Metamath Proof Explorer


Theorem poimirlem28

Description: Lemma for poimir , a variant of Sperner's lemma. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem28.1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 )
poimirlem28.2 ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
poimirlem28.3 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝐵 < 𝑛 )
poimirlem28.4 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) )
poimirlem28.5 ( 𝜑𝐾 ∈ ℕ )
Assertion poimirlem28 ( 𝜑 → ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem28.1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 )
3 poimirlem28.2 ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
4 poimirlem28.3 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝐵 < 𝑛 )
5 poimirlem28.4 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) )
6 poimirlem28.5 ( 𝜑𝐾 ∈ ℕ )
7 1 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
8 1 nnred ( 𝜑𝑁 ∈ ℝ )
9 8 leidd ( 𝜑𝑁𝑁 )
10 7 7 9 3jca ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 ∈ ℕ0𝑁𝑁 ) )
11 oveq2 ( 𝑘 = 0 → ( 1 ... 𝑘 ) = ( 1 ... 0 ) )
12 fz10 ( 1 ... 0 ) = ∅
13 11 12 eqtrdi ( 𝑘 = 0 → ( 1 ... 𝑘 ) = ∅ )
14 13 oveq2d ( 𝑘 = 0 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ∅ ) )
15 fzofi ( 0 ..^ 𝐾 ) ∈ Fin
16 map0e ( ( 0 ..^ 𝐾 ) ∈ Fin → ( ( 0 ..^ 𝐾 ) ↑m ∅ ) = 1o )
17 15 16 ax-mp ( ( 0 ..^ 𝐾 ) ↑m ∅ ) = 1o
18 df1o2 1o = { ∅ }
19 17 18 eqtri ( ( 0 ..^ 𝐾 ) ↑m ∅ ) = { ∅ }
20 14 19 eqtrdi ( 𝑘 = 0 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = { ∅ } )
21 eqidd ( 𝑘 = 0 → 𝑓 = 𝑓 )
22 21 13 13 f1oeq123d ( 𝑘 = 0 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ∅ –1-1-onto→ ∅ ) )
23 eqid ∅ = ∅
24 f1o00 ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ ( 𝑓 = ∅ ∧ ∅ = ∅ ) )
25 23 24 mpbiran2 ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ 𝑓 = ∅ )
26 22 25 bitrdi ( 𝑘 = 0 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 = ∅ ) )
27 26 abbidv ( 𝑘 = 0 → { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓𝑓 = ∅ } )
28 df-sn { ∅ } = { 𝑓𝑓 = ∅ }
29 27 28 eqtr4di ( 𝑘 = 0 → { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { ∅ } )
30 20 29 xpeq12d ( 𝑘 = 0 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( { ∅ } × { ∅ } ) )
31 0ex ∅ ∈ V
32 31 31 xpsn ( { ∅ } × { ∅ } ) = { ⟨ ∅ , ∅ ⟩ }
33 30 32 eqtr2di ( 𝑘 = 0 → { ⟨ ∅ , ∅ ⟩ } = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) )
34 elsni ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → 𝑠 = ⟨ ∅ , ∅ ⟩ )
35 31 31 op1std ( 𝑠 = ⟨ ∅ , ∅ ⟩ → ( 1st𝑠 ) = ∅ )
36 34 35 syl ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ( 1st𝑠 ) = ∅ )
37 36 oveq1d ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ( ( 1st𝑠 ) ∘f + ∅ ) = ( ∅ ∘f + ∅ ) )
38 f0 ∅ : ∅ ⟶ ∅
39 ffn ( ∅ : ∅ ⟶ ∅ → ∅ Fn ∅ )
40 38 39 mp1i ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ∅ Fn ∅ )
41 31 a1i ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ∅ ∈ V )
42 inidm ( ∅ ∩ ∅ ) = ∅
43 0fv ( ∅ ‘ 𝑛 ) = ∅
44 43 a1i ( ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∧ 𝑛 ∈ ∅ ) → ( ∅ ‘ 𝑛 ) = ∅ )
45 40 40 41 41 42 44 44 offval ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ( ∅ ∘f + ∅ ) = ( 𝑛 ∈ ∅ ↦ ( ∅ + ∅ ) ) )
46 mpt0 ( 𝑛 ∈ ∅ ↦ ( ∅ + ∅ ) ) = ∅
47 45 46 eqtrdi ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ( ∅ ∘f + ∅ ) = ∅ )
48 37 47 eqtrd ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ( ( 1st𝑠 ) ∘f + ∅ ) = ∅ )
49 48 uneq1d ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ∅ ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) )
50 uncom ( ∅ ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ∪ ∅ )
51 un0 ( ( ( 1 ... 𝑁 ) × { 0 } ) ∪ ∅ ) = ( ( 1 ... 𝑁 ) × { 0 } )
52 50 51 eqtri ( ∅ ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ( 1 ... 𝑁 ) × { 0 } )
53 49 52 eqtr2di ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ( ( 1 ... 𝑁 ) × { 0 } ) = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) )
54 53 csbeq1d ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
55 54 eqeq2d ( 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } → ( 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 ↔ 0 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
56 oveq2 ( 𝑘 = 0 → ( 0 ... 𝑘 ) = ( 0 ... 0 ) )
57 0z 0 ∈ ℤ
58 fzsn ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } )
59 57 58 ax-mp ( 0 ... 0 ) = { 0 }
60 56 59 eqtrdi ( 𝑘 = 0 → ( 0 ... 𝑘 ) = { 0 } )
61 oveq2 ( 𝑘 = 0 → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... 0 ) )
62 61 imaeq2d ( 𝑘 = 0 → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) )
63 62 xpeq1d ( 𝑘 = 0 → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) )
64 63 uneq2d ( 𝑘 = 0 → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) )
65 64 oveq2d ( 𝑘 = 0 → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) )
66 oveq1 ( 𝑘 = 0 → ( 𝑘 + 1 ) = ( 0 + 1 ) )
67 0p1e1 ( 0 + 1 ) = 1
68 66 67 eqtrdi ( 𝑘 = 0 → ( 𝑘 + 1 ) = 1 )
69 68 oveq1d ( 𝑘 = 0 → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 ) )
70 69 xpeq1d ( 𝑘 = 0 → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( 1 ... 𝑁 ) × { 0 } ) )
71 65 70 uneq12d ( 𝑘 = 0 → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) )
72 71 csbeq1d ( 𝑘 = 0 → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
73 72 eqeq2d ( 𝑘 = 0 → ( 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
74 60 73 rexeqbidv ( 𝑘 = 0 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ { 0 } 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
75 c0ex 0 ∈ V
76 oveq2 ( 𝑗 = 0 → ( 1 ... 𝑗 ) = ( 1 ... 0 ) )
77 76 12 eqtrdi ( 𝑗 = 0 → ( 1 ... 𝑗 ) = ∅ )
78 77 imaeq2d ( 𝑗 = 0 → ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd𝑠 ) “ ∅ ) )
79 ima0 ( ( 2nd𝑠 ) “ ∅ ) = ∅
80 78 79 eqtrdi ( 𝑗 = 0 → ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) = ∅ )
81 80 xpeq1d ( 𝑗 = 0 → ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ∅ × { 1 } ) )
82 0xp ( ∅ × { 1 } ) = ∅
83 81 82 eqtrdi ( 𝑗 = 0 → ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ∅ )
84 oveq1 ( 𝑗 = 0 → ( 𝑗 + 1 ) = ( 0 + 1 ) )
85 84 67 eqtrdi ( 𝑗 = 0 → ( 𝑗 + 1 ) = 1 )
86 85 oveq1d ( 𝑗 = 0 → ( ( 𝑗 + 1 ) ... 0 ) = ( 1 ... 0 ) )
87 86 12 eqtrdi ( 𝑗 = 0 → ( ( 𝑗 + 1 ) ... 0 ) = ∅ )
