Metamath Proof Explorer


Theorem poimirlem27

Description: Lemma for poimir showing that the difference between admissible faces in the whole cube and admissible faces on the back face is even. Equation (7) of Kulpa p. 548. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem28.1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 )
poimirlem28.2 ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
poimirlem28.3 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝐵 < 𝑛 )
poimirlem28.4 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) )
Assertion poimirlem27 ( 𝜑 → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem28.1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 )
3 poimirlem28.2 ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
4 poimirlem28.3 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝐵 < 𝑛 )
5 poimirlem28.4 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) )
6 fzfi ( 0 ... 𝐾 ) ∈ Fin
7 fzfi ( 1 ... 𝑁 ) ∈ Fin
8 mapfi ( ( ( 0 ... 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin )
9 6 7 8 mp2an ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin
10 fzfi ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin
11 mapfi ( ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) → ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∈ Fin )
12 9 10 11 mp2an ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∈ Fin
13 12 a1i ( 𝜑 → ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∈ Fin )
14 2z 2 ∈ ℤ
15 14 a1i ( 𝜑 → 2 ∈ ℤ )
16 fzofi ( 0 ..^ 𝐾 ) ∈ Fin
17 mapfi ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin )
18 16 7 17 mp2an ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin
19 mapfi ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin )
20 7 7 19 mp2an ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin
21 f1of ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
22 21 ss2abi { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) }
23 ovex ( 1 ... 𝑁 ) ∈ V
24 23 23 mapval ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) = { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) }
25 22 24 sseqtrri { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) )
26 ssfi ( ( ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ) → { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin )
27 20 25 26 mp2an { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin
28 xpfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin )
29 18 27 28 mp2an ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin
30 fzfi ( 0 ... 𝑁 ) ∈ Fin
31 xpfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin ∧ ( 0 ... 𝑁 ) ∈ Fin ) → ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin )
32 29 30 31 mp2an ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin
33 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin )
34 32 33 ax-mp { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin
35 hashcl ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ∈ ℕ0 )
36 35 nn0zd ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ∈ ℤ )
37 34 36 mp1i ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ∈ ℤ )
38 dfrex2 ( ∃ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ↔ ¬ ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
39 nfv 𝑡 ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) )
40 nfcv 𝑡 2
41 nfcv 𝑡
42 nfcv 𝑡
43 nfrab1 𝑡 { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) }
44 42 43 nffv 𝑡 ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } )
45 40 41 44 nfbr 𝑡 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } )
46 neq0 ( ¬ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ ↔ ∃ 𝑠 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } )
47 iddvds ( 2 ∈ ℤ → 2 ∥ 2 )
48 14 47 ax-mp 2 ∥ 2
49 vex 𝑠 ∈ V
50 hashsng ( 𝑠 ∈ V → ( ♯ ‘ { 𝑠 } ) = 1 )
51 49 50 ax-mp ( ♯ ‘ { 𝑠 } ) = 1
52 51 oveq2i ( 1 + ( ♯ ‘ { 𝑠 } ) ) = ( 1 + 1 )
53 df-2 2 = ( 1 + 1 )
54 52 53 eqtr4i ( 1 + ( ♯ ‘ { 𝑠 } ) ) = 2
55 48 54 breqtrri 2 ∥ ( 1 + ( ♯ ‘ { 𝑠 } ) )
56 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∈ Fin )
57 diffi ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∈ Fin → ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ Fin )
58 32 56 57 mp2b ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ Fin
59 snfi { 𝑠 } ∈ Fin
60 disjdifr ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∩ { 𝑠 } ) = ∅
61 hashun ( ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ Fin ∧ { 𝑠 } ∈ Fin ∧ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∩ { 𝑠 } ) = ∅ ) → ( ♯ ‘ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) = ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) )
62 58 59 60 61 mp3an ( ♯ ‘ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) = ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) )
63 difsnid ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } )
64 63 fveq2d ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( ♯ ‘ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
65 62 64 eqtr3id ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
66 65 adantl ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
67 1 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 𝑁 ∈ ℕ )
68 fveq2 ( 𝑡 = 𝑢 → ( 2nd𝑡 ) = ( 2nd𝑢 ) )
69 68 breq2d ( 𝑡 = 𝑢 → ( 𝑦 < ( 2nd𝑡 ) ↔ 𝑦 < ( 2nd𝑢 ) ) )
70 69 ifbid ( 𝑡 = 𝑢 → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) )
71 70 csbeq1d ( 𝑡 = 𝑢 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
72 2fveq3 ( 𝑡 = 𝑢 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑢 ) ) )
73 2fveq3 ( 𝑡 = 𝑢 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑢 ) ) )
74 73 imaeq1d ( 𝑡 = 𝑢 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) )
75 74 xpeq1d ( 𝑡 = 𝑢 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
76 73 imaeq1d ( 𝑡 = 𝑢 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
