Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimirlem28.1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 ) |
3 |
|
poimirlem28.2 |
⊢ ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) |
4 |
|
poimirlem28.3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) |
5 |
|
poimirlem28.4 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) ) |
6 |
|
poimirlem28.5 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
7 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
8 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
9 |
8
|
leidd |
⊢ ( 𝜑 → 𝑁 ≤ 𝑁 ) |
10 |
7 7 9
|
3jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 1 ... 𝑘 ) = ( 1 ... 0 ) ) |
12 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
13 |
11 12
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 1 ... 𝑘 ) = ∅ ) |
14 |
13
|
oveq2d |
⊢ ( 𝑘 = 0 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ∅ ) ) |
15 |
|
fzofi |
⊢ ( 0 ..^ 𝐾 ) ∈ Fin |
16 |
|
map0e |
⊢ ( ( 0 ..^ 𝐾 ) ∈ Fin → ( ( 0 ..^ 𝐾 ) ↑m ∅ ) = 1o ) |
17 |
15 16
|
ax-mp |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ∅ ) = 1o |
18 |
|
df1o2 |
⊢ 1o = { ∅ } |
19 |
17 18
|
eqtri |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ∅ ) = { ∅ } |
20 |
14 19
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = { ∅ } ) |
21 |
|
eqidd |
⊢ ( 𝑘 = 0 → 𝑓 = 𝑓 ) |
22 |
21 13 13
|
f1oeq123d |
⊢ ( 𝑘 = 0 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ∅ –1-1-onto→ ∅ ) ) |
23 |
|
eqid |
⊢ ∅ = ∅ |
24 |
|
f1o00 |
⊢ ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ ( 𝑓 = ∅ ∧ ∅ = ∅ ) ) |
25 |
23 24
|
mpbiran2 |
⊢ ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ 𝑓 = ∅ ) |
26 |
22 25
|
bitrdi |
⊢ ( 𝑘 = 0 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 = ∅ ) ) |
27 |
26
|
abbidv |
⊢ ( 𝑘 = 0 → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓 ∣ 𝑓 = ∅ } ) |
28 |
|
df-sn |
⊢ { ∅ } = { 𝑓 ∣ 𝑓 = ∅ } |
29 |
27 28
|
eqtr4di |
⊢ ( 𝑘 = 0 → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { ∅ } ) |
30 |
20 29
|
xpeq12d |
⊢ ( 𝑘 = 0 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( { ∅ } × { ∅ } ) ) |
31 |
|
0ex |
⊢ ∅ ∈ V |
32 |
31 31
|
xpsn |
⊢ ( { ∅ } × { ∅ } ) = { 〈 ∅ , ∅ 〉 } |
33 |
30 32
|
eqtr2di |
⊢ ( 𝑘 = 0 → { 〈 ∅ , ∅ 〉 } = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ) |
34 |
|
elsni |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → 𝑠 = 〈 ∅ , ∅ 〉 ) |
35 |
31 31
|
op1std |
⊢ ( 𝑠 = 〈 ∅ , ∅ 〉 → ( 1st ‘ 𝑠 ) = ∅ ) |
36 |
34 35
|
syl |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( 1st ‘ 𝑠 ) = ∅ ) |
37 |
36
|
oveq1d |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) = ( ∅ ∘f + ∅ ) ) |
38 |
|
f0 |
⊢ ∅ : ∅ ⟶ ∅ |
39 |
|
ffn |
⊢ ( ∅ : ∅ ⟶ ∅ → ∅ Fn ∅ ) |
40 |
38 39
|
mp1i |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ∅ Fn ∅ ) |
41 |
31
|
a1i |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ∅ ∈ V ) |
42 |
|
inidm |
⊢ ( ∅ ∩ ∅ ) = ∅ |
43 |
|
0fv |
⊢ ( ∅ ‘ 𝑛 ) = ∅ |
44 |
43
|
a1i |
⊢ ( ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∧ 𝑛 ∈ ∅ ) → ( ∅ ‘ 𝑛 ) = ∅ ) |
45 |
40 40 41 41 42 44 44
|
offval |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ∅ ∘f + ∅ ) = ( 𝑛 ∈ ∅ ↦ ( ∅ + ∅ ) ) ) |
46 |
|
mpt0 |
⊢ ( 𝑛 ∈ ∅ ↦ ( ∅ + ∅ ) ) = ∅ |
47 |
45 46
|