88 87 imaeq2d ( 𝑗 = 0 → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) = ( ( 2nd𝑠 ) “ ∅ ) )
89 88 79 eqtrdi ( 𝑗 = 0 → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) = ∅ )
90 89 xpeq1d ( 𝑗 = 0 → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) = ( ∅ × { 0 } ) )
91 0xp ( ∅ × { 0 } ) = ∅
92 90 91 eqtrdi ( 𝑗 = 0 → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) = ∅ )
93 83 92 uneq12d ( 𝑗 = 0 → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) = ( ∅ ∪ ∅ ) )
94 un0 ( ∅ ∪ ∅ ) = ∅
95 93 94 eqtrdi ( 𝑗 = 0 → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) = ∅ )
96 95 oveq2d ( 𝑗 = 0 → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) = ( ( 1st𝑠 ) ∘f + ∅ ) )
97 96 uneq1d ( 𝑗 = 0 → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) )
98 97 csbeq1d ( 𝑗 = 0 → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
99 98 eqeq2d ( 𝑗 = 0 → ( 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
100 75 99 rexsn ( ∃ 𝑗 ∈ { 0 } 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
101 74 100 bitrdi ( 𝑘 = 0 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
102 60 101 raleqbidv ( 𝑘 = 0 → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ { 0 } 𝑖 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
103 eqeq1 ( 𝑖 = 0 → ( 𝑖 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ 0 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
104 75 103 ralsn ( ∀ 𝑖 ∈ { 0 } 𝑖 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ 0 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
105 102 104 bitr2di ( 𝑘 = 0 → ( 0 = ( ( ( 1st𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
106 55 105 sylan9bbr ( ( 𝑘 = 0 ∧ 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ) → ( 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
107 33 106 rabeqbidva ( 𝑘 = 0 → { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } )
108 107 eqcomd ( 𝑘 = 0 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } = { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } )
109 108 fveq2d ( 𝑘 = 0 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } ) )
110 109 breq2d ( 𝑘 = 0 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } ) ) )
111 110 notbid ( 𝑘 = 0 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } ) ) )
112 111 imbi2d ( 𝑘 = 0 → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } ) ) ) )
113 oveq2 ( 𝑘 = 𝑚 → ( 1 ... 𝑘 ) = ( 1 ... 𝑚 ) )
114 113 oveq2d ( 𝑘 = 𝑚 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) )
115 eqidd ( 𝑘 = 𝑚𝑓 = 𝑓 )
116 115 113 113 f1oeq123d ( 𝑘 = 𝑚 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) ) )
117 116 abbidv ( 𝑘 = 𝑚 → { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } )
118 114 117 xpeq12d ( 𝑘 = 𝑚 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) )
119 oveq2 ( 𝑘 = 𝑚 → ( 0 ... 𝑘 ) = ( 0 ... 𝑚 ) )
120 oveq2 ( 𝑘 = 𝑚 → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... 𝑚 ) )
121 120 imaeq2d ( 𝑘 = 𝑚 → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) )
122 121 xpeq1d ( 𝑘 = 𝑚 → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) )
123 122 uneq2d ( 𝑘 = 𝑚 → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) )
124 123 oveq2d ( 𝑘 = 𝑚 → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) )
125 oveq1 ( 𝑘 = 𝑚 → ( 𝑘 + 1 ) = ( 𝑚 + 1 ) )
126 125 oveq1d ( 𝑘 = 𝑚 → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( ( 𝑚 + 1 ) ... 𝑁 ) )
127 126 xpeq1d ( 𝑘 = 𝑚 → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) )
128 124 127 uneq12d ( 𝑘 = 𝑚 → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) )
129 128 csbeq1d ( 𝑘 = 𝑚 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
130 129 eqeq2d ( 𝑘 = 𝑚 → ( 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
131 119 130 rexeqbidv ( 𝑘 = 𝑚 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
132 119 131 raleqbidv ( 𝑘 = 𝑚 → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
133 118 132 rabeqbidv ( 𝑘 = 𝑚 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } )
134 133 fveq2d ( 𝑘 = 𝑚 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) )
135 134 breq2d ( 𝑘 = 𝑚 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
136 135 notbid ( 𝑘 = 𝑚 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
137 136 imbi2d ( 𝑘 = 𝑚 → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) )
138 oveq2 ( 𝑘 = ( 𝑚 + 1 ) → ( 1 ... 𝑘 ) = ( 1 ... ( 𝑚 + 1 ) ) )
139 138 oveq2d ( 𝑘 = ( 𝑚 + 1 ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) )
140 eqidd ( 𝑘 = ( 𝑚 + 1 ) → 𝑓 = 𝑓 )
141 140 138 138 f1oeq123d ( 𝑘 = ( 𝑚 + 1 ) → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) ) )
142 141 abbidv ( 𝑘 = ( 𝑚 + 1 ) → { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } )
143 139 142 xpeq12d ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) )
144 oveq2 ( 𝑘 = ( 𝑚 + 1 ) → ( 0 ... 𝑘 ) = ( 0 ... ( 𝑚 + 1 ) ) )
145 oveq2 ( 𝑘 = ( 𝑚 + 1 ) → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) )
146 145 imaeq2d ( 𝑘 = ( 𝑚 + 1 ) → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) )
147 146 xpeq1d ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) )
148 147 uneq2d ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) )
149 148 oveq2d ( 𝑘 = ( 𝑚 + 1 ) → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) )
150 oveq1 ( 𝑘 = ( 𝑚 + 1 ) → ( 𝑘 + 1 ) = ( ( 𝑚 + 1 ) + 1 ) )
151 150 oveq1d ( 𝑘 = ( 𝑚 + 1 ) → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) )
152 151 xpeq1d ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) )
153 149 152 uneq12d ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
154 153 csbeq1d ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
155 154 eqeq2d ( 𝑘 = ( 𝑚 + 1 ) → ( 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
156 144 155 rexeqbidv ( 𝑘 = ( 𝑚 + 1 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
157 144 156 raleqbidv ( 𝑘 = ( 𝑚 + 1 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
158 143 157 rabeqbidv ( 𝑘 = ( 𝑚 + 1 ) → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } )
159 158 fveq2d ( 𝑘 = ( 𝑚 + 1 ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) )
160 159 breq2d ( 𝑘 = ( 𝑚 + 1 ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