77 76 xpeq1d ( 𝑡 = 𝑢 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
78 75 77 uneq12d ( 𝑡 = 𝑢 → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
79 72 78 oveq12d ( 𝑡 = 𝑢 → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
80 79 csbeq2dv ( 𝑡 = 𝑢 if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
81 71 80 eqtrd ( 𝑡 = 𝑢 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
82 81 mpteq2dv ( 𝑡 = 𝑢 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
83 breq1 ( 𝑦 = 𝑤 → ( 𝑦 < ( 2nd𝑢 ) ↔ 𝑤 < ( 2nd𝑢 ) ) )
84 id ( 𝑦 = 𝑤𝑦 = 𝑤 )
85 oveq1 ( 𝑦 = 𝑤 → ( 𝑦 + 1 ) = ( 𝑤 + 1 ) )
86 83 84 85 ifbieq12d ( 𝑦 = 𝑤 → if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) )
87 86 csbeq1d ( 𝑦 = 𝑤 if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
88 oveq2 ( 𝑗 = 𝑖 → ( 1 ... 𝑗 ) = ( 1 ... 𝑖 ) )
89 88 imaeq2d ( 𝑗 = 𝑖 → ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) )
90 89 xpeq1d ( 𝑗 = 𝑖 → ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) )
91 oveq1 ( 𝑗 = 𝑖 → ( 𝑗 + 1 ) = ( 𝑖 + 1 ) )
92 91 oveq1d ( 𝑗 = 𝑖 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑖 + 1 ) ... 𝑁 ) )
93 92 imaeq2d ( 𝑗 = 𝑖 → ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) )
94 93 xpeq1d ( 𝑗 = 𝑖 → ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) )
95 90 94 uneq12d ( 𝑗 = 𝑖 → ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
96 95 oveq2d ( 𝑗 = 𝑖 → ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
97 96 cbvcsbv if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
98 87 97 eqtrdi ( 𝑦 = 𝑤 if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
99 98 cbvmptv ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
100 82 99 eqtrdi ( 𝑡 = 𝑢 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
101 100 eqeq2d ( 𝑡 = 𝑢 → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝑥 = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
102 101 cbvrabv { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = { 𝑢 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
103 elmapi ( 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑥 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
104 103 ad3antlr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 𝑥 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
105 simpr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } )
106 simpl ( ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 )
107 106 ralimi ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 )
108 107 ad2antlr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 )
109 fveq2 ( 𝑛 = 𝑚 → ( 𝑝𝑛 ) = ( 𝑝𝑚 ) )
110 109 neeq1d ( 𝑛 = 𝑚 → ( ( 𝑝𝑛 ) ≠ 0 ↔ ( 𝑝𝑚 ) ≠ 0 ) )
111 110 rexbidv ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑚 ) ≠ 0 ) )
112 fveq1 ( 𝑝 = 𝑞 → ( 𝑝𝑚 ) = ( 𝑞𝑚 ) )
113 112 neeq1d ( 𝑝 = 𝑞 → ( ( 𝑝𝑚 ) ≠ 0 ↔ ( 𝑞𝑚 ) ≠ 0 ) )
114 113 cbvrexvw ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑚 ) ≠ 0 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 0 )
115 111 114 bitrdi ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 0 ) )
116 115 rspccva ( ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 0 )
117 108 116 sylan ( ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 0 )
118 simpr ( ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 )
119 118 ralimi ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 )
120 119 ad2antlr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 )
121 109 neeq1d ( 𝑛 = 𝑚 → ( ( 𝑝𝑛 ) ≠ 𝐾 ↔ ( 𝑝𝑚 ) ≠ 𝐾 ) )
122 121 rexbidv ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑚 ) ≠ 𝐾 ) )
123 112 neeq1d ( 𝑝 = 𝑞 → ( ( 𝑝𝑚 ) ≠ 𝐾 ↔ ( 𝑞𝑚 ) ≠ 𝐾 ) )
124 123 cbvrexvw ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑚 ) ≠ 𝐾 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 𝐾 )
125 122 124 bitrdi ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 𝐾 ) )
126 125 rspccva ( ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 𝐾 )
127 120 126 sylan ( ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 𝐾 )
128 67 102 104 105 117 127 poimirlem22 ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ∃! 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } 𝑧𝑠 )
129 eldifsn ( 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ↔ ( 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∧ 𝑧𝑠 ) )
130 129 eubii ( ∃! 𝑧 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ↔ ∃! 𝑧 ( 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∧ 𝑧𝑠 ) )
131 58 elexi ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ V
132 euhash1 ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ V → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 ↔ ∃! 𝑧 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) )
133 131 132 ax-mp ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 ↔ ∃! 𝑧 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) )
134 df-reu ( ∃! 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } 𝑧𝑠 ↔ ∃! 𝑧 ( 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∧ 𝑧𝑠 ) )
135 130 133 134 3bitr4ri ( ∃! 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } 𝑧𝑠 ↔ ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 )
136 128 135 sylib ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 )
137 136 oveq1d ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) = ( 1 + ( ♯ ‘ { 𝑠 } ) ) )
138 66 137 eqtr3d ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) = ( 1 + ( ♯ ‘ { 𝑠 } ) ) )
139 55 138 breqtrrid ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
140 139 ex ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) )
141 140 exlimdv ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( ∃ 𝑠 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) )
142 46 141 syl5bi ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( ¬ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) )
143 dvds0 ( 2 ∈ ℤ → 2 ∥ 0 )
144 14 143 ax-mp 2 ∥ 0
145 hash0 ( ♯ ‘ ∅ ) = 0
146 144 145 breqtrri 2 ∥ ( ♯ ‘ ∅ )
