Metamath Proof Explorer


Theorem poimirlem27

Description: Lemma for poimir showing that the difference between admissible faces in the whole cube and admissible faces on the back face is even. Equation (7) of Kulpa p. 548. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem28.1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 )
poimirlem28.2 ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
poimirlem28.3 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝐵 < 𝑛 )
poimirlem28.4 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) )
Assertion poimirlem27 ( 𝜑 → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem28.1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 )
3 poimirlem28.2 ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
4 poimirlem28.3 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝐵 < 𝑛 )
5 poimirlem28.4 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) )
6 fzfi ( 0 ... 𝐾 ) ∈ Fin
7 fzfi ( 1 ... 𝑁 ) ∈ Fin
8 mapfi ( ( ( 0 ... 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin )
9 6 7 8 mp2an ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin
10 fzfi ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin
11 mapfi ( ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) → ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∈ Fin )
12 9 10 11 mp2an ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∈ Fin
13 12 a1i ( 𝜑 → ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∈ Fin )
14 2z 2 ∈ ℤ
15 14 a1i ( 𝜑 → 2 ∈ ℤ )
16 fzofi ( 0 ..^ 𝐾 ) ∈ Fin
17 mapfi ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin )
18 16 7 17 mp2an ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin
19 mapfi ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin )
20 7 7 19 mp2an ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin
21 f1of ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
22 21 ss2abi { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) }
23 ovex ( 1 ... 𝑁 ) ∈ V
24 23 23 mapval ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) = { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) }
25 22 24 sseqtrri { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) )
26 ssfi ( ( ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ) → { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin )
27 20 25 26 mp2an { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin
28 xpfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin )
29 18 27 28 mp2an ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin
30 fzfi ( 0 ... 𝑁 ) ∈ Fin
31 xpfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin ∧ ( 0 ... 𝑁 ) ∈ Fin ) → ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin )
32 29 30 31 mp2an ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin
33 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin )
34 32 33 ax-mp { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin
35 hashcl ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ∈ ℕ0 )
36 35 nn0zd ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ∈ ℤ )
37 34 36 mp1i ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ∈ ℤ )
38 dfrex2 ( ∃ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ↔ ¬ ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
39 nfv 𝑡 ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) )
40 nfcv 𝑡 2
41 nfcv 𝑡
42 nfcv 𝑡
43 nfrab1 𝑡 { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) }
44 42 43 nffv 𝑡 ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } )
45 40 41 44 nfbr 𝑡 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } )
46 neq0 ( ¬ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ ↔ ∃ 𝑠 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } )
47 iddvds ( 2 ∈ ℤ → 2 ∥ 2 )
48 14 47 ax-mp 2 ∥ 2
49 vex 𝑠 ∈ V
50 hashsng ( 𝑠 ∈ V → ( ♯ ‘ { 𝑠 } ) = 1 )
51 49 50 ax-mp ( ♯ ‘ { 𝑠 } ) = 1
52 51 oveq2i ( 1 + ( ♯ ‘ { 𝑠 } ) ) = ( 1 + 1 )
53 df-2 2 = ( 1 + 1 )
54 52 53 eqtr4i ( 1 + ( ♯ ‘ { 𝑠 } ) ) = 2
55 48 54 breqtrri 2 ∥ ( 1 + ( ♯ ‘ { 𝑠 } ) )
56 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∈ Fin )
57 diffi ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∈ Fin → ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ Fin )
58 32 56 57 mp2b ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ Fin
59 snfi { 𝑠 } ∈ Fin
60 incom ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∩ { 𝑠 } ) = ( { 𝑠 } ∩ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) )
61 disjdif ( { 𝑠 } ∩ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = ∅
62 60 61 eqtri ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∩ { 𝑠 } ) = ∅
63 hashun ( ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ Fin ∧ { 𝑠 } ∈ Fin ∧ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∩ { 𝑠 } ) = ∅ ) → ( ♯ ‘ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) = ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) )
64 58 59 62 63 mp3an ( ♯ ‘ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) = ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) )
65 difsnid ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } )
66 65 fveq2d ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( ♯ ‘ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
67 64 66 eqtr3id ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
68 67 adantl ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
69 1 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 𝑁 ∈ ℕ )
70 fveq2 ( 𝑡 = 𝑢 → ( 2nd𝑡 ) = ( 2nd𝑢 ) )
71 70 breq2d ( 𝑡 = 𝑢 → ( 𝑦 < ( 2nd𝑡 ) ↔ 𝑦 < ( 2nd𝑢 ) ) )
72 71 ifbid ( 𝑡 = 𝑢 → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) )
73 72 csbeq1d ( 𝑡 = 𝑢 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
74 2fveq3 ( 𝑡 = 𝑢 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑢 ) ) )
75 2fveq3 ( 𝑡 = 𝑢 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑢 ) ) )
76 75 imaeq1d ( 𝑡 = 𝑢 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) )
77 76 xpeq1d ( 𝑡 = 𝑢 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
78 75 imaeq1d ( 𝑡 = 𝑢 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
79 78 xpeq1d ( 𝑡 = 𝑢 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
80 77 79 uneq12d ( 𝑡 = 𝑢 → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
