𝑥 )  →  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 262 |  | elfzelz | ⊢ ( 𝑛  ∈  ( 1 ... 𝑁 )  →  𝑛  ∈  ℤ ) | 
						
							| 263 | 262 | zred | ⊢ ( 𝑛  ∈  ( 1 ... 𝑁 )  →  𝑛  ∈  ℝ ) | 
						
							| 264 | 263 | ltnrd | ⊢ ( 𝑛  ∈  ( 1 ... 𝑁 )  →  ¬  𝑛  <  𝑛 ) | 
						
							| 265 |  | breq1 | ⊢ ( 𝑛  =  𝐵  →  ( 𝑛  <  𝑛  ↔  𝐵  <  𝑛 ) ) | 
						
							| 266 | 265 | notbid | ⊢ ( 𝑛  =  𝐵  →  ( ¬  𝑛  <  𝑛  ↔  ¬  𝐵  <  𝑛 ) ) | 
						
							| 267 | 264 266 | syl5ibcom | ⊢ ( 𝑛  ∈  ( 1 ... 𝑁 )  →  ( 𝑛  =  𝐵  →  ¬  𝐵  <  𝑛 ) ) | 
						
							| 268 | 267 | necon2ad | ⊢ ( 𝑛  ∈  ( 1 ... 𝑁 )  →  ( 𝐵  <  𝑛  →  𝑛  ≠  𝐵 ) ) | 
						
							| 269 | 268 | 3ad2ant1 | ⊢ ( ( 𝑛  ∈  ( 1 ... 𝑁 )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ∧  ( 𝑝 ‘ 𝑛 )  =  0 )  →  ( 𝐵  <  𝑛  →  𝑛  ≠  𝐵 ) ) | 
						
							| 270 | 269 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... 𝑁 )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ∧  ( 𝑝 ‘ 𝑛 )  =  0 ) )  →  ( 𝐵  <  𝑛  →  𝑛  ≠  𝐵 ) ) | 
						
							| 271 | 4 270 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... 𝑁 )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ∧  ( 𝑝 ‘ 𝑛 )  =  0 ) )  →  𝑛  ≠  𝐵 ) | 
						
							| 272 | 271 | 3exp2 | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 1 ... 𝑁 )  →  ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  →  ( ( 𝑝 ‘ 𝑛 )  =  0  →  𝑛  ≠  𝐵 ) ) ) ) | 
						
							| 273 | 272 | imp31 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  ( ( 𝑝 ‘ 𝑛 )  =  0  →  𝑛  ≠  𝐵 ) ) | 
						
							| 274 | 273 | necon2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  ( 𝑛  =  𝐵  →  ( 𝑝 ‘ 𝑛 )  ≠  0 ) ) | 
						
							| 275 | 274 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  ( 𝑛  =  𝐵  →  ( 𝑝 ‘ 𝑛 )  ≠  0 ) ) | 
						
							| 276 | 261 275 | syldan | ⊢ ( ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑝  ∈  ran  𝑥 )  →  ( 𝑛  =  𝐵  →  ( 𝑝 ‘ 𝑛 )  ≠  0 ) ) | 
						
							| 277 | 276 | reximdva | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  →  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) ) | 
						
							| 278 | 256 277 | syldan | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  →  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) ) | 
						
							| 279 | 278 | ralimdva | ⊢ ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  →  ( ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  →  ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) ) | 
						
							| 280 | 279 | imp | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 )  →  ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) | 
						
							| 281 | 244 280 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 )  →  ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) | 
						
							| 282 | 281 | biantrurd | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 )  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ( ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) ) | 
						
							| 283 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 284 | 1 283 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 285 |  | fzm1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑛  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑛  =  𝑁 ) ) ) | 
						
							| 286 | 284 285 | syl | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑛  =  𝑁 ) ) ) | 
						
							| 287 |  | elun | ⊢ ( 𝑛  ∈  ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ↔  ( 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑛  ∈  { 𝑁 } ) ) | 
						
							| 288 | 181 | orbi2i | ⊢ ( ( 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑛  ∈  { 𝑁 } )  ↔  ( 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑛  =  𝑁 ) ) | 
						
							| 289 | 287 288 | bitri | ⊢ ( 𝑛  ∈  ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ↔  ( 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑛  =  𝑁 ) ) | 
						
							| 290 | 286 289 | bitr4di | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 1 ... 𝑁 )  ↔  𝑛  ∈  ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ) ) | 
						
							| 291 | 290 | eqrdv | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ) | 
						
							| 292 | 291 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ∀ 𝑛  ∈  ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) ) | 
						