161 160 notbid ( 𝑘 = ( 𝑚 + 1 ) → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
162 161 imbi2d ( 𝑘 = ( 𝑚 + 1 ) → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) )
163 oveq2 ( 𝑘 = 𝑁 → ( 1 ... 𝑘 ) = ( 1 ... 𝑁 ) )
164 163 oveq2d ( 𝑘 = 𝑁 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
165 eqidd ( 𝑘 = 𝑁𝑓 = 𝑓 )
166 165 163 163 f1oeq123d ( 𝑘 = 𝑁 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
167 166 abbidv ( 𝑘 = 𝑁 → { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
168 164 167 xpeq12d ( 𝑘 = 𝑁 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
169 oveq2 ( 𝑘 = 𝑁 → ( 0 ... 𝑘 ) = ( 0 ... 𝑁 ) )
170 oveq2 ( 𝑘 = 𝑁 → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... 𝑁 ) )
171 170 imaeq2d ( 𝑘 = 𝑁 → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
172 171 xpeq1d ( 𝑘 = 𝑁 → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
173 172 uneq2d ( 𝑘 = 𝑁 → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
174 173 oveq2d ( 𝑘 = 𝑁 → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
175 oveq1 ( 𝑘 = 𝑁 → ( 𝑘 + 1 ) = ( 𝑁 + 1 ) )
176 175 oveq1d ( 𝑘 = 𝑁 → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( ( 𝑁 + 1 ) ... 𝑁 ) )
177 176 xpeq1d ( 𝑘 = 𝑁 → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) )
178 174 177 uneq12d ( 𝑘 = 𝑁 → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) )
179 178 csbeq1d ( 𝑘 = 𝑁 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
180 179 eqeq2d ( 𝑘 = 𝑁 → ( 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
181 169 180 rexeqbidv ( 𝑘 = 𝑁 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
182 169 181 raleqbidv ( 𝑘 = 𝑁 → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
183 168 182 rabeqbidv ( 𝑘 = 𝑁 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } )
184 183 fveq2d ( 𝑘 = 𝑁 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) )
185 184 breq2d ( 𝑘 = 𝑁 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
186 185 notbid ( 𝑘 = 𝑁 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
187 186 imbi2d ( 𝑘 = 𝑁 → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) )
188 n2dvds1 ¬ 2 ∥ 1
189 opex ⟨ ∅ , ∅ ⟩ ∈ V
190 hashsng ( ⟨ ∅ , ∅ ⟩ ∈ V → ( ♯ ‘ { ⟨ ∅ , ∅ ⟩ } ) = 1 )
191 189 190 ax-mp ( ♯ ‘ { ⟨ ∅ , ∅ ⟩ } ) = 1
192 nnuz ℕ = ( ℤ ‘ 1 )
193 1 192 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 1 ) )
194 eluzfz1 ( 𝑁 ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) )
195 193 194 syl ( 𝜑 → 1 ∈ ( 1 ... 𝑁 ) )
196 6 nnnn0d ( 𝜑𝐾 ∈ ℕ0 )
197 0elfz ( 𝐾 ∈ ℕ0 → 0 ∈ ( 0 ... 𝐾 ) )
198 fconst6g ( 0 ∈ ( 0 ... 𝐾 ) → ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
199 196 197 198 3syl ( 𝜑 → ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
200 75 fvconst2 ( 1 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 )
201 195 200 syl ( 𝜑 → ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 )
202 195 199 201 3jca ( 𝜑 → ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) )
203 nfv 𝑝 ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) )
204 nfcsb1v 𝑝 ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵
205 204 nfeq1 𝑝 ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 = 0
206 203 205 nfim 𝑝 ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) → ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 = 0 )
207 ovex ( 1 ... 𝑁 ) ∈ V
208 snex { 0 } ∈ V
209 207 208 xpex ( ( 1 ... 𝑁 ) × { 0 } ) ∈ V
210 feq1 ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) )
211 fveq1 ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( 𝑝 ‘ 1 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) )
212 211 eqeq1d ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( 𝑝 ‘ 1 ) = 0 ↔ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) )
213 210 212 3anbi23d ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ↔ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) )
214 213 anbi2d ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) ↔ ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) ) )
215 csbeq1a ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → 𝐵 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 )
216 215 eqeq1d ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( 𝐵 = 0 ↔ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 = 0 ) )
217 214 216 imbi12d ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 = 0 ) ↔ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) → ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 = 0 ) ) )
218 1ex 1 ∈ V
219 eleq1 ( 𝑛 = 1 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ 1 ∈ ( 1 ... 𝑁 ) ) )
220 fveqeq2 ( 𝑛 = 1 → ( ( 𝑝𝑛 ) = 0 ↔ ( 𝑝 ‘ 1 ) = 0 ) )
221 219 220 3anbi13d ( 𝑛 = 1 → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ↔ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) )
222 221 anbi2d ( 𝑛 = 1 → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) ↔ ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) ) )
223 breq2 ( 𝑛 = 1 → ( 𝐵 < 𝑛𝐵 < 1 ) )
224 222 223 imbi12d ( 𝑛 = 1 → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) ↔ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 < 1 ) ) )
225 218 224 4 vtocl ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 < 1 )
226 elfznn0 ( 𝐵 ∈ ( 0 ... 𝑁 ) → 𝐵 ∈ ℕ0 )
227 nn0lt10b ( 𝐵 ∈ ℕ0 → ( 𝐵 < 1 ↔ 𝐵 = 0 ) )
228 3 226 227 3syl ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝐵 < 1 ↔ 𝐵 = 0 ) )
229 228 3ad2antr2 ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → ( 𝐵 < 1 ↔ 𝐵 = 0 ) )
230 225 229 mpbid ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 = 0 )
231 206 209 217 230 vtoclf ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) → ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 = 0 )
232 202 231 mpdan ( 𝜑 ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 = 0 )
233 232 eqcomd ( 𝜑 → 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 )
234 233 ralrimivw ( 𝜑 → ∀ 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 )
235 rabid2 ( { ⟨ ∅ , ∅ ⟩ } = { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } ↔ ∀ 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 )
236 234 235 sylibr ( 𝜑 → { ⟨ ∅ , ∅ ⟩ } = { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } )
237 236 fveq2d ( 𝜑 → ( ♯ ‘ { ⟨ ∅ , ∅ ⟩ } ) = ( ♯ ‘ { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } ) )
238 191 237 eqtr3id ( 𝜑 → 1 = ( ♯ ‘ { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } ) )
239 238 breq2d ( 𝜑 → ( 2 ∥ 1 ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } ) ) )
240 188 239 mtbii ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } ) )
241 240 a1i ( 𝑁 ∈ ℕ0 → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { ⟨ ∅ , ∅ ⟩ } ∣ 0 = ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 𝐵 } ) ) )
242 2z 2 ∈ ℤ
243 fzfi ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin
244 mapfi ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin )
245 15 243 244 mp2an ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin
246 ovex ( 1 ... ( 𝑚 + 1 ) ) ∈ V
247 246 246 mapval ( ( 1 ... ( 𝑚 + 1 ) ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) = { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) }
248 mapfi ( ( ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin ∧ ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin ) → ( ( 1 ... ( 𝑚 + 1 ) ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin )
249 243 243 248 mp2an ( ( 1 ... ( 𝑚 + 1 ) ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin
250 247 249 eqeltrri { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin
251 f1of ( 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) → 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) )
252 251 ss2abi { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ⊆ { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) }
253 ssfi ( ( { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ⊆ { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } ) → { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin )
254 250 252 253 mp2an { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin
255 xpfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin )
256 245 254 255 mp2an ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin
257 rabfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∈ Fin )
258 hashcl ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∈ Fin → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℕ0 )
259 256 257 258 mp2b ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℕ0
260 259 nn0zi ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℤ
261 rabfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin )
262 hashcl ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℕ0 )
263 256 261 262 mp2b ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℕ0
264 263 nn0zi ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ
265 242 260 264 3pm3.2i ( 2 ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ )
266 nn0p1nn ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ )
267 266 ad2antrl ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( 𝑚 + 1 ) ∈ ℕ )
268 uneq1 ( 𝑞 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
269 268 csbeq1d ( 𝑞 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
270 75 fconst ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) : ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ⟶ { 0 }
271 270 jctr ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) → ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) : ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ⟶ { 0 } ) )
272 266 nnred ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℝ )
273 272 ltp1d ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) < ( ( 𝑚 + 1 ) + 1 ) )
274 fzdisj ( ( 𝑚 + 1 ) < ( ( 𝑚 + 1 ) + 1 ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
275 273 274 syl ( 𝑚 ∈ ℕ0 → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
276 fun ( ( ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) : ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ⟶ { 0 } ) ∧ ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) )
277 271 275 276 syl2anr ( ( 𝑚 ∈ ℕ0𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) )
278 277 adantlr ( ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) )
279 278 adantl ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) )
280 266 peano2nnd ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ℕ )
281 280 192 eleqtrdi ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
282 281 ad2antrl ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
283 nn0z ( 𝑚 ∈ ℕ0𝑚 ∈ ℤ )
284 1 nnzd ( 𝜑𝑁 ∈ ℤ )
285 zltp1le ( ( 𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑚 < 𝑁 ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) )
286 283 284 285 syl2anr ( ( 𝜑𝑚 ∈ ℕ0 ) → ( 𝑚 < 𝑁 ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) )
287 286 biimpa ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) → ( 𝑚 + 1 ) ≤ 𝑁 )
288 287 anasss ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( 𝑚 + 1 ) ≤ 𝑁 )
289 283 peano2zd ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℤ )
290 289 adantr ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℤ )
291 eluz ( ( ( 𝑚 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) )
292 290 284 291 syl2anr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( 𝑁 ∈ ( ℤ ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) )
293 288 292 mpbird ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → 𝑁 ∈ ( ℤ ‘ ( 𝑚 + 1 ) ) )
294 fzsplit2 ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑚 + 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) )
295 282 293 294 syl2anc ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) )
296 295 eqcomd ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
297 196 197 syl ( 𝜑 → 0 ∈ ( 0 ... 𝐾 ) )
298 297 snssd ( 𝜑 → { 0 } ⊆ ( 0 ... 𝐾 ) )
299 ssequn2 ( { 0 } ⊆ ( 0 ... 𝐾 ) ↔ ( ( 0 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) )
300 298 299 sylib ( 𝜑 → ( ( 0 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) )
301 300 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( ( 0 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) )
302 296 301 feq23d ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) )
303 302 adantrr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) )
304 279 303 mpbid ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