81 74 80 oveq12d ( 𝑡 = 𝑢 → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
82 81 csbeq2dv ( 𝑡 = 𝑢 if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
83 73 82 eqtrd ( 𝑡 = 𝑢 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
84 83 mpteq2dv ( 𝑡 = 𝑢 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
85 breq1 ( 𝑦 = 𝑤 → ( 𝑦 < ( 2nd𝑢 ) ↔ 𝑤 < ( 2nd𝑢 ) ) )
86 id ( 𝑦 = 𝑤𝑦 = 𝑤 )
87 oveq1 ( 𝑦 = 𝑤 → ( 𝑦 + 1 ) = ( 𝑤 + 1 ) )
88 85 86 87 ifbieq12d ( 𝑦 = 𝑤 → if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) )
89 88 csbeq1d ( 𝑦 = 𝑤 if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
90 oveq2 ( 𝑗 = 𝑖 → ( 1 ... 𝑗 ) = ( 1 ... 𝑖 ) )
91 90 imaeq2d ( 𝑗 = 𝑖 → ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) )
92 91 xpeq1d ( 𝑗 = 𝑖 → ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) )
93 oveq1 ( 𝑗 = 𝑖 → ( 𝑗 + 1 ) = ( 𝑖 + 1 ) )
94 93 oveq1d ( 𝑗 = 𝑖 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑖 + 1 ) ... 𝑁 ) )
95 94 imaeq2d ( 𝑗 = 𝑖 → ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) )
96 95 xpeq1d ( 𝑗 = 𝑖 → ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) )
97 92 96 uneq12d ( 𝑗 = 𝑖 → ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
98 97 oveq2d ( 𝑗 = 𝑖 → ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
99 98 cbvcsbv if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
100 89 99 eqtrdi ( 𝑦 = 𝑤 if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
101 100 cbvmptv ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑢 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
102 84 101 eqtrdi ( 𝑡 = 𝑢 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
103 102 eqeq2d ( 𝑡 = 𝑢 → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝑥 = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
104 103 cbvrabv { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = { 𝑢 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑤 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑤 < ( 2nd𝑢 ) , 𝑤 , ( 𝑤 + 1 ) ) / 𝑖 ( ( 1st ‘ ( 1st𝑢 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( 1 ... 𝑖 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑢 ) ) “ ( ( 𝑖 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
105 elmapi ( 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑥 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
106 105 ad3antlr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 𝑥 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
107 simpr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } )
108 simpl ( ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 )
109 108 ralimi ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 )
110 109 ad2antlr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 )
111 fveq2 ( 𝑛 = 𝑚 → ( 𝑝𝑛 ) = ( 𝑝𝑚 ) )
112 111 neeq1d ( 𝑛 = 𝑚 → ( ( 𝑝𝑛 ) ≠ 0 ↔ ( 𝑝𝑚 ) ≠ 0 ) )
113 112 rexbidv ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑚 ) ≠ 0 ) )
114 fveq1 ( 𝑝 = 𝑞 → ( 𝑝𝑚 ) = ( 𝑞𝑚 ) )
115 114 neeq1d ( 𝑝 = 𝑞 → ( ( 𝑝𝑚 ) ≠ 0 ↔ ( 𝑞𝑚 ) ≠ 0 ) )
116 115 cbvrexvw ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑚 ) ≠ 0 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 0 )
117 113 116 bitrdi ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 0 ) )
118 117 rspccva ( ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 0 )
119 110 118 sylan ( ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 0 )
120 simpr ( ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 )
121 120 ralimi ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 )
122 121 ad2antlr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 )
123 111 neeq1d ( 𝑛 = 𝑚 → ( ( 𝑝𝑛 ) ≠ 𝐾 ↔ ( 𝑝𝑚 ) ≠ 𝐾 ) )
124 123 rexbidv ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑚 ) ≠ 𝐾 ) )
125 114 neeq1d ( 𝑝 = 𝑞 → ( ( 𝑝𝑚 ) ≠ 𝐾 ↔ ( 𝑞𝑚 ) ≠ 𝐾 ) )
126 125 cbvrexvw ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑚 ) ≠ 𝐾 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 𝐾 )
127 124 126 bitrdi ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ↔ ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 𝐾 ) )
128 127 rspccva ( ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 𝐾 )
129 122 128 sylan ( ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑞 ∈ ran 𝑥 ( 𝑞𝑚 ) ≠ 𝐾 )
130 69 104 106 107 119 129 poimirlem22 ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ∃! 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } 𝑧𝑠 )
131 eldifsn ( 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ↔ ( 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∧ 𝑧𝑠 ) )
132 131 eubii ( ∃! 𝑧 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ↔ ∃! 𝑧 ( 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∧ 𝑧𝑠 ) )
133 58 elexi ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ V
134 euhash1 ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ∈ V → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 ↔ ∃! 𝑧 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) )
135 133 134 ax-mp ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 ↔ ∃! 𝑧 𝑧 ∈ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) )
136 df-reu ( ∃! 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } 𝑧𝑠 ↔ ∃! 𝑧 ( 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∧ 𝑧𝑠 ) )
137 132 135 136 3bitr4ri ( ∃! 𝑧 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } 𝑧𝑠 ↔ ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 )
138 130 137 sylib ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) = 1 )
139 138 oveq1d ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ∖ { 𝑠 } ) ) + ( ♯ ‘ { 𝑠 } ) ) = ( 1 + ( ♯ ‘ { 𝑠 } ) ) )
140 68 139 eqtr3d ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) = ( 1 + ( ♯ ‘ { 𝑠 } ) ) )
141 55 140 breqtrrid ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ∧ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
142 141 ex ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) )
143 142 exlimdv ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( ∃ 𝑠 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) )
144 46 143 syl5bi ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( ¬ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) )
145 dvds0 ( 2 ∈ ℤ → 2 ∥ 0 )
146 14 145 ax-mp 2 ∥ 0
147 hash0 ( ♯ ‘ ∅ ) = 0
148 146 147 breqtrri 2 ∥ ( ♯ ‘ ∅ )