							| 293 |  | ralunb | ⊢ ( ∀ 𝑛  ∈  ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ( ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∀ 𝑛  ∈  { 𝑁 } ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) ) | 
						
							| 294 | 292 293 | bitrdi | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ( ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∀ 𝑛  ∈  { 𝑁 } ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 ) ) ) | 
						
							| 295 |  | fveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑝 ‘ 𝑛 )  =  ( 𝑝 ‘ 𝑁 ) ) | 
						
							| 296 | 295 | neeq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 297 | 296 | rexbidv | ⊢ ( 𝑛  =  𝑁  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 298 | 297 | ralsng | ⊢ ( 𝑁  ∈  ℕ  →  ( ∀ 𝑛  ∈  { 𝑁 } ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 299 | 1 298 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  { 𝑁 } ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 300 | 299 | anbi2d | ⊢ ( 𝜑  →  ( ( ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∀ 𝑛  ∈  { 𝑁 } ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0 )  ↔  ( ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) ) | 
						
							| 301 | 294 300 | bitrd | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ( ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) ) | 
						
							| 302 | 301 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 )  →  ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ( ∀ 𝑛  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) ) | 
						
							| 303 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 304 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 305 |  | fzshftral | ⊢ ( ( 0  ∈  ℤ  ∧  ( 𝑁  −  1 )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  ↔  ∀ 𝑚  ∈  ( ( 0  +  1 ) ... ( ( 𝑁  −  1 )  +  1 ) ) [ ( 𝑚  −  1 )  /  𝑛 ] ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) ) | 
						
							| 306 | 303 304 305 | mp3an13 | ⊢ ( ( 𝑁  −  1 )  ∈  ℤ  →  ( ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  ↔  ∀ 𝑚  ∈  ( ( 0  +  1 ) ... ( ( 𝑁  −  1 )  +  1 ) ) [ ( 𝑚  −  1 )  /  𝑛 ] ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) ) | 
						
							| 307 | 187 248 306 | 3syl | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  ↔  ∀ 𝑚  ∈  ( ( 0  +  1 ) ... ( ( 𝑁  −  1 )  +  1 ) ) [ ( 𝑚  −  1 )  /  𝑛 ] ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) ) | 
						
							| 308 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 309 | 308 | a1i | ⊢ ( 𝜑  →  ( 0  +  1 )  =  1 ) | 
						
							| 310 | 309 247 | oveq12d | ⊢ ( 𝜑  →  ( ( 0  +  1 ) ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 311 | 310 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑚  ∈  ( ( 0  +  1 ) ... ( ( 𝑁  −  1 )  +  1 ) ) [ ( 𝑚  −  1 )  /  𝑛 ] ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  ↔  ∀ 𝑚  ∈  ( 1 ... 𝑁 ) [ ( 𝑚  −  1 )  /  𝑛 ] ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) ) | 
						
							| 312 | 307 311 | bitrd | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  ↔  ∀ 𝑚  ∈  ( 1 ... 𝑁 ) [ ( 𝑚  −  1 )  /  𝑛 ] ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 ) ) | 
						
							| 313 |  | ovex | ⊢ ( 𝑚  −  1 )  ∈  V | 
						
							| 314 |  | eqeq1 | ⊢ ( 𝑛  =  ( 𝑚  −  1 )  →  ( 𝑛  =  𝐵  ↔  ( 𝑚  −  1 )  =  𝐵 ) ) | 
						
							| 315 | 314 | rexbidv | ⊢ ( 𝑛  =  ( 𝑚  −  1 )  →  ( ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  ↔  ∃ 𝑝  ∈  ran  𝑥 ( 𝑚  −  1 )  =  𝐵 ) ) | 
						
							| 316 | 313 315 | sbcie | ⊢ ( [ ( 𝑚  −  1 )  /  𝑛 ] ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  ↔  ∃ 𝑝  ∈  ran  𝑥 ( 𝑚  −  1 )  =  𝐵 ) | 
						
							| 317 | 316 | ralbii | ⊢ ( ∀ 𝑚  ∈  ( 1 ... 𝑁 ) [ ( 𝑚  −  1 )  /  𝑛 ] ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  ↔  ∀ 𝑚  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑚  −  1 )  =  𝐵 ) | 
						
							| 318 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  −  1 )  =  ( 𝑛  −  1 ) ) | 
						
							| 319 | 318 | eqeq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  −  1 )  =  𝐵  ↔  ( 𝑛  −  1 )  =  𝐵 ) ) | 
						
							| 320 | 319 | rexbidv | ⊢ ( 𝑚  =  𝑛  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑚  −  1 )  =  𝐵  ↔  ∃ 𝑝  ∈  ran  𝑥 ( 𝑛  −  1 )  =  𝐵 ) ) | 
						