305 nfv 𝑝 ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
306 nfcsb1v 𝑝 ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵
307 306 nfel1 𝑝 ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 )
308 305 307 nfim 𝑝 ( ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 ) )
309 vex 𝑞 ∈ V
310 ovex ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ∈ V
311 310 208 xpex ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ∈ V
312 309 311 unex ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ∈ V
313 feq1 ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) )
314 313 anbi2d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ↔ ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) )
315 csbeq1a ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → 𝐵 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
316 315 eleq1d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 ) ) )
317 314 316 imbi12d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) ↔ ( ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 ) ) ) )
318 308 312 317 3 vtoclf ( ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 ) )
319 304 318 syldan ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 ) )
320 319 anassrs ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 ) )
321 elfznn0 ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ℕ0 )
322 320 321 syl ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ℕ0 )
323 266 nnnn0d ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 )
324 323 adantr ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℕ0 )
325 324 ad2antlr ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑚 + 1 ) ∈ ℕ0 )
326 leloe ( ( ( 𝑚 + 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑚 + 1 ) ≤ 𝑁 ↔ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) )
327 272 8 326 syl2anr ( ( 𝜑𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) ≤ 𝑁 ↔ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) )
328 286 327 bitrd ( ( 𝜑𝑚 ∈ ℕ0 ) → ( 𝑚 < 𝑁 ↔ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) )
329 328 biimpd ( ( 𝜑𝑚 ∈ ℕ0 ) → ( 𝑚 < 𝑁 → ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) )
330 329 imdistani ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) → ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) )
331 330 anasss ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) )
332 simplll ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝜑 )
333 280 nnge1d ( 𝑚 ∈ ℕ0 → 1 ≤ ( ( 𝑚 + 1 ) + 1 ) )
334 333 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 1 ≤ ( ( 𝑚 + 1 ) + 1 ) )
335 zltp1le ( ( ( 𝑚 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑚 + 1 ) < 𝑁 ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) )
336 289 284 335 syl2anr ( ( 𝜑𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) < 𝑁 ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) )
337 336 biimpa ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 )
338 289 peano2zd ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ )
339 1z 1 ∈ ℤ
340 elfz ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) )
341 339 340 mp3an2 ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) )
342 338 284 341 syl2anr ( ( 𝜑𝑚 ∈ ℕ0 ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) )
343 342 adantr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) )
344 334 337 343 mpbir2and ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) )
345 344 adantlr ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) )
346 nn0re ( 𝑚 ∈ ℕ0𝑚 ∈ ℝ )
347 346 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 ∈ ℝ )
348 272 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℝ )
349 8 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑁 ∈ ℝ )
350 346 ltp1d ( 𝑚 ∈ ℕ0𝑚 < ( 𝑚 + 1 ) )
351 350 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 < ( 𝑚 + 1 ) )
352 simpr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑚 + 1 ) < 𝑁 )
353 347 348 349 351 352 lttrd ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 < 𝑁 )
354 353 adantlr ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 < 𝑁 )
355 anass ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) ↔ ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) )
356 304 anassrs ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
357 355 356 sylanb ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
358 357 an32s ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
359 354 358 syldan ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
360 ffn ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) → 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) )
361 360 ad2antlr ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) )
362 275 ad3antlr ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
363 eluz ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) )
364 338 284 363 syl2anr ( ( 𝜑𝑚 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) )
365 364 adantr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑁 ∈ ( ℤ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) )
366 337 365 mpbird ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑁 ∈ ( ℤ ‘ ( ( 𝑚 + 1 ) + 1 ) ) )
367 eluzfz1 ( 𝑁 ∈ ( ℤ ‘ ( ( 𝑚 + 1 ) + 1 ) ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) )
368 366 367 syl ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) )
369 368 adantlr ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) )
370 fnconstg ( 0 ∈ V → ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) )
371 75 370 ax-mp ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 )
372 fvun2 ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) )
373 371 372 mp3an2 ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) )
374 361 362 369 373 syl12anc ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) )
375 75 fvconst2 ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) → ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 )
376 369 375 syl ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 )
377 374 376 eqtrd ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 )
378 nfv 𝑝 ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) )
379 nfcv 𝑝 <