149 fveq2 ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) = ( ♯ ‘ ∅ ) )
150 148 149 breqtrrid ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = ∅ → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
151 144 150 pm2.61d2 ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) )
152 151 ex ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) )
153 152 adantld ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ) )
154 iba ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) ) )
155 154 rabbidv ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } )
156 155 fveq2d ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) = ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
157 156 breq2d ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ) ↔ 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ) )
158 153 157 mpbidi ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ) )
159 158 a1d ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ) ) )
160 39 45 159 rexlimd ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ∃ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ) )
161 38 160 syl5bir ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ¬ ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) ) )
162 simpr ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) → ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
163 162 con3i ( ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ¬ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) )
164 163 ralimi ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) )
165 rabeq0 ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } = ∅ ↔ ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) )
166 164 165 sylibr ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } = ∅ )
167 166 fveq2d ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) = ( ♯ ‘ ∅ ) )
168 148 167 breqtrrid ( ∀ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ¬ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
169 161 168 pm2.61d2 ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → 2 ∥ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
170 13 15 37 169 fsumdvds ( 𝜑 → 2 ∥ Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
171 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∈ Fin )
172 32 171 ax-mp { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∈ Fin
173 simp1 ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 )
174 sneq ( ( 2nd𝑡 ) = 𝑁 → { ( 2nd𝑡 ) } = { 𝑁 } )
175 174 difeq2d ( ( 2nd𝑡 ) = 𝑁 → ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) = ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) )
176 difun2 ( ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } )
177 1 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
178 nn0uz 0 = ( ℤ ‘ 0 )
179 177 178 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 0 ) )
180 fzm1 ( 𝑁 ∈ ( ℤ ‘ 0 ) → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) )
181 179 180 syl ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) )
182 elun ( 𝑛 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) )
183 velsn ( 𝑛 ∈ { 𝑁 } ↔ 𝑛 = 𝑁 )
184 183 orbi2i ( ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) )
185 182 184 bitri ( 𝑛 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) )
186 181 185 bitr4di ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ 𝑛 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) )
187 186 eqrdv ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
188 187 difeq1d ( 𝜑 → ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) = ( ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) )
189 1 nnzd ( 𝜑𝑁 ∈ ℤ )
190 uzid ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ𝑁 ) )
191 uznfz ( 𝑁 ∈ ( ℤ𝑁 ) → ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
192 189 190 191 3syl ( 𝜑 → ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
193 disjsn ( ( ( 0 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
194 disj3 ( ( ( 0 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ( 0 ... ( 𝑁 − 1 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) )
195 193 194 bitr3i ( ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ... ( 𝑁 − 1 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) )
196 192 195 sylib ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) )
197 176 188 196 3eqtr4a ( 𝜑 → ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) = ( 0 ... ( 𝑁 − 1 ) ) )
198 175 197 sylan9eqr ( ( 𝜑 ∧ ( 2nd𝑡 ) = 𝑁 ) → ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) = ( 0 ... ( 𝑁 − 1 ) ) )
199 198 rexeqdv ( ( 𝜑 ∧ ( 2nd𝑡 ) = 𝑁 ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
200 199 biimprd ( ( 𝜑 ∧ ( 2nd𝑡 ) = 𝑁 ) → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
201 200 ralimdv ( ( 𝜑 ∧ ( 2nd𝑡 ) = 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
202 201 expimpd ( 𝜑 → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
203 173 202 sylan2i ( 𝜑 → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
204 203 adantr ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
205 204 ss2rabdv ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } )
206 hashssdif ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∈ Fin ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) )
207 172 205 206 sylancr ( 𝜑 → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) )
208 1 adantr ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ )
209 3 adantlr ( ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
210 xp1st ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
211 xp1st ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 1st𝑡 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
212 elmapi ( ( 1st ‘ ( 1st𝑡 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
213 210 211 212 3syl ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
214 213 adantl ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 1st ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
215 xp2nd ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st𝑡 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
216 fvex ( 2nd ‘ ( 1st𝑡 ) ) ∈ V
217 f1oeq1 ( 𝑓 = ( 2nd ‘ ( 1st𝑡 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
218 216 217 elab ( ( 2nd ‘ ( 1st𝑡 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