147 fveq2 ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) = ( ♯ ‘ ∅ ) )
148 146 147 breqtrrid ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
149 142 148 pm2.61d2 ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
150 149 ex ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) )
151 150 adantld ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) )
152 iba ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) ) )
153 152 rabbidv ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } )
154 153 fveq2d ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
155 154 breq2d ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ↔ 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ) )
156 151 155 mpbidi ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ) )
157 156 a1d ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ) ) )
158 39 45 157 rexlimd ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ∃ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ) )
159 38 158 syl5bir ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ¬ ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ) )
160 simpr ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) → ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
161 160 con3i ( ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ¬ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) )
162 161 ralimi ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) )
163 rabeq0 ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } = ∅ ↔ ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) )
164 162 163 sylibr ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } = ∅ )
165 164 fveq2d ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) = ( ♯ ‘ ∅ ) )
166 146 165 breqtrrid ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
167 159 166 pm2.61d2 ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
168 13 15 37 167 fsumdvds ( 𝜑 → 2 ∥ Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
169 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∈ Fin )
170 32 169 ax-mp { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∈ Fin
171 simp1 ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 )
172 sneq ( ( 2nd𝑡 ) = 𝑁 → { ( 2nd𝑡 ) } = { 𝑁 } )
173 172 difeq2d ( ( 2nd𝑡 ) = 𝑁 → ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) = ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) )
174 difun2 ( ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } )
175 1 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
176 nn0uz 0 = ( ℤ ‘ 0 )
177 175 176 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 0 ) )
178 fzm1 ( 𝑁 ∈ ( ℤ ‘ 0 ) → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) )
179 177 178 syl ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) )
180 elun ( 𝑛 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) )
181 velsn ( 𝑛 ∈ { 𝑁 } ↔ 𝑛 = 𝑁 )
182 181 orbi2i ( ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) )
183 180 182 bitri ( 𝑛 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) )
184 179 183 bitr4di ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ 𝑛 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) )
185 184 eqrdv ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
186 185 difeq1d ( 𝜑 → ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) = ( ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) )
187 1 nnzd ( 𝜑𝑁 ∈ ℤ )
188 uzid ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ𝑁 ) )
189 uznfz ( 𝑁 ∈ ( ℤ𝑁 ) → ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
190 187 188 189 3syl ( 𝜑 → ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
191 disjsn ( ( ( 0 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
192 disj3 ( ( ( 0 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ( 0 ... ( 𝑁 − 1 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) )
193 191 192 bitr3i ( ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ... ( 𝑁 − 1 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) )
194 190 193 sylib ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) )
195 174 186 194 3eqtr4a ( 𝜑 → ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) = ( 0 ... ( 𝑁 − 1 ) ) )
196 173 195 sylan9eqr ( ( 𝜑 ∧ ( 2nd𝑡 ) = 𝑁 ) → ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) = ( 0 ... ( 𝑁 − 1 ) ) )
197 196 rexeqdv ( ( 𝜑 ∧ ( 2nd𝑡 ) = 𝑁 ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
198 197 biimprd ( ( 𝜑 ∧ ( 2nd𝑡 ) = 𝑁 ) → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
199 198 ralimdv ( ( 𝜑 ∧ ( 2nd𝑡 ) = 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
200 199 expimpd ( 𝜑 → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
201 171 200 sylan2i ( 𝜑 → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
202 201 adantr ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
203 202 ss2rabdv ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } )
204 hashssdif ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∈ Fin ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) )
205 170 203 204 sylancr ( 𝜑 → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) )
206 1 adantr ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ )
207 3 adantlr ( ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
208 xp1st ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
209 xp1st ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 1st𝑡 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
210 elmapi ( ( 1st ‘ ( 1st𝑡 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
211 208 209 210 3syl ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
212 211 adantl ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 1st ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
213 xp2nd ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st𝑡 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
214 fvex ( 2nd ‘ ( 1st𝑡 ) ) ∈ V