							| 321 | 320 | cbvralvw | ⊢ ( ∀ 𝑚  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑚  −  1 )  =  𝐵  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑛  −  1 )  =  𝐵 ) | 
						
							| 322 | 317 321 | bitri | ⊢ ( ∀ 𝑚  ∈  ( 1 ... 𝑁 ) [ ( 𝑚  −  1 )  /  𝑛 ] ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑛  −  1 )  =  𝐵 ) | 
						
							| 323 | 312 322 | bitrdi | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑛  −  1 )  =  𝐵 ) ) | 
						
							| 324 | 323 | biimpa | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 )  →  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑛  −  1 )  =  𝐵 ) | 
						
							| 325 | 324 | adantlr | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 )  →  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑛  −  1 )  =  𝐵 ) | 
						
							| 326 | 5 | necomd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... 𝑁 )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ∧  ( 𝑝 ‘ 𝑛 )  =  𝐾 ) )  →  ( 𝑛  −  1 )  ≠  𝐵 ) | 
						
							| 327 | 326 | 3exp2 | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 1 ... 𝑁 )  →  ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  →  ( ( 𝑝 ‘ 𝑛 )  =  𝐾  →  ( 𝑛  −  1 )  ≠  𝐵 ) ) ) ) | 
						
							| 328 | 327 | imp31 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  ( ( 𝑝 ‘ 𝑛 )  =  𝐾  →  ( 𝑛  −  1 )  ≠  𝐵 ) ) | 
						
							| 329 | 328 | necon2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  ( ( 𝑛  −  1 )  =  𝐵  →  ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) | 
						
							| 330 | 329 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  ( ( 𝑛  −  1 )  =  𝐵  →  ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) | 
						
							| 331 | 261 330 | syldan | ⊢ ( ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑝  ∈  ran  𝑥 )  →  ( ( 𝑛  −  1 )  =  𝐵  →  ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) | 
						
							| 332 | 331 | reximdva | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑛  −  1 )  =  𝐵  →  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) | 
						
							| 333 | 332 | ralimdva | ⊢ ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  →  ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑛  −  1 )  =  𝐵  →  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) | 
						
							| 334 | 333 | imp | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑛  −  1 )  =  𝐵 )  →  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) | 
						
							| 335 | 325 334 | syldan | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 )  →  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) | 
						
							| 336 | 335 | biantrud | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 )  →  ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) | 
						
							| 337 |  | r19.26 | ⊢ ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 )  ↔  ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) | 
						
							| 338 | 336 337 | bitr4di | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 )  →  ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) | 
						
							| 339 | 282 302 338 | 3bitr2d | ⊢ ( ( ( 𝜑  ∧  ran  𝑥  ⊆  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) )  ∧  ∀ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  ran  𝑥 𝑛  =  𝐵 )  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) | 
						
							| 340 | 233 240 339 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  ∧  ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 ) )  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) | 
						
							| 341 | 340 | pm5.32da | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  ( ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 )  ↔  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) ) | 
						
							| 342 | 341 | anbi2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  ( ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) )  ↔  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) ) ) | 
						
							| 343 | 342 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) )  ↔  ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) ) ) | 
						
							| 344 | 343 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) )  ↔  ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) ) ) | 
						
							| 345 | 195 | rexeqdv | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑁 } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 346 | 345 | biimpd | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑁 } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 347 | 346 | ralimdv | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑁 } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 348 | 173 | rexeqdv | ⊢ ( ( 2nd  ‘ 𝑡 )  =  𝑁  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑁 } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 349 | 348 | ralbidv | ⊢ ( ( 2nd  ‘ 𝑡 )  =  𝑁  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑁 } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 350 | 349 | imbi1d | ⊢ ( ( 2nd  ‘ 𝑡 )  =  𝑁  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑁 } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 351 | 347 350 | syl5ibrcom | ⊢ ( 𝜑  →  ( ( 2nd  ‘ 𝑡 )  =  𝑁  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 352 | 351 | com23 | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( ( 2nd  ‘ 𝑡 )  =  𝑁  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 353 | 352 | imp | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ( 2nd  ‘ 𝑡 )  =  𝑁  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 354 | 353 | adantrd | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 355 | 354 | pm4.71rd | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) ) | 
						
							| 356 |  | an12 | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) )  ↔  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 357 |  | 3anass | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) | 
						
							| 358 | 357 | anbi2i | ⊢ ( ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) )  ↔  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 359 | 356 358 | bitr4i | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) )  ↔  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) | 
						