380 nfcv 𝑝 ( ( 𝑚 + 1 ) + 1 )
381 306 379 380 nfbr 𝑝 ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < ( ( 𝑚 + 1 ) + 1 )
382 378 381 nfim 𝑝 ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < ( ( 𝑚 + 1 ) + 1 ) )
383 fveq1 ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) )
384 383 eqeq1d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ↔ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) )
385 313 384 3anbi23d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ↔ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) )
386 385 anbi2d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ↔ ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ) )
387 315 breq1d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) )
388 386 387 imbi12d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) )
389 ovex ( ( 𝑚 + 1 ) + 1 ) ∈ V
390 eleq1 ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ) )
391 fveqeq2 ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( 𝑝𝑛 ) = 0 ↔ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) )
392 390 391 3anbi13d ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ↔ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) )
393 392 anbi2d ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) ↔ ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ) )
394 breq2 ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( 𝐵 < 𝑛𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) )
395 393 394 imbi12d ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) ↔ ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) )
396 389 395 4 vtocl ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → 𝐵 < ( ( 𝑚 + 1 ) + 1 ) )
397 382 312 388 396 vtoclf ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < ( ( 𝑚 + 1 ) + 1 ) )
398 332 345 359 377 397 syl13anc ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < ( ( 𝑚 + 1 ) + 1 ) )
399 355 320 sylanb ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 ) )
400 399 an32s ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 ) )
401 400 elfzelzd ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ℤ )
402 354 401 syldan ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ℤ )
403 289 ad3antlr ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℤ )
404 zleltp1 ( ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≤ ( 𝑚 + 1 ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) )
405 402 403 404 syl2anc ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≤ ( 𝑚 + 1 ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) )
406 398 405 mpbird ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≤ ( 𝑚 + 1 ) )
407 350 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → 𝑚 < ( 𝑚 + 1 ) )
408 breq2 ( ( 𝑚 + 1 ) = 𝑁 → ( 𝑚 < ( 𝑚 + 1 ) ↔ 𝑚 < 𝑁 ) )
409 408 biimpac ( ( 𝑚 < ( 𝑚 + 1 ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → 𝑚 < 𝑁 )
410 407 409 sylan ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → 𝑚 < 𝑁 )
411 elfzle2 ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑁 )
412 400 411 syl ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑁 )
413 410 412 syldan ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑁 )
414 simpr ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → ( 𝑚 + 1 ) = 𝑁 )
415 413 414 breqtrrd ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≤ ( 𝑚 + 1 ) )
416 406 415 jaodan ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≤ ( 𝑚 + 1 ) )
417 416 an32s ( ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≤ ( 𝑚 + 1 ) )
418 331 417 sylan ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≤ ( 𝑚 + 1 ) )
419 elfz2nn0 ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... ( 𝑚 + 1 ) ) ↔ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ℕ0 ∧ ( 𝑚 + 1 ) ∈ ℕ0 ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≤ ( 𝑚 + 1 ) ) )
420 322 325 418 419 syl3anbrc ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∈ ( 0 ... ( 𝑚 + 1 ) ) )
421 fzss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑚 + 1 ) ) → ( 1 ... ( 𝑚 + 1 ) ) ⊆ ( 1 ... 𝑁 ) )
422 293 421 syl ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( 1 ... ( 𝑚 + 1 ) ) ⊆ ( 1 ... 𝑁 ) )
423 422 sselda ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) )
424 423 3ad2antr1 ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 0 ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) )
425 356 3ad2antr2 ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
426 360 ad2antll ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) )
427 275 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
428 simprl ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) )
429 fvun1 ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞𝑛 ) )
430 371 429 mp3an2 ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞𝑛 ) )
431 426 427 428 430 syl12anc ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞𝑛 ) )
432 431 adantlrr ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞𝑛 ) )
433 432 3adantr3 ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 0 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞𝑛 ) )
434 simpr3 ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 0 ) ) → ( 𝑞𝑛 ) = 0 )
435 433 434 eqtrd ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 0 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 )
436 424 425 435 3jca ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 0 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) )
437 nfv 𝑝 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) )
438 nfcv 𝑝 𝑛
439 306 379 438 nfbr 𝑝 ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < 𝑛
440 437 439 nfim 𝑝 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < 𝑛 )
441 fveq1 ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝑝𝑛 ) = ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) )
442 441 eqeq1d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑝𝑛 ) = 0 ↔ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) )
443 313 442 3anbi23d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) )
444 443 anbi2d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) ↔ ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) ) )