219 215 218 sylib ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
220 210 219 syl ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
221 220 adantl ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 2nd ‘ ( 1st𝑡 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
222 xp2nd ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) )
223 222 adantl ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) )
224 208 2 209 214 221 223 poimirlem24 ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
225 210 adantl ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
226 1st2nd2 ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st𝑡 ) = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ )
227 226 csbeq1d ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st𝑡 ) / 𝑠 𝐶 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 )
228 227 eqeq2d ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ) )
229 228 rexbidv ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ) )
230 229 ralbidv ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ) )
231 230 anbi1d ( ( 1st𝑡 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
232 225 231 syl ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ⟨ ( 1st ‘ ( 1st𝑡 ) ) , ( 2nd ‘ ( 1st𝑡 ) ) ⟩ / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
233 224 232 bitr4d ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
234 105 frnd ( 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) → ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
235 234 anim2i ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) )
236 dfss3 ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ↔ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥𝐵 ) )
237 vex 𝑛 ∈ V
238 eqid ( 𝑝 ∈ ran 𝑥𝐵 ) = ( 𝑝 ∈ ran 𝑥𝐵 )
239 238 elrnmpt ( 𝑛 ∈ V → ( 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ↔ ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
240 237 239 ax-mp ( 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ↔ ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 )
241 240 ralbii ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑛 ∈ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ↔ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 )
242 236 241 sylbb ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) → ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 )
243 1eluzge0 1 ∈ ( ℤ ‘ 0 )
244 fzss1 ( 1 ∈ ( ℤ ‘ 0 ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) )
245 ssralv ( ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
246 243 244 245 mp2b ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 )
247 1 nncnd ( 𝜑𝑁 ∈ ℂ )
248 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
249 247 248 syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
250 peano2zm ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ )
251 189 250 syl ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ )
252 uzid ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
253 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
254 251 252 253 3syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
255 249 254 eqeltrrd ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
256 fzss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) )
257 255 256 syl ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) )
258 257 sselda ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) )
259 258 adantlr ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) )
260 simplr ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
261 ssel2 ( ( ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → 𝑝 ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
262 elmapi ( 𝑝 ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
263 261 262 syl ( ( ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
264 260 263 sylan ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
265 elfzelz ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ )
266 265 zred ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℝ )
267 266 ltnrd ( 𝑛 ∈ ( 1 ... 𝑁 ) → ¬ 𝑛 < 𝑛 )
268 breq1 ( 𝑛 = 𝐵 → ( 𝑛 < 𝑛𝐵 < 𝑛 ) )
269 268 notbid ( 𝑛 = 𝐵 → ( ¬ 𝑛 < 𝑛 ↔ ¬ 𝐵 < 𝑛 ) )
270 267 269 syl5ibcom ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 = 𝐵 → ¬ 𝐵 < 𝑛 ) )
271 270 necon2ad ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝐵 < 𝑛𝑛𝐵 ) )
272 271 3ad2ant1 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) → ( 𝐵 < 𝑛𝑛𝐵 ) )
273 272 adantl ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → ( 𝐵 < 𝑛𝑛𝐵 ) )
274 4 273 mpd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝑛𝐵 )
275 274 3exp2 ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) → ( ( 𝑝𝑛 ) = 0 → 𝑛𝐵 ) ) ) )
276 275 imp31 ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑝𝑛 ) = 0 → 𝑛𝐵 ) )
277 276 necon2d ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑛 = 𝐵 → ( 𝑝𝑛 ) ≠ 0 ) )
278 277 adantllr ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑛 = 𝐵 → ( 𝑝𝑛 ) ≠ 0 ) )
279 264 278 syldan ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → ( 𝑛 = 𝐵 → ( 𝑝𝑛 ) ≠ 0 ) )
280 279 reximdva ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) )
281 259 280 syldan ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) )
282 281 ralimdva ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) → ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) )
283 282 imp ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 )
284 246 283 sylan2 ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 )
285 284 biantrurd ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) )
286 nnuz ℕ = ( ℤ ‘ 1 )
287 1 286 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 1 ) )
288 fzm1 ( 𝑁 ∈ ( ℤ ‘ 1 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) )
289 287 288 syl ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) ) )
290 elun ( 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) )
291 183 orbi2i ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 ∈ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) )
292 290 291 bitri ( 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑛 = 𝑁 ) )
293 289 292 bitr4di ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) )
294 293 eqrdv ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