							| 360 | 355 359 | bitrdi | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) )  ↔  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 361 | 360 | notbid | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) )  ↔  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 362 | 361 | pm5.32da | ⊢ ( 𝜑  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) ) | 
						
							| 363 | 362 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) ) | 
						
							| 364 | 231 344 363 | 3bitr3d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) ) | 
						
							| 365 | 364 | rabbidva | ⊢ ( 𝜑  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  =  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) } ) | 
						
							| 366 |  | iunrab | ⊢ ∪  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  =  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } | 
						
							| 367 |  | difrab | ⊢ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  =  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) } | 
						
							| 368 | 365 366 367 | 3eqtr4g | ⊢ ( 𝜑  →  ∪  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  =  ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ) | 
						
							| 369 | 368 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } )  =  ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ) ) | 
						
							| 370 | 32 33 | mp1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) )  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  ∈  Fin ) | 
						
							| 371 |  | simpl | ⊢ ( ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) )  →  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 372 | 371 | a1i | ⊢ ( 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) )  →  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) ) | 
						
							| 373 | 372 | ss2rabi | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  ⊆  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } | 
						
							| 374 | 373 | sseli | ⊢ ( 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  →  𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) } ) | 
						
							| 375 |  | fveq2 | ⊢ ( 𝑡  =  𝑠  →  ( 2nd  ‘ 𝑡 )  =  ( 2nd  ‘ 𝑠 ) ) | 
						
							| 376 | 375 | breq2d | ⊢ ( 𝑡  =  𝑠  →  ( 𝑦  <  ( 2nd  ‘ 𝑡 )  ↔  𝑦  <  ( 2nd  ‘ 𝑠 ) ) ) | 
						
							| 377 | 376 | ifbid | ⊢ ( 𝑡  =  𝑠  →  if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) ) ) | 
						
							| 378 | 377 | csbeq1d | ⊢ ( 𝑡  =  𝑠  →  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 379 |  | 2fveq3 | ⊢ ( 𝑡  =  𝑠  →  ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  =  ( 1st  ‘ ( 1st  ‘ 𝑠 ) ) ) | 
						
							| 380 |  | 2fveq3 | ⊢ ( 𝑡  =  𝑠  →  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  =  ( 2nd  ‘ ( 1st  ‘ 𝑠 ) ) ) | 
						
							| 381 | 380 | imaeq1d | ⊢ ( 𝑡  =  𝑠  →  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  =  ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) ) ) | 
						
							| 382 | 381 | xpeq1d | ⊢ ( 𝑡  =  𝑠  →  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) ) | 
						
							| 383 | 380 | imaeq1d | ⊢ ( 𝑡  =  𝑠  →  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 384 | 383 | xpeq1d | ⊢ ( 𝑡  =  𝑠  →  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 385 | 382 384 | uneq12d | ⊢ ( 𝑡  =  𝑠  →  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 386 | 379 385 | oveq12d | ⊢ ( 𝑡  =  𝑠  →  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 387 | 386 | csbeq2dv | ⊢ ( 𝑡  =  𝑠  →  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 388 | 378 387 | eqtrd | ⊢ ( 𝑡  =  𝑠  →  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 389 | 388 | mpteq2dv | ⊢ ( 𝑡  =  𝑠  →  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 390 | 389 | eqeq2d | ⊢ ( 𝑡  =  𝑠  →  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↔  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) ) | 
						
							| 391 |  | eqcom | ⊢ ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↔  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  𝑥 ) | 
						
							| 392 | 390 391 | bitrdi | ⊢ ( 𝑡  =  𝑠  →  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↔  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  𝑥 ) ) | 
						
							| 393 | 392 | elrab | ⊢ ( 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  ↔  ( 𝑠  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  𝑥 ) ) | 
						
							| 394 | 393 | simprbi | ⊢ ( 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) }  →  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  𝑥 ) | 
						
							| 395 | 374 394 | syl | ⊢ ( 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) }  →  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  𝑥 ) | 
						
							| 396 | 395 | rgen | ⊢ ∀ 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  𝑥 | 
						
							| 397 | 396 | rgenw | ⊢ ∀ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ∀ 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  𝑥 | 
						
							| 398 |  | invdisj | ⊢ ( ∀ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ∀ 𝑠  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑠 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑠 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑠 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  𝑥  →  Disj  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) | 
						
							| 399 | 397 398 | mp1i | ⊢ ( 𝜑  →  Disj  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) | 
						
							| 400 | 13 370 399 | hashiun | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } )  =  Σ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) | 
						
							| 401 | 369 400 | eqtr3d | ⊢ ( 𝜑  →  ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) )  =  Σ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } ) ) | 
						