445 315 breq1d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 < 𝑛 ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < 𝑛 ) )
446 444 445 imbi12d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) ↔ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < 𝑛 ) ) )
447 440 312 446 4 vtoclf ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < 𝑛 )
448 447 adantlr ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < 𝑛 )
449 436 448 syldan ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 < 𝑛 )
450 simp1 ( ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) → 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) )
451 423 anasss ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) )
452 450 451 sylanr2 ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) )
453 simp2 ( ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) → 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) )
454 453 304 sylanr2 ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
455 431 3adantr3 ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞𝑛 ) )
456 simpr3 ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) ) → ( 𝑞𝑛 ) = 𝐾 )
457 455 456 eqtrd ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 )
458 457 anasss ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 )
459 458 adantrlr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 )
460 452 454 459 3jca ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) )
461 nfv 𝑝 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) )
462 nfcv 𝑝 ( 𝑛 − 1 )
463 306 462 nfne 𝑝 ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≠ ( 𝑛 − 1 )
464 461 463 nfim 𝑝 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≠ ( 𝑛 − 1 ) )
465 441 eqeq1d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑝𝑛 ) = 𝐾 ↔ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) )
466 313 465 3anbi23d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) )
467 466 anbi2d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ) ↔ ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) ) )
468 315 neeq1d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 ≠ ( 𝑛 − 1 ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≠ ( 𝑛 − 1 ) ) )
469 467 468 imbi12d ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) ) ↔ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≠ ( 𝑛 − 1 ) ) ) )
470 464 312 469 5 vtoclf ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≠ ( 𝑛 − 1 ) )
471 460 470 syldan ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≠ ( 𝑛 − 1 ) )
472 471 anassrs ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞𝑛 ) = 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ≠ ( 𝑛 − 1 ) )
473 267 269 420 449 472 poimirlem27 ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) )
474 267 269 420 poimirlem26 ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
475 fzfi ( 0 ... ( 𝑚 + 1 ) ) ∈ Fin
476 xpfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin ∧ ( 0 ... ( 𝑚 + 1 ) ) ∈ Fin ) → ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∈ Fin )
477 256 475 476 mp2an ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∈ Fin
478 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∈ Fin )
479 hashcl ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∈ Fin → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℕ0 )
480 477 478 479 mp2b ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℕ0
481 480 nn0zi ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℤ
482 zsubcl ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∈ ℤ )
483 481 264 482 mp2an ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∈ ℤ
484 zsubcl ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℤ ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ∈ ℤ )
485 481 260 484 mp2an ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ∈ ℤ
486 dvds2sub ( ( 2 ∈ ℤ ∧ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∈ ℤ ∧ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ∈ ℤ ) → ( ( 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∧ 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) → 2 ∥ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) ) )
487 242 483 485 486 mp3an ( ( 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∧ 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) → 2 ∥ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) )
488 473 474 487 syl2anc ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → 2 ∥ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) )
489 480 nn0cni ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℂ
490 263 nn0cni ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℂ
491 259 nn0cni ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℂ
492 nnncan1 ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℂ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℂ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℂ ) → ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) = ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) )
493 489 490 491 492 mp3an ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) = ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) )
494 488 493 breqtrdi ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → 2 ∥ ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) )
495 dvdssub2 ( ( ( 2 ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ ) ∧ 2 ∥ ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) )
496 265 494 495 sylancr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) )
497 nn0cn ( 𝑚 ∈ ℕ0𝑚 ∈ ℂ )
498 pncan1 ( 𝑚 ∈ ℂ → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 )
499 497 498 syl ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 )
500 499 oveq2d ( 𝑚 ∈ ℕ0 → ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 0 ... 𝑚 ) )
501 500 rexeqdv ( 𝑚 ∈ ℕ0 → ( ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
502 500 501 raleqbidv ( 𝑚 ∈ ℕ0 → ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
503 502 3anbi1d ( 𝑚 ∈ ℕ0 → ( ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) ) )
504 503 rabbidv ( 𝑚 ∈ ℕ0 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } )
505 504 fveq2d ( 𝑚 ∈ ℕ0 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) )
506 505 ad2antrl ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) )
507 1 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → 𝑁 ∈ ℕ )
508 6 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → 𝐾 ∈ ℕ )
509 simprl ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → 𝑚 ∈ ℕ0 )
510 simprr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → 𝑚 < 𝑁 )
511 507 508 509 510 poimirlem4 ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } )
512 fzfi ( 1 ... 𝑚 ) ∈ Fin
513 mapfi ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑚 ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin )
514 15 512 513 mp2an ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin
515 ovex ( 1 ... 𝑚 ) ∈ V
516 515 515 mapval ( ( 1 ... 𝑚 ) ↑m ( 1 ... 𝑚 ) ) = { 𝑓𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) }
517 mapfi ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ ( 1 ... 𝑚 ) ∈ Fin ) → ( ( 1 ... 𝑚 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin )
518 512 512 517 mp2an ( ( 1 ... 𝑚 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin
519 516 518 eqeltrri { 𝑓𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } ∈ Fin
520 f1of ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) → 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) )
521 520 ss2abi { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ⊆ { 𝑓𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) }
522 ssfi ( ( { 𝑓𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ⊆ { 𝑓𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } ) → { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ∈ Fin )
523 519 521 522 mp2an { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ∈ Fin
524 xpfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∈ Fin )
525 514 523 524 mp2an ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∈ Fin
526 rabfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∈ Fin )
527 525 526 ax-mp { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∈ Fin
528 rabfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin )
529 256 528 ax-mp { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin
530 hashen ( ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∈ Fin ∧ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin ) → ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ↔ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) )
531 527 529 530 mp2an ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ↔ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } )
532 511 531 sylibr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) )
533 506 532 eqtr4d ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) )
534 533 breq2d ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
535 496 534 bitrd ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
536 535 biimpd ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) → 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
537 536 con3d ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) ) → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
538 537 expcom ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) → ( 𝜑 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) )
539 538 a2d ( ( 𝑚 ∈ ℕ0𝑚 < 𝑁 ) → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) )
540 539 3adant1 ( ( 𝑁 ∈ ℕ0𝑚 ∈ ℕ0𝑚 < 𝑁 ) → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) ) )
541 112 137 162 187 241 540 fnn0ind ( ( 𝑁 ∈ ℕ0𝑁 ∈ ℕ0𝑁𝑁 ) → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
542 10 541 mpcom ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) )
543 dvds0 ( 2 ∈ ℤ → 2 ∥ 0 )
544 242 543 ax-mp 2 ∥ 0
545 hash0 ( ♯ ‘ ∅ ) = 0
546 544 545 breqtrri 2 ∥ ( ♯ ‘ ∅ )
547 fveq2 ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = ∅ → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) = ( ♯ ‘ ∅ ) )
548 546 547 breqtrrid ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = ∅ → 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) )
549 8 ltp1d ( 𝜑𝑁 < ( 𝑁 + 1 ) )
550 284 peano2zd ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ )
551 fzn ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) )
552 550 284 551 syl2anc ( 𝜑 → ( 𝑁 < ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) )
553 549 552 mpbid ( 𝜑 → ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ )
554 553 xpeq1d ( 𝜑 → ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) = ( ∅ × { 0 } ) )
555 554 91 eqtrdi ( 𝜑 → ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) = ∅ )
556 555 uneq2d ( 𝜑 → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ∅ ) )
557 un0 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ∅ ) = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
558 556 557 eqtrdi ( 𝜑 → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
559 558 csbeq1d ( 𝜑 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 )
560 ovex ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V
561 560 2 csbie ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 = 𝐶
562 559 561 eqtrdi ( 𝜑 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = 𝐶 )
563 562 eqeq2d ( 𝜑 → ( 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = 𝐶 ) )
564 563 rexbidv ( 𝜑 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) )
565 564 ralbidv ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) )
566 565 rabbidv ( 𝜑 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } )
567 566 fveq2d ( 𝜑 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) )
568 567 breq2d ( 𝜑 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) )
569 548 568 syl5ibr ( 𝜑 → ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = ∅ → 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) )
570 569 necon3bd ( 𝜑 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ≠ ∅ ) )
571 542 570 mpd ( 𝜑 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ≠ ∅ )
572 rabn0 ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ≠ ∅ ↔ ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 )
573 571 572 sylib ( 𝜑 → ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 )