295 294 raleqdv ( 𝜑 → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) )
296 ralunb ( ∀ 𝑛 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) )
297 295 296 bitrdi ( 𝜑 → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) ) )
298 fveq2 ( 𝑛 = 𝑁 → ( 𝑝𝑛 ) = ( 𝑝𝑁 ) )
299 298 neeq1d ( 𝑛 = 𝑁 → ( ( 𝑝𝑛 ) ≠ 0 ↔ ( 𝑝𝑁 ) ≠ 0 ) )
300 299 rexbidv ( 𝑛 = 𝑁 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) )
301 300 ralsng ( 𝑁 ∈ ℕ → ( ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) )
302 1 301 syl ( 𝜑 → ( ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) )
303 302 anbi2d ( 𝜑 → ( ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ { 𝑁 } ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ) ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) )
304 297 303 bitrd ( 𝜑 → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) )
305 304 ad2antrr ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) )
306 0z 0 ∈ ℤ
307 1z 1 ∈ ℤ
308 fzshftral ( ( 0 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
309 306 307 308 mp3an13 ( ( 𝑁 − 1 ) ∈ ℤ → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
310 189 250 309 3syl ( 𝜑 → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
311 0p1e1 ( 0 + 1 ) = 1
312 311 a1i ( 𝜑 → ( 0 + 1 ) = 1 )
313 312 249 oveq12d ( 𝜑 → ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) )
314 313 raleqdv ( 𝜑 → ( ∀ 𝑚 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
315 310 314 bitrd ( 𝜑 → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) )
316 ovex ( 𝑚 − 1 ) ∈ V
317 eqeq1 ( 𝑛 = ( 𝑚 − 1 ) → ( 𝑛 = 𝐵 ↔ ( 𝑚 − 1 ) = 𝐵 ) )
318 317 rexbidv ( 𝑛 = ( 𝑚 − 1 ) → ( ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ) )
319 316 318 sbcie ( [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 )
320 319 ralbii ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 )
321 oveq1 ( 𝑚 = 𝑛 → ( 𝑚 − 1 ) = ( 𝑛 − 1 ) )
322 321 eqeq1d ( 𝑚 = 𝑛 → ( ( 𝑚 − 1 ) = 𝐵 ↔ ( 𝑛 − 1 ) = 𝐵 ) )
323 322 rexbidv ( 𝑚 = 𝑛 → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ↔ ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) )
324 323 cbvralvw ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑚 − 1 ) = 𝐵 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 )
325 320 324 bitri ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) [ ( 𝑚 − 1 ) / 𝑛 ]𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 )
326 315 325 bitrdi ( 𝜑 → ( ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) )
327 326 biimpa ( ( 𝜑 ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 )
328 327 adantlr ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 )
329 5 necomd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ) → ( 𝑛 − 1 ) ≠ 𝐵 )
330 329 3exp2 ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) → ( ( 𝑝𝑛 ) = 𝐾 → ( 𝑛 − 1 ) ≠ 𝐵 ) ) ) )
331 330 imp31 ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑝𝑛 ) = 𝐾 → ( 𝑛 − 1 ) ≠ 𝐵 ) )
332 331 necon2d ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑛 − 1 ) = 𝐵 → ( 𝑝𝑛 ) ≠ 𝐾 ) )
333 332 adantllr ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( ( 𝑛 − 1 ) = 𝐵 → ( 𝑝𝑛 ) ≠ 𝐾 ) )
334 264 333 syldan ( ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑝 ∈ ran 𝑥 ) → ( ( 𝑛 − 1 ) = 𝐵 → ( 𝑝𝑛 ) ≠ 𝐾 ) )
335 334 reximdva ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 → ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) )
336 335 ralimdva ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) )
337 336 imp ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑛 − 1 ) = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 )
338 328 337 syldan ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 )
339 338 biantrud ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
340 r19.26 ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ↔ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) )
341 339 340 bitr4di ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
342 285 305 341 3bitr2d ( ( ( 𝜑 ∧ ran 𝑥 ⊆ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) ∧ ∀ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
343 235 242 342 syl2an ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) ∧ ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) )
344 343 pm5.32da ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) )
345 344 anbi2d ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) ) )
346 345 rexbidva ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) ) )
347 346 adantr ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) ) )
348 197 rexeqdv ( 𝜑 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
349 348 biimpd ( 𝜑 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
350 349 ralimdv ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
351 175 rexeqdv ( ( 2nd𝑡 ) = 𝑁 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
352 351 ralbidv ( ( 2nd𝑡 ) = 𝑁 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
353 352 imbi1d ( ( 2nd𝑡 ) = 𝑁 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑁 } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
354 350 353 syl5ibrcom ( 𝜑 → ( ( 2nd𝑡 ) = 𝑁 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
355 354 com23 ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ( ( 2nd𝑡 ) = 𝑁 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
356 355 imp ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( 2nd𝑡 ) = 𝑁 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
357 356 adantrd ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
358 357 pm4.71rd ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
359 an12 ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
360 3anass ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) )
361 360 anbi2i ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
362 359 361 bitr4i ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) )
363 358 362 bitrdi ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
364 363 notbid ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
365 364 pm5.32da ( 𝜑 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
366 365 adantr ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
367 233 347 366 3bitr3d ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) ) )