							| 402 |  | fo1st | ⊢ 1st  : V –onto→ V | 
						
							| 403 |  | fofun | ⊢ ( 1st  : V –onto→ V  →  Fun  1st  ) | 
						
							| 404 | 402 403 | ax-mp | ⊢ Fun  1st | 
						
							| 405 |  | ssv | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ⊆  V | 
						
							| 406 |  | fof | ⊢ ( 1st  : V –onto→ V  →  1st  : V ⟶ V ) | 
						
							| 407 | 402 406 | ax-mp | ⊢ 1st  : V ⟶ V | 
						
							| 408 | 407 | fdmi | ⊢ dom  1st   =  V | 
						
							| 409 | 405 408 | sseqtrri | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ⊆  dom  1st | 
						
							| 410 |  | fores | ⊢ ( ( Fun  1st   ∧  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ⊆  dom  1st  )  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –onto→ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ) | 
						
							| 411 | 404 409 410 | mp2an | ⊢ ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –onto→ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) | 
						
							| 412 |  | fveqeq2 | ⊢ ( 𝑡  =  𝑥  →  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ↔  ( 2nd  ‘ 𝑥 )  =  𝑁 ) ) | 
						
							| 413 |  | fveq2 | ⊢ ( 𝑡  =  𝑥  →  ( 1st  ‘ 𝑡 )  =  ( 1st  ‘ 𝑥 ) ) | 
						
							| 414 | 413 | csbeq1d | ⊢ ( 𝑡  =  𝑥  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 415 | 414 | eqeq2d | ⊢ ( 𝑡  =  𝑥  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 416 | 415 | rexbidv | ⊢ ( 𝑡  =  𝑥  →  ( ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 417 | 416 | ralbidv | ⊢ ( 𝑡  =  𝑥  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 418 |  | 2fveq3 | ⊢ ( 𝑡  =  𝑥  →  ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  =  ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ) | 
						
							| 419 | 418 | fveq1d | ⊢ ( 𝑡  =  𝑥  →  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 ) ) | 
						
							| 420 | 419 | eqeq1d | ⊢ ( 𝑡  =  𝑥  →  ( ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ↔  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 421 |  | 2fveq3 | ⊢ ( 𝑡  =  𝑥  →  ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  =  ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ) | 
						
							| 422 | 421 | fveq1d | ⊢ ( 𝑡  =  𝑥  →  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 ) ) | 
						
							| 423 | 422 | eqeq1d | ⊢ ( 𝑡  =  𝑥  →  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁  ↔  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) ) | 
						
							| 424 | 417 420 423 | 3anbi123d | ⊢ ( 𝑡  =  𝑥  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) | 
						
							| 425 | 412 424 | anbi12d | ⊢ ( 𝑡  =  𝑥  →  ( ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) )  ↔  ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 426 | 425 | rexrab | ⊢ ( ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑠  ↔  ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 427 |  | xp1st | ⊢ ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( 1st  ‘ 𝑥 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) | 
						
							| 428 | 427 | anim1i | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  →  ( ( 1st  ‘ 𝑥 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) | 
						
							| 429 |  | eleq1 | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ( 1st  ‘ 𝑥 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ↔  𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ) | 
						
							| 430 |  | csbeq1a | ⊢ ( 𝑠  =  ( 1st  ‘ 𝑥 )  →  𝐶  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 431 | 430 | eqcoms | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  𝐶  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 432 | 431 | eqcomd | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  =  𝐶 ) | 
						
							| 433 | 432 | eqeq2d | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  𝐶 ) ) | 
						
							| 434 | 433 | rexbidv | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶 ) ) | 
						
							| 435 | 434 | ralbidv | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶 ) ) | 
						
							| 436 |  | fveq2 | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( 1st  ‘ ( 1st  ‘ 𝑥 ) )  =  ( 1st  ‘ 𝑠 ) ) | 
						
							| 437 | 436 | fveq1d | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 ) ) | 
						
							| 438 | 437 | eqeq1d | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ↔  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 439 |  | fveq2 | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( 2nd  ‘ ( 1st  ‘ 𝑥 ) )  =  ( 2nd  ‘ 𝑠 ) ) | 
						
							| 440 | 439 | fveq1d | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 ) ) | 
						
							| 441 | 440 | eqeq1d | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁  ↔  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) | 
						
							| 442 | 435 438 441 | 3anbi123d | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) ) | 
						
							| 443 | 429 442 | anbi12d | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ( ( 1st  ‘ 𝑥 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ↔  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 444 | 428 443 | syl5ibcom | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  →  ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 445 | 444 | adantrl | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) ) )  →  ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 446 | 445 | expimpd | ⊢ ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 )  →  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 447 | 446 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 )  →  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) ) | 
						