215 f1oeq1 ( 𝑓 = ( 2nd ‘ ( 1st𝑡 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
216 214 215 elab ( ( 2nd ‘ ( 1st𝑡 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
217 213 216 sylib ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
218 208 217 syl ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
219 218 adantl ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 2nd ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
220 xp2nd ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) )
221 220 adantl ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) )
222 206 2 207 212 219 221 poimirlem24 ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
223 208 adantl ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
224 1st2nd2 ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st𝑡 ) = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ )
225 224 csbeq1d ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st𝑡 ) / 𝑠 𝐶 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 )
226 225 eqeq2d ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ) )
227 226 rexbidv ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ) )
228 227 ralbidv ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ) )
229 228 anbi1d ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
230 223 229 syl ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
231 222 230 bitr4d ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
232 103 frnd ( 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) → ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
233 232 anim2i ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) )
234 dfss3 ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ↔ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥𝐵 ) )
235 vex 𝑛 ∈ V
236 eqid ( 𝑝 ∈ ran 𝑥𝐵 ) = ( 𝑝 ∈ ran 𝑥𝐵 )
237 236 elrnmpt ( 𝑛 ∈ V → ( 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ↔ ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
238 235 237 ax-mp ( 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ↔ ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 )
239 238 ralbii ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ↔ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 )
240 234 239 sylbb ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) → ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 )
241 1eluzge0 1 ∈ ( ℤ ‘ 0 )
242 fzss1 ( 1 ∈ ( ℤ ‘ 0 ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) )
243 ssralv ( ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
244 241 242 243 mp2b ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 )
245 1 nncnd ( 𝜑𝑁 ∈ ℂ )
246 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
247 245 246 syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
248 peano2zm ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ )
249 187 248 syl ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ )
250 uzid ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
251 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
252 249 250 251 3syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
253 247 252 eqeltrrd ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
254 fzss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) )
255 253 254 syl ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) )
256 255 sselda ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) )
257 256 adantlr ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) )
258 simplr ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
259 ssel2 ( ( ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → 𝑝 ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
260 elmapi ( 𝑝 ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
261 259 260 syl ( ( ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
262 258 261 sylan ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
263 elfzelz ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ )
264 263 zred ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℝ )
265 264 ltnrd ( 𝑛 ∈ ( 1 ... 𝑁 ) → ¬ 𝑛 < 𝑛 )
266 breq1 ( 𝑛 = 𝐵 → ( 𝑛 < 𝑛𝐵 < 𝑛 ) )
267 266 notbid ( 𝑛 = 𝐵 → ( ¬ 𝑛 < 𝑛 ↔ ¬ 𝐵 < 𝑛 ) )
268 265 267 syl5ibcom ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 = 𝐵 → ¬ 𝐵 < 𝑛 ) )
269 268 necon2ad ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝐵 < 𝑛𝑛𝐵 ) )
270 269 3ad2ant1 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) → ( 𝐵 < 𝑛𝑛𝐵 ) )
271 270 adantl ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → ( 𝐵 < 𝑛𝑛𝐵 ) )
272 4 271 mpd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝑛𝐵 )
273 272 3exp2 ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) → ( ( 𝑝𝑛 ) = 0 → 𝑛𝐵 ) ) ) )
274 273 imp31 ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑝𝑛 ) = 0 → 𝑛𝐵 ) )
275 274 necon2d ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑛 = 𝐵 → ( 𝑝𝑛 ) ≠ 0 ) )
276 275 adantllr ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑛 = 𝐵 → ( 𝑝𝑛 ) ≠ 0 ) )
277 262 276 syldan ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → ( 𝑛 = 𝐵 → ( 𝑝𝑛 ) ≠ 0 ) )
278 277 reximdva ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) )
279 257 278 syldan ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) )
280 279 ralimdva ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) → ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) )
281 280 imp ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 )
282 244 281 sylan2 ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 )
283 282 biantrurd ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) )
284 nnuz ℕ = ( ℤ ‘ 1 )
285 1 284 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 1 ) )
286 fzm1 ( 𝑁 ∈ ( ℤ ‘ 1 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) )
287 285 286 syl ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) )
288 elun ( 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) )