368 367 rabbidva ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) } )
369 iunrab 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) }
370 difrab ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) }
371 368 369 370 3eqtr4g ( 𝜑 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } = ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) )
372 371 fveq2d ( 𝜑 → ( ♯ ‘ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) = ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) )
373 32 33 mp1i ( ( 𝜑𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ∈ Fin )
374 simpl ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) → 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
375 374 a1i ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) → 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
376 375 ss2rabi { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
377 376 sseli ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } → 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } )
378 fveq2 ( 𝑡 = 𝑠 → ( 2nd𝑡 ) = ( 2nd𝑠 ) )
379 378 breq2d ( 𝑡 = 𝑠 → ( 𝑦 < ( 2nd𝑡 ) ↔ 𝑦 < ( 2nd𝑠 ) ) )
380 379 ifbid ( 𝑡 = 𝑠 → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) )
381 380 csbeq1d ( 𝑡 = 𝑠 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
382 2fveq3 ( 𝑡 = 𝑠 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑠 ) ) )
383 2fveq3 ( 𝑡 = 𝑠 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑠 ) ) )
384 383 imaeq1d ( 𝑡 = 𝑠 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) )
385 384 xpeq1d ( 𝑡 = 𝑠 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
386 383 imaeq1d ( 𝑡 = 𝑠 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
387 386 xpeq1d ( 𝑡 = 𝑠 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
388 385 387 uneq12d ( 𝑡 = 𝑠 → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
389 382 388 oveq12d ( 𝑡 = 𝑠 → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
390 389 csbeq2dv ( 𝑡 = 𝑠 if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
391 381 390 eqtrd ( 𝑡 = 𝑠 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
392 391 mpteq2dv ( 𝑡 = 𝑠 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
393 392 eqeq2d ( 𝑡 = 𝑠 → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
394 eqcom ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 )
395 393 394 bitrdi ( 𝑡 = 𝑠 → ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 ) )
396 395 elrab ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ↔ ( 𝑠 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 ) )
397 396 simprbi ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 )
398 377 397 syl ( 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥 )
399 398 rgen 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥
400 399 rgenw 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∀ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥
401 invdisj ( ∀ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ∀ 𝑠 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑠 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑠 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑠 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = 𝑥Disj 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } )
402 400 401 mp1i ( 𝜑Disj 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } )
403 13 373 402 hashiun ( 𝜑 → ( ♯ ‘ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) = Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
404 372 403 eqtr3d ( 𝜑 → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) )
405 fo1st 1st : V –onto→ V
406 fofun ( 1st : V –onto→ V → Fun 1st )
407 405 406 ax-mp Fun 1st
408 ssv { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ V
409 fof ( 1st : V –onto→ V → 1st : V ⟶ V )
410 405 409 ax-mp 1st : V ⟶ V
411 410 fdmi dom 1st = V
412 408 411 sseqtrri { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ dom 1st
413 fores ( ( Fun 1st ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ dom 1st ) → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) )
414 407 412 413 mp2an ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } )
415 fveqeq2 ( 𝑡 = 𝑥 → ( ( 2nd𝑡 ) = 𝑁 ↔ ( 2nd𝑥 ) = 𝑁 ) )
416 fveq2 ( 𝑡 = 𝑥 → ( 1st𝑡 ) = ( 1st𝑥 ) )
417 416 csbeq1d ( 𝑡 = 𝑥 ( 1st𝑡 ) / 𝑠 𝐶 = ( 1st𝑥 ) / 𝑠 𝐶 )
418 417 eqeq2d ( 𝑡 = 𝑥 → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
419 418 rexbidv ( 𝑡 = 𝑥 → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
420 419 ralbidv ( 𝑡 = 𝑥 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
421 2fveq3 ( 𝑡 = 𝑥 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑥 ) ) )
422 421 fveq1d ( 𝑡 = 𝑥 → ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) )
423 422 eqeq1d ( 𝑡 = 𝑥 → ( ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ) )
424 2fveq3 ( 𝑡 = 𝑥 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑥 ) ) )
425 424 fveq1d ( 𝑡 = 𝑥 → ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) )
426 425 eqeq1d ( 𝑡 = 𝑥 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) )
427 420 423 426 3anbi123d ( 𝑡 = 𝑥 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) )
428 415 427 anbi12d ( 𝑡 = 𝑥 → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
429 428 rexrab ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 ↔ ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) )
430 xp1st ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
431 430 anim1i ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) )
432 eleq1 ( ( 1st𝑥 ) = 𝑠 → ( ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ↔ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) )
433 csbeq1a ( 𝑠 = ( 1st𝑥 ) → 𝐶 = ( 1st𝑥 ) / 𝑠 𝐶 )
434 433 eqcoms ( ( 1st𝑥 ) = 𝑠𝐶 = ( 1st𝑥 ) / 𝑠 𝐶 )
435 434 eqcomd ( ( 1st𝑥 ) = 𝑠 ( 1st𝑥 ) / 𝑠 𝐶 = 𝐶 )
436 435 eqeq2d ( ( 1st𝑥 ) = 𝑠 → ( 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶𝑖 = 𝐶 ) )
437 436 rexbidv ( ( 1st𝑥 ) = 𝑠 → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) )
438 437 ralbidv ( ( 1st𝑥 ) = 𝑠 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) )
439 fveq2 ( ( 1st𝑥 ) = 𝑠 → ( 1st ‘ ( 1st𝑥 ) ) = ( 1st𝑠 ) )
440 439 fveq1d ( ( 1st𝑥 ) = 𝑠 → ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = ( ( 1st𝑠 ) ‘ 𝑁 ) )
441 440 eqeq1d ( ( 1st𝑥 ) = 𝑠 → ( ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ) )