							| 448 |  | nn0fz0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 449 | 175 448 | sylib | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 450 |  | opelxpi | ⊢ ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  〈 𝑠 ,  𝑁 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ) | 
						
							| 451 | 449 450 | sylan2 | ⊢ ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝜑 )  →  〈 𝑠 ,  𝑁 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ) | 
						
							| 452 | 451 | ancoms | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  →  〈 𝑠 ,  𝑁 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ) | 
						
							| 453 |  | opelxp2 | ⊢ ( 〈 𝑠 ,  𝑁 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 454 |  | op2ndg | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁 ) | 
						
							| 455 | 454 | biantrurd | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 )  ↔  ( ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 456 |  | op1stg | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑠 ) | 
						
							| 457 |  | csbeq1a | ⊢ ( 𝑠  =  ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  →  𝐶  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 458 | 457 | eqcoms | ⊢ ( ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑠  →  𝐶  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 459 | 458 | eqcomd | ⊢ ( ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑠  →  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  =  𝐶 ) | 
						
							| 460 | 456 459 | syl | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  =  𝐶 ) | 
						
							| 461 | 460 | eqeq2d | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  𝐶 ) ) | 
						
							| 462 | 461 | rexbidv | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶 ) ) | 
						
							| 463 | 462 | ralbidv | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶 ) ) | 
						
							| 464 | 456 | fveq2d | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) )  =  ( 1st  ‘ 𝑠 ) ) | 
						
							| 465 | 464 | fveq1d | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 ) ) | 
						
							| 466 | 465 | eqeq1d | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ↔  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 467 | 456 | fveq2d | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) )  =  ( 2nd  ‘ 𝑠 ) ) | 
						
							| 468 | 467 | fveq1d | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 ) ) | 
						
							| 469 | 468 | eqeq1d | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁  ↔  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) | 
						
							| 470 | 463 466 469 | 3anbi123d | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) ) | 
						
							| 471 | 456 | biantrud | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) )  ↔  ( ( ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑠 ) ) ) | 
						
							| 472 | 455 470 471 | 3bitr3d | ⊢ ( ( 𝑠  ∈  V  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 )  ↔  ( ( ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑠 ) ) ) | 
						
							| 473 | 49 453 472 | sylancr | ⊢ ( 〈 𝑠 ,  𝑁 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 )  ↔  ( ( ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑠 ) ) ) | 
						
							| 474 | 473 | biimpa | ⊢ ( ( 〈 𝑠 ,  𝑁 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) )  →  ( ( ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑠 ) ) | 
						
							| 475 |  | fveqeq2 | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ( 2nd  ‘ 𝑥 )  =  𝑁  ↔  ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁 ) ) | 
						
							| 476 |  | fveq2 | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) | 
						
							| 477 | 476 | csbeq1d | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 478 | 477 | eqeq2d | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 479 | 478 | rexbidv | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 480 | 479 | ralbidv | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 481 |  | 2fveq3 | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( 1st  ‘ ( 1st  ‘ 𝑥 ) )  =  ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ) | 
						
							| 482 | 481 | fveq1d | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 ) ) | 
						
							| 483 | 482 | eqeq1d | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ↔  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 484 |  | 2fveq3 | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( 2nd  ‘ ( 1st  ‘ 𝑥 ) )  =  ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ) | 
						
							| 485 | 484 | fveq1d | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 ) ) | 
						
							| 486 | 485 | eqeq1d | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁  ↔  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) ) | 
						
							| 487 | 480 483 486 | 3anbi123d | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) | 
						
							| 488 | 475 487 | anbi12d | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ↔  ( ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 489 |  | fveqeq2 | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ( 1st  ‘ 𝑥 )  =  𝑠  ↔  ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑠 ) ) | 
						
							| 490 | 488 489 | anbi12d | ⊢ ( 𝑥  =  〈 𝑠 ,  𝑁 〉  →  ( ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 )  ↔  ( ( ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑠 ) ) ) | 
						
							| 491 | 490 | rspcev | ⊢ ( ( 〈 𝑠 ,  𝑁 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( ( ( 2nd  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 〈 𝑠 ,  𝑁 〉 )  =  𝑠 ) )  →  ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 492 | 474 491 | syldan | ⊢ ( ( 〈 𝑠 ,  𝑁 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) )  →  ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 493 | 452 492 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) )  →  ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 494 | 493 | expl | ⊢ ( 𝜑  →  ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) )  →  ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) ) | 
						
							| 495 | 447 494 | impbid2 | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ‘ 𝑁 )  =  𝑁 ) )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 )  ↔  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 496 | 426 495 | bitrid | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑠  ↔  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 497 | 496 | abbidv | ⊢ ( 𝜑  →  { 𝑠  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑠 }  =  { 𝑠  ∣  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) } ) | 
						