289 181 orbi2i ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) )
290 288 289 bitri ( 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) )
291 287 290 bitr4di ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) )
292 291 eqrdv ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
293 292 raleqdv ( 𝜑 → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) )
294 ralunb ( ∀ 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) )
295 293 294 bitrdi ( 𝜑 → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) ) )
296 fveq2 ( 𝑛 = 𝑁 → ( 𝑝𝑛 ) = ( 𝑝𝑁 ) )
297 296 neeq1d ( 𝑛 = 𝑁 → ( ( 𝑝𝑛 ) ≠ 0 ↔ ( 𝑝𝑁 ) ≠ 0 ) )
298 297 rexbidv ( 𝑛 = 𝑁 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) )
299 298 ralsng ( 𝑁 ∈ ℕ → ( ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) )
300 1 299 syl ( 𝜑 → ( ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) )
301 300 anbi2d ( 𝜑 → ( ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) )
302 295 301 bitrd ( 𝜑 → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) )
303 302 ad2antrr ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) )
304 0z 0 ∈ ℤ
305 1z 1 ∈ ℤ
306 fzshftral ( ( 0 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
307 304 305 306 mp3an13 ( ( 𝑁 − 1 ) ∈ ℤ → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
308 187 248 307 3syl ( 𝜑 → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
309 0p1e1 ( 0 + 1 ) = 1
310 309 a1i ( 𝜑 → ( 0 + 1 ) = 1 )
311 310 247 oveq12d ( 𝜑 → ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) )
312 311 raleqdv ( 𝜑 → ( ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
313 308 312 bitrd ( 𝜑 → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
314 ovex ( 𝑚 − 1 ) ∈ V
315 eqeq1 ( 𝑛 = ( 𝑚 − 1 ) → ( 𝑛 = 𝐵 ↔ ( 𝑚 − 1 ) = 𝐵 ) )
316 315 rexbidv ( 𝑛 = ( 𝑚 − 1 ) → ( ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ) )
317 314 316 sbcie ( [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 )
318 317 ralbii ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 )
319 oveq1 ( 𝑚 = 𝑛 → ( 𝑚 − 1 ) = ( 𝑛 − 1 ) )
320 319 eqeq1d ( 𝑚 = 𝑛 → ( ( 𝑚 − 1 ) = 𝐵 ↔ ( 𝑛 − 1 ) = 𝐵 ) )
321 320 rexbidv ( 𝑚 = 𝑛 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) )
322 321 cbvralvw ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 )
323 318 322 bitri ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 )
324 313 323 bitrdi ( 𝜑 → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) )
325 324 biimpa ( ( 𝜑 ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 )
326 325 adantlr ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 )
327 5 necomd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ) → ( 𝑛 − 1 ) ≠ 𝐵 )
328 327 3exp2 ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) → ( ( 𝑝𝑛 ) = 𝐾 → ( 𝑛 − 1 ) ≠ 𝐵 ) ) ) )
329 328 imp31 ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑝𝑛 ) = 𝐾 → ( 𝑛 − 1 ) ≠ 𝐵 ) )
330 329 necon2d ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑛 − 1 ) = 𝐵 → ( 𝑝𝑛 ) ≠ 𝐾 ) )
331 330 adantllr ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑛 − 1 ) = 𝐵 → ( 𝑝𝑛 ) ≠ 𝐾 ) )
332 262 331 syldan ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → ( ( 𝑛 − 1 ) = 𝐵 → ( 𝑝𝑛 ) ≠ 𝐾 ) )
333 332 reximdva ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) )
334 333 ralimdva ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) )
335 334 imp ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 )
336 326 335 syldan ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 )
337 336 biantrud ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
338 r19.26 ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ↔ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) )
339 337 338 bitr4di ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
340 283 303 339 3bitr2d ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
341 233 240 340 syl2an ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
342 341 pm5.32da ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) )
343 342 anbi2d ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) ) )
344 343 rexbidva ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) ) )
345 344 adantr ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) ) )
346 195 rexeqdv ( 𝜑 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
347 346 biimpd ( 𝜑 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
348 347 ralimdv ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
349 173 rexeqdv ( ( 2nd𝑡 ) = 𝑁 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
350 349 ralbidv ( ( 2nd𝑡 ) = 𝑁 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
351 350 imbi1d ( ( 2nd𝑡 ) = 𝑁 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
352 348 351 syl5ibrcom ( 𝜑 → ( ( 2nd𝑡 ) = 𝑁 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
353 352 com23 ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ( ( 2nd𝑡 ) = 𝑁 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
354 353 imp ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( 2nd𝑡 ) = 𝑁 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
355 354 adantrd ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
356 355 pm4.71rd ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
357 an12 ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
358 3anass ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) )
359 358 anbi2i ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
360 357 359 bitr4i ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) )
361 356 360 bitrdi ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
362 361 notbid ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
363 362 pm5.32da ( 𝜑 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
364 363 adantr ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
365 231 345 364 3bitr3d ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
366 365 rabbidva ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) } )