442 fveq2 ( ( 1st𝑥 ) = 𝑠 → ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd𝑠 ) )
443 442 fveq1d ( ( 1st𝑥 ) = 𝑠 → ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = ( ( 2nd𝑠 ) ‘ 𝑁 ) )
444 443 eqeq1d ( ( 1st𝑥 ) = 𝑠 → ( ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) )
445 438 441 444 3anbi123d ( ( 1st𝑥 ) = 𝑠 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) )
446 432 445 anbi12d ( ( 1st𝑥 ) = 𝑠 → ( ( ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
447 431 446 syl5ibcom ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( ( 1st𝑥 ) = 𝑠 → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
448 447 adantrl ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ) → ( ( 1st𝑥 ) = 𝑠 → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
449 448 expimpd ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
450 449 rexlimiv ( ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) )
451 nn0fz0 ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ... 𝑁 ) )
452 177 451 sylib ( 𝜑𝑁 ∈ ( 0 ... 𝑁 ) )
453 opelxpi ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
454 452 453 sylan2 ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝜑 ) → ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
455 454 ancoms ( ( 𝜑𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
456 opelxp2 ( ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( 0 ... 𝑁 ) )
457 op2ndg ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 )
458 457 biantrurd ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
459 op1stg ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 )
460 csbeq1a ( 𝑠 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) → 𝐶 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 )
461 460 eqcoms ( ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠𝐶 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 )
462 461 eqcomd ( ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 = 𝐶 )
463 459 462 syl ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 = 𝐶 )
464 463 eqeq2d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶𝑖 = 𝐶 ) )
465 464 rexbidv ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) )
466 465 ralbidv ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ) )
467 459 fveq2d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) = ( 1st𝑠 ) )
468 467 fveq1d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = ( ( 1st𝑠 ) ‘ 𝑁 ) )
469 468 eqeq1d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ) )
470 459 fveq2d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) = ( 2nd𝑠 ) )
471 470 fveq1d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = ( ( 2nd𝑠 ) ‘ 𝑁 ) )
472 471 eqeq1d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) )
473 466 469 472 3anbi123d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) )
474 459 biantrud ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) ) )
475 458 473 474 3bitr3d ( ( 𝑠 ∈ V ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) ) )
476 49 456 475 sylancr ( ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) ) )
477 476 biimpa ( ( ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) )
478 fveqeq2 ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( 2nd𝑥 ) = 𝑁 ↔ ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ) )
479 fveq2 ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( 1st𝑥 ) = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) )
480 479 csbeq1d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( 1st𝑥 ) / 𝑠 𝐶 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 )
481 480 eqeq2d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ) )
482 481 rexbidv ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ) )
483 482 ralbidv ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ) )
484 2fveq3 ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) )
485 484 fveq1d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) )
486 485 eqeq1d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ↔ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ) )
487 2fveq3 ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) )
488 487 fveq1d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) )
489 488 eqeq1d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ↔ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) )
490 483 486 489 3anbi123d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) )
491 478 490 anbi12d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ↔ ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ) )
492 fveqeq2 ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( 1st𝑥 ) = 𝑠 ↔ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) )
493 491 492 anbi12d ( 𝑥 = ⟨ 𝑠 , 𝑁 ⟩ → ( ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) ↔ ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) ) )
494 493 rspcev ( ( ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ( ( 2nd ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝑠 , 𝑁 ⟩ ) = 𝑠 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) )
495 477 494 syldan ( ( ⟨ 𝑠 , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) )
496 455 495 sylan ( ( ( 𝜑𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) )
497 496 expl ( 𝜑 → ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) ) )
498 450 497 impbid2 ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) ‘ 𝑁 ) = 𝑁 ) ) ∧ ( 1st𝑥 ) = 𝑠 ) ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
499 429 498 syl5bb ( 𝜑 → ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) ) )
500 499 abbidv ( 𝜑 → { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) } )
501 dfimafn ( ( Fun 1st ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ dom 1st ) → ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑦 } )
502 407 412 501 mp2an ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑦 }
503 nfv 𝑠 ( 2nd𝑡 ) = 𝑁
504 nfcv 𝑠 ( 0 ... ( 𝑁 − 1 ) )
505 nfcsb1v 𝑠 ( 1st𝑡 ) / 𝑠 𝐶
506 505 nfeq2 𝑠 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
507 504 506 nfrex 𝑠𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
508 504 507 nfralw 𝑠𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
509 nfv 𝑠 ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0