							| 498 |  | dfimafn | ⊢ ( ( Fun  1st   ∧  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ⊆  dom  1st  )  →  ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  =  { 𝑦  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑦 } ) | 
						
							| 499 | 404 409 498 | mp2an | ⊢ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  =  { 𝑦  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑦 } | 
						
							| 500 |  | nfv | ⊢ Ⅎ 𝑠 ( 2nd  ‘ 𝑡 )  =  𝑁 | 
						
							| 501 |  | nfcv | ⊢ Ⅎ 𝑠 ( 0 ... ( 𝑁  −  1 ) ) | 
						
							| 502 |  | nfcsb1v | ⊢ Ⅎ 𝑠 ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 503 | 502 | nfeq2 | ⊢ Ⅎ 𝑠 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 504 | 501 503 | nfrexw | ⊢ Ⅎ 𝑠 ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 505 | 501 504 | nfralw | ⊢ Ⅎ 𝑠 ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 506 |  | nfv | ⊢ Ⅎ 𝑠 ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0 | 
						
							| 507 |  | nfv | ⊢ Ⅎ 𝑠 ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 | 
						
							| 508 | 505 506 507 | nf3an | ⊢ Ⅎ 𝑠 ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) | 
						
							| 509 | 500 508 | nfan | ⊢ Ⅎ 𝑠 ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) | 
						
							| 510 |  | nfcv | ⊢ Ⅎ 𝑠 ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) | 
						
							| 511 | 509 510 | nfrabw | ⊢ Ⅎ 𝑠 { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } | 
						
							| 512 |  | nfv | ⊢ Ⅎ 𝑠 ( 1st  ‘ 𝑥 )  =  𝑦 | 
						
							| 513 | 511 512 | nfrexw | ⊢ Ⅎ 𝑠 ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑦 | 
						
							| 514 |  | nfv | ⊢ Ⅎ 𝑦 ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑠 | 
						
							| 515 |  | eqeq2 | ⊢ ( 𝑦  =  𝑠  →  ( ( 1st  ‘ 𝑥 )  =  𝑦  ↔  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 516 | 515 | rexbidv | ⊢ ( 𝑦  =  𝑠  →  ( ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑦  ↔  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 517 | 513 514 516 | cbvabw | ⊢ { 𝑦  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑦 }  =  { 𝑠  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑠 } | 
						
							| 518 | 499 517 | eqtri | ⊢ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  =  { 𝑠  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( 1st  ‘ 𝑥 )  =  𝑠 } | 
						
							| 519 |  | df-rab | ⊢ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  =  { 𝑠  ∣  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) ) } | 
						
							| 520 | 497 518 519 | 3eqtr4g | ⊢ ( 𝜑  →  ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  =  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) | 
						
							| 521 |  | foeq3 | ⊢ ( ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  =  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  →  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –onto→ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  ↔  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) ) | 
						
							| 522 | 520 521 | syl | ⊢ ( 𝜑  →  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –onto→ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  ↔  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) ) | 
						
							| 523 | 411 522 | mpbii | ⊢ ( 𝜑  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) | 
						
							| 524 |  | fof | ⊢ ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ⟶ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) | 
						
							| 525 | 523 524 | syl | ⊢ ( 𝜑  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ⟶ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) | 
						
							| 526 |  | fvres | ⊢ ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  →  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑥 )  =  ( 1st  ‘ 𝑥 ) ) | 
						
							| 527 |  | fvres | ⊢ ( 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  →  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑦 )  =  ( 1st  ‘ 𝑦 ) ) | 
						
							| 528 | 526 527 | eqeqan12d | ⊢ ( ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  →  ( ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑥 )  =  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑦 )  ↔  ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 ) ) ) | 
						
							| 529 |  | simpl | ⊢ ( ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) )  →  ( 2nd  ‘ 𝑡 )  =  𝑁 ) | 
						
							| 530 | 529 | a1i | ⊢ ( 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) )  →  ( 2nd  ‘ 𝑡 )  =  𝑁 ) ) | 
						
							| 531 | 530 | ss2rabi | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ⊆  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 2nd  ‘ 𝑡 )  =  𝑁 } | 
						
							| 532 | 531 | sseli | ⊢ ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  →  𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 2nd  ‘ 𝑡 )  =  𝑁 } ) | 
						
							| 533 | 412 | elrab | ⊢ ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 2nd  ‘ 𝑡 )  =  𝑁 }  ↔  ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 2nd  ‘ 𝑥 )  =  𝑁 ) ) | 
						