367 iunrab 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) }
368 difrab ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) }
369 366 367 368 3eqtr4g ( 𝜑 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } = ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) )
370 369 fveq2d ( 𝜑 → ( ♯ ‘ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) = ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) )
371 32 33 mp1i ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin )
372 simpl ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) → 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
373 372 a1i ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) → 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
374 373 ss2rabi { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
375 374 sseli ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } → 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } )
376 fveq2 ( 𝑡 = 𝑠 → ( 2nd𝑡 ) = ( 2nd𝑠 ) )
377 376 breq2d ( 𝑡 = 𝑠 → ( 𝑦 < ( 2nd𝑡 ) ↔ 𝑦 < ( 2nd𝑠 ) ) )
378 377 ifbid ( 𝑡 = 𝑠 → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) )
379 378 csbeq1d ( 𝑡 = 𝑠 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
380 2fveq3 ( 𝑡 = 𝑠 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑠 ) ) )
381 2fveq3 ( 𝑡 = 𝑠 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑠 ) ) )
382 381 imaeq1d ( 𝑡 = 𝑠 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) )
383 382 xpeq1d ( 𝑡 = 𝑠 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
384 381 imaeq1d ( 𝑡 = 𝑠 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
385 384 xpeq1d ( 𝑡 = 𝑠 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
386 383 385 uneq12d ( 𝑡 = 𝑠 → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
387 380 386 oveq12d ( 𝑡 = 𝑠 → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
388 387 csbeq2dv ( 𝑡 = 𝑠 if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
389 379 388 eqtrd ( 𝑡 = 𝑠 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
390 389 mpteq2dv ( 𝑡 = 𝑠 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
391 390 eqeq2d ( 𝑡 = 𝑠 → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
392 eqcom ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 )
393 391 392 bitrdi ( 𝑡 = 𝑠 → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 ) )
394 393 elrab ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ↔ ( 𝑠 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 ) )
395 394 simprbi ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 )
396 375 395 syl ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 )
397 396 rgen 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥
398 397 rgenw 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∀ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥
399 invdisj ( ∀ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∀ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥Disj 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } )
400 398 399 mp1i ( 𝜑Disj 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } )
401 13 371 400 hashiun ( 𝜑 → ( ♯ ‘ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) = Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
402 370 401 eqtr3d ( 𝜑 → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
403 fo1st 1st : V –onto→ V
404 fofun ( 1st : V –onto→ V → Fun 1st )
405 403 404 ax-mp Fun 1st
406 ssv { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ V
407 fof ( 1st : V –onto→ V → 1st : V ⟶ V )
408 403 407 ax-mp 1st : V ⟶ V
409 408 fdmi dom 1st = V
410 406 409 sseqtrri { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ dom 1st
411 fores ( ( Fun 1st ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ dom 1st ) → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) )
412 405 410 411 mp2an ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } )
413 fveqeq2 ( 𝑡 = 𝑥 → ( ( 2nd𝑡 ) = 𝑁 ↔ ( 2nd𝑥 ) = 𝑁 ) )
414 fveq2 ( 𝑡 = 𝑥 → ( 1st𝑡 ) = ( 1st𝑥 ) )
415 414 csbeq1d ( 𝑡 = 𝑥 ( 1st𝑡 ) / 𝑠 𝐶 = ( 1st𝑥 ) / 𝑠 𝐶 )
416 415 eqeq2d ( 𝑡 = 𝑥 → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
417 416 rexbidv ( 𝑡 = 𝑥 → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
418 417 ralbidv ( 𝑡 = 𝑥 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
419 2fveq3 ( 𝑡 = 𝑥 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑥 ) ) )
420 419 fveq1d ( 𝑡 = 𝑥 → ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) )
421 420 eqeq1d ( 𝑡 = 𝑥 → ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ) )
422 2fveq3 ( 𝑡 = 𝑥 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑥 ) ) )
423 422 fveq1d ( 𝑡 = 𝑥 → ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) )
424 423 eqeq1d ( 𝑡 = 𝑥 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) )
425 418 421 424 3anbi123d ( 𝑡 = 𝑥 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) )
426 413 425 anbi12d ( 𝑡 = 𝑥 → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
427 426 rexrab ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 ↔ ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) )
428 xp1st ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
429 428 anim1i ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) )
430 eleq1 ( ( 1st𝑥 ) = 𝑠 → ( ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ↔ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) )
431 csbeq1a ( 𝑠 = ( 1st𝑥 ) → 𝐶 = ( 1st𝑥 ) / 𝑠 𝐶 )
432 431 eqcoms ( ( 1st𝑥 ) = 𝑠𝐶 = ( 1st𝑥 ) / 𝑠 𝐶 )
433 432 eqcomd ( ( 1st𝑥 ) = 𝑠 ( 1st𝑥 ) / 𝑠 𝐶 = 𝐶 )
434 433 eqeq2d ( ( 1st𝑥 ) = 𝑠 → ( 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶𝑖 = 𝐶 ) )
435 434 rexbidv ( ( 1st𝑥 ) = 𝑠 → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) )
436 435 ralbidv ( ( 1st𝑥 ) = 𝑠 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) )
437 fveq2 ( ( 1st𝑥 ) = 𝑠 → ( 1st ‘ ( 1st𝑥 ) ) = ( 1st𝑠 ) )