510 nfv 𝑠 ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁
511 508 509 510 nf3an 𝑠 ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 )
512 503 511 nfan 𝑠 ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) )
513 nfcv 𝑠 ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) )
514 512 513 nfrabw 𝑠 { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) }
515 nfv 𝑠 ( 1st𝑥 ) = 𝑦
516 514 515 nfrex 𝑠𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑦
517 nfv 𝑦𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠
518 eqeq2 ( 𝑦 = 𝑠 → ( ( 1st𝑥 ) = 𝑦 ↔ ( 1st𝑥 ) = 𝑠 ) )
519 518 rexbidv ( 𝑦 = 𝑠 → ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 ) )
520 516 517 519 cbvabw { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑦 } = { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 }
521 502 520 eqtri ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( 1st𝑥 ) = 𝑠 }
522 df-rab { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } = { 𝑠 ∣ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) ) }
523 500 521 522 3eqtr4g ( 𝜑 → ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
524 foeq3 ( ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ↔ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) )
525 523 524 syl ( 𝜑 → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ↔ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) )
526 414 525 mpbii ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
527 fof ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
528 526 527 syl ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
529 fvres ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( 1st𝑥 ) )
530 fvres ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) = ( 1st𝑦 ) )
531 529 530 eqeqan12d ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) ↔ ( 1st𝑥 ) = ( 1st𝑦 ) ) )
532 simpl ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( 2nd𝑡 ) = 𝑁 )
533 532 a1i ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) → ( 2nd𝑡 ) = 𝑁 ) )
534 533 ss2rabi { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd𝑡 ) = 𝑁 }
535 534 sseli ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd𝑡 ) = 𝑁 } )
536 415 elrab ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd𝑡 ) = 𝑁 } ↔ ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑥 ) = 𝑁 ) )
537 535 536 sylib ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑥 ) = 𝑁 ) )
538 534 sseli ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd𝑡 ) = 𝑁 } )
539 fveqeq2 ( 𝑡 = 𝑦 → ( ( 2nd𝑡 ) = 𝑁 ↔ ( 2nd𝑦 ) = 𝑁 ) )
540 539 elrab ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 2nd𝑡 ) = 𝑁 } ↔ ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑦 ) = 𝑁 ) )
541 538 540 sylib ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } → ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑦 ) = 𝑁 ) )
542 eqtr3 ( ( ( 2nd𝑥 ) = 𝑁 ∧ ( 2nd𝑦 ) = 𝑁 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) )
543 xpopth ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ↔ 𝑥 = 𝑦 ) )
544 543 biimpd ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) → 𝑥 = 𝑦 ) )
545 544 ancomsd ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 2nd𝑥 ) = ( 2nd𝑦 ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → 𝑥 = 𝑦 ) )
546 545 expdimp ( ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) ∧ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → 𝑥 = 𝑦 ) )
547 542 546 sylan2 ( ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) ∧ ( ( 2nd𝑥 ) = 𝑁 ∧ ( 2nd𝑦 ) = 𝑁 ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → 𝑥 = 𝑦 ) )
548 547 an4s ( ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑥 ) = 𝑁 ) ∧ ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 2nd𝑦 ) = 𝑁 ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → 𝑥 = 𝑦 ) )
549 537 541 548 syl2an ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → 𝑥 = 𝑦 ) )
550 531 549 sylbid ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) )
551 550 rgen2 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 )
552 528 551 jctir ( 𝜑 → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∧ ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) )
553 dff13 ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ↔ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∧ ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) )
554 552 553 sylibr ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
555 df-f1o ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ↔ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∧ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) )
556 554 526 555 sylanbrc ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
557 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ Fin )
558 32 557 ax-mp { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ Fin
559 558 elexi { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ V
560 559 f1oen ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
561 556 560 syl ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
562 rabfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∈ Fin )
563 29 562 ax-mp { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∈ Fin
564 hashen ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ∈ Fin ∧ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ∈ Fin ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ↔ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) )
565 558 563 564 mp2an ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ↔ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } )
566 561 565 sylibr ( 𝜑 → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) )
567 566 oveq2d ( 𝜑 → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ( 2nd𝑡 ) = 𝑁 ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ( ( 1st ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd ‘ ( 1st𝑡 ) ) ‘ 𝑁 ) = 𝑁 ) ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) )
568 207 404 567 3eqtr3d ( 𝜑 → Σ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 0 ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑛 ) ≠ 𝐾 ) ) ) } ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) )
569 170 568 breqtrd ( 𝜑 → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = 𝐶 ∧ ( ( 1st𝑠 ) ‘ 𝑁 ) = 0 ∧ ( ( 2nd𝑠 ) ‘ 𝑁 ) = 𝑁 ) } ) ) )