							| 534 | 532 533 | sylib | ⊢ ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  →  ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 2nd  ‘ 𝑥 )  =  𝑁 ) ) | 
						
							| 535 | 531 | sseli | ⊢ ( 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  →  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 2nd  ‘ 𝑡 )  =  𝑁 } ) | 
						
							| 536 |  | fveqeq2 | ⊢ ( 𝑡  =  𝑦  →  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ↔  ( 2nd  ‘ 𝑦 )  =  𝑁 ) ) | 
						
							| 537 | 536 | elrab | ⊢ ( 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 2nd  ‘ 𝑡 )  =  𝑁 }  ↔  ( 𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 2nd  ‘ 𝑦 )  =  𝑁 ) ) | 
						
							| 538 | 535 537 | sylib | ⊢ ( 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  →  ( 𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 2nd  ‘ 𝑦 )  =  𝑁 ) ) | 
						
							| 539 |  | eqtr3 | ⊢ ( ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( 2nd  ‘ 𝑦 )  =  𝑁 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) | 
						
							| 540 |  | xpopth | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  ∧  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 541 | 540 | biimpd | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  ∧  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 542 | 541 | ancomsd | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 )  ∧  ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 543 | 542 | expdimp | ⊢ ( ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  ∧  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 544 | 539 543 | sylan2 | ⊢ ( ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  ∧  ( ( 2nd  ‘ 𝑥 )  =  𝑁  ∧  ( 2nd  ‘ 𝑦 )  =  𝑁 ) )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 545 | 544 | an4s | ⊢ ( ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 2nd  ‘ 𝑥 )  =  𝑁 )  ∧  ( 𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 2nd  ‘ 𝑦 )  =  𝑁 ) )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 546 | 534 538 545 | syl2an | ⊢ ( ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 547 | 528 546 | sylbid | ⊢ ( ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  →  ( ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑥 )  =  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 548 | 547 | rgen2 | ⊢ ∀ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ∀ 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑥 )  =  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 549 | 525 548 | jctir | ⊢ ( 𝜑  →  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ⟶ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  ∧  ∀ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ∀ 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑥 )  =  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 550 |  | dff13 | ⊢ ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –1-1→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  ↔  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ⟶ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  ∧  ∀ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ∀ 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ( ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑥 )  =  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 551 | 549 550 | sylibr | ⊢ ( 𝜑  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –1-1→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) | 
						
							| 552 |  | df-f1o | ⊢ ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –1-1-onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  ↔  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –1-1→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  ∧  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) ) | 
						
							| 553 | 551 523 552 | sylanbrc | ⊢ ( 𝜑  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –1-1-onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) | 
						
							| 554 |  | rabfi | ⊢ ( ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∈  Fin  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ∈  Fin ) | 
						
							| 555 | 32 554 | ax-mp | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ∈  Fin | 
						
							| 556 | 555 | elexi | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ∈  V | 
						
							| 557 | 556 | f1oen | ⊢ ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } –1-1-onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ≈  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) | 
						
							| 558 | 553 557 | syl | ⊢ ( 𝜑  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ≈  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) | 
						
							| 559 |  | rabfi | ⊢ ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∈  Fin  →  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  ∈  Fin ) | 
						
							| 560 | 29 559 | ax-mp | ⊢ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  ∈  Fin | 
						
							| 561 |  | hashen | ⊢ ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ∈  Fin  ∧  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) }  ∈  Fin )  →  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  =  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } )  ↔  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ≈  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) ) | 
						
							| 562 | 555 560 561 | mp2an | ⊢ ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  =  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } )  ↔  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) }  ≈  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) | 
						
							| 563 | 558 562 | sylibr | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } )  =  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) ) | 
						
							| 564 | 563 | oveq2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ( 2nd  ‘ 𝑡 )  =  𝑁  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) ) ‘ 𝑁 )  =  𝑁 ) ) } ) )  =  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) ) ) | 
						
							| 565 | 205 401 564 | 3eqtr3d | ⊢ ( 𝜑  →  Σ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  ( 2nd  ‘ 𝑡 ) ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( ( 1st  ‘ ( 1st  ‘ 𝑡 ) )  ∘f   +  ( ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ ( 1st  ‘ 𝑡 ) )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  0  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑛 )  ≠  𝐾 ) ) ) } )  =  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) ) ) | 
						
							| 566 | 168 565 | breqtrd | ⊢ ( 𝜑  →  2  ∥  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  𝐶  ∧  ( ( 1st  ‘ 𝑠 ) ‘ 𝑁 )  =  0  ∧  ( ( 2nd  ‘ 𝑠 ) ‘ 𝑁 )  =  𝑁 ) } ) ) ) |