438 437 fveq1d ( ( 1st𝑥 ) = 𝑠 → ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = ( ( 1st𝑠 ) ‘ 𝑁 ) )
439 438 eqeq1d ( ( 1st𝑥 ) = 𝑠 → ( ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ) )
440 fveq2 ( ( 1st𝑥 ) = 𝑠 → ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd𝑠 ) )
441 440 fveq1d ( ( 1st𝑥 ) = 𝑠 → ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = ( ( 2nd𝑠 ) ‘ 𝑁 ) )
442 441 eqeq1d ( ( 1st𝑥 ) = 𝑠 → ( ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) )
443 436 439 442 3anbi123d ( ( 1st𝑥 ) = 𝑠 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) )
444 430 443 anbi12d ( ( 1st𝑥 ) = 𝑠 → ( ( ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
445 429 444 syl5ibcom ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( ( 1st𝑥 ) = 𝑠 → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
446 445 adantrl ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) → ( ( 1st𝑥 ) = 𝑠 → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
447 446 expimpd ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
448 447 rexlimiv ( ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) )
449 nn0fz0 ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ... 𝑁 ) )
450 175 449 sylib ( 𝜑𝑁 ∈ ( 0 ... 𝑁 ) )
451 opelxpi ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
452 450 451 sylan2 ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝜑 ) → ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
453 452 ancoms ( ( 𝜑𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
454 opelxp2 ( ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( 0 ... 𝑁 ) )
455 op2ndg ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 )
456 455 biantrurd ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
457 op1stg ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 )
458 csbeq1a ( 𝑠 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) → 𝐶 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 )
459 458 eqcoms ( ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠𝐶 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 )
460 459 eqcomd ( ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 = 𝐶 )
461 457 460 syl ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 = 𝐶 )
462 461 eqeq2d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶𝑖 = 𝐶 ) )
463 462 rexbidv ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) )
464 463 ralbidv ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) )
465 457 fveq2d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) = ( 1st𝑠 ) )
466 465 fveq1d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = ( ( 1st𝑠 ) ‘ 𝑁 ) )
467 466 eqeq1d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ) )
468 457 fveq2d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) = ( 2nd𝑠 ) )
469 468 fveq1d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = ( ( 2nd𝑠 ) ‘ 𝑁 ) )
470 469 eqeq1d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) )
471 464 467 470 3anbi123d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) )
472 457 biantrud ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) ) )
473 456 471 472 3bitr3d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) ) )
474 49 454 473 sylancr ( ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) ) )
475 474 biimpa ( ( ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) )
476 fveqeq2 ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( 2nd𝑥 ) = 𝑁 ↔ ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ) )
477 fveq2 ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( 1st𝑥 ) = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) )
478 477 csbeq1d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( 1st𝑥 ) / 𝑠 𝐶 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 )
479 478 eqeq2d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ) )
480 479 rexbidv ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ) )
481 480 ralbidv ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ) )
482 2fveq3 ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) )
483 482 fveq1d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) )
484 483 eqeq1d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ) )
485 2fveq3 ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) )
486 485 fveq1d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) )
487 486 eqeq1d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) )
488 481 484 487 3anbi123d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) )
489 476 488 anbi12d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
490 fveqeq2 ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( 1st𝑥 ) = 𝑠 ↔ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) )
491 489 490 anbi12d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) ↔ ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) ) )
492 491 rspcev ( ( ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) )
493 475 492 syldan ( ( ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) )
494 453 493 sylan ( ( ( 𝜑𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) )
495 494 expl ( 𝜑 → ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) ) )
496 448 495 impbid2 ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
497 427 496 syl5bb ( 𝜑 → ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
498 497 abbidv ( 𝜑 → { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) } )
499 dfimafn ( ( Fun 1st ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ dom 1st ) → ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑦 } )
500 405 410 499 mp2an ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑦 }
501 nfv 𝑠 ( 2nd𝑡 ) = 𝑁
502 nfcv 𝑠 ( 0 ... ( 𝑁 − 1 ) )
503 nfcsb1v 𝑠 ( 1st𝑡 ) / 𝑠 𝐶
504 503 nfeq2 𝑠 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
505 502 504 nfrex 𝑠𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
506 502 505 nfralw 𝑠𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