eqtrdi |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ∅ ∘f + ∅ ) = ∅ ) |
48 |
37 47
|
eqtrd |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) = ∅ ) |
49 |
48
|
uneq1d |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ∅ ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
50 |
|
uncom |
⊢ ( ∅ ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ∪ ∅ ) |
51 |
|
un0 |
⊢ ( ( ( 1 ... 𝑁 ) × { 0 } ) ∪ ∅ ) = ( ( 1 ... 𝑁 ) × { 0 } ) |
52 |
50 51
|
eqtri |
⊢ ( ∅ ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ( 1 ... 𝑁 ) × { 0 } ) |
53 |
49 52
|
eqtr2di |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ( 1 ... 𝑁 ) × { 0 } ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
54 |
53
|
csbeq1d |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
55 |
54
|
eqeq2d |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ↔ 0 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
56 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 ... 𝑘 ) = ( 0 ... 0 ) ) |
57 |
|
0z |
⊢ 0 ∈ ℤ |
58 |
|
fzsn |
⊢ ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } ) |
59 |
57 58
|
ax-mp |
⊢ ( 0 ... 0 ) = { 0 } |
60 |
56 59
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 ... 𝑘 ) = { 0 } ) |
61 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... 0 ) ) |
62 |
61
|
imaeq2d |
⊢ ( 𝑘 = 0 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) ) |
63 |
62
|
xpeq1d |
⊢ ( 𝑘 = 0 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) |
64 |
63
|
uneq2d |
⊢ ( 𝑘 = 0 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) |
65 |
64
|
oveq2d |
⊢ ( 𝑘 = 0 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ) |
66 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 + 1 ) = ( 0 + 1 ) ) |
67 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
68 |
66 67
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 𝑘 + 1 ) = 1 ) |
69 |
68
|
oveq1d |
⊢ ( 𝑘 = 0 → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 ) ) |
70 |
69
|
xpeq1d |
⊢ ( 𝑘 = 0 → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( 1 ... 𝑁 ) × { 0 } ) ) |
71 |
65 70
|
uneq12d |
⊢ ( 𝑘 = 0 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
72 |
71
|
csbeq1d |
⊢ ( 𝑘 = 0 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
73 |
72
|
eqeq2d |
⊢ ( 𝑘 = 0 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
74 |
60 73
|
rexeqbidv |
⊢ ( 𝑘 = 0 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ { 0 } 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
75 |
|
c0ex |
⊢ 0 ∈ V |
76 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 1 ... 𝑗 ) = ( 1 ... 0 ) ) |
77 |
76 12
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( 1 ... 𝑗 ) = ∅ ) |
78 |
77
|
imaeq2d |
⊢ ( 𝑗 = 0 → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ 𝑠 ) “ ∅ ) ) |
79 |
|
ima0 |
⊢ ( ( 2nd ‘ 𝑠 ) “ ∅ ) = ∅ |
80 |
78 79
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ∅ ) |
81 |
80
|
xpeq1d |
⊢ ( 𝑗 = 0 → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ∅ × { 1 } ) ) |
82 |
|
0xp |
⊢ ( ∅ × { 1 } ) = ∅ |
83 |
81 82
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ∅ ) |
84 |
|
oveq1 |
⊢ ( 𝑗 = 0 → ( 𝑗 + 1 ) = ( 0 + 1 ) ) |
85 |
84 67
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( 𝑗 + 1 ) = 1 