507 nfv 𝑠 ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0
508 nfv 𝑠 ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁
509 506 507 508 nf3an 𝑠 ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 )
510 501 509 nfan 𝑠 ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) )
511 nfcv 𝑠 ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) )
512 510 511 nfrabw 𝑠 { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) }
513 nfv 𝑠 ( 1st𝑥 ) = 𝑦
514 512 513 nfrex 𝑠𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑦
515 nfv 𝑦𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠
516 eqeq2 ( 𝑦 = 𝑠 → ( ( 1st𝑥 ) = 𝑦 ↔ ( 1st𝑥 ) = 𝑠 ) )
517 516 rexbidv ( 𝑦 = 𝑠 → ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 ) )
518 514 515 517 cbvabw { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑦 } = { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 }
519 500 518 eqtri ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 }
520 df-rab { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } = { 𝑠 ∣ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) }
521 498 519 520 3eqtr4g ( 𝜑 → ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
522 foeq3 ( ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ↔ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) )
523 521 522 syl ( 𝜑 → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ↔ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) )
524 412 523 mpbii ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
525 fof ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
526 524 525 syl ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
527 fvres ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( 1st𝑥 ) )
528 fvres ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) = ( 1st𝑦 ) )
529 527 528 eqeqan12d ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) ↔ ( 1st𝑥 ) = ( 1st𝑦 ) ) )
530 simpl ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( 2nd𝑡 ) = 𝑁 )
531 530 a1i ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( 2nd𝑡 ) = 𝑁 ) )
532 531 ss2rabi { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd𝑡 ) = 𝑁 }
533 532 sseli ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd𝑡 ) = 𝑁 } )
534 413 elrab ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd𝑡 ) = 𝑁 } ↔ ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑥 ) = 𝑁 ) )
535 533 534 sylib ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑥 ) = 𝑁 ) )
536 532 sseli ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd𝑡 ) = 𝑁 } )
537 fveqeq2 ( 𝑡 = 𝑦 → ( ( 2nd𝑡 ) = 𝑁 ↔ ( 2nd𝑦 ) = 𝑁 ) )
538 537 elrab ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd𝑡 ) = 𝑁 } ↔ ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑦 ) = 𝑁 ) )
539 536 538 sylib ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑦 ) = 𝑁 ) )
540 eqtr3 ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( 2nd𝑦 ) = 𝑁 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) )
541 xpopth ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ↔ 𝑥 = 𝑦 ) )
542 541 biimpd ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) → 𝑥 = 𝑦 ) )
543 542 ancomsd ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 2nd𝑥 ) = ( 2nd𝑦 ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → 𝑥 = 𝑦 ) )
544 543 expdimp ( ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) ∧ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → 𝑥 = 𝑦 ) )
545 540 544 sylan2 ( ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) ∧ ( ( 2nd𝑥 ) = 𝑁 ∧ ( 2nd𝑦 ) = 𝑁 ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → 𝑥 = 𝑦 ) )
546 545 an4s ( ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑥 ) = 𝑁 ) ∧ ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑦 ) = 𝑁 ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → 𝑥 = 𝑦 ) )
547 535 539 546 syl2an ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → 𝑥 = 𝑦 ) )
548 529 547 sylbid ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) )
549 548 rgen2 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 )
550 526 549 jctir ( 𝜑 → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∧ ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) )
551 dff13 ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ↔ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∧ ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) )
552 550 551 sylibr ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
553 df-f1o ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ↔ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∧ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) )
554 552 524 553 sylanbrc ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
555 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ Fin )
556 32 555 ax-mp { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ Fin
557 556 elexi { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ V
558 557 f1oen ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
559 554 558 syl ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
560 rabfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∈ Fin )
561 29 560 ax-mp { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∈ Fin
562 hashen ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ Fin ∧ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∈ Fin ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ↔ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) )
563 556 561 562 mp2an ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ↔ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
564 559 563 sylibr ( 𝜑 → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) )
565 564 oveq2d ( 𝜑 → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) )
566 205 402 565 3eqtr3d ( 𝜑 → Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) )
567 168 566 breqtrd ( 𝜑 → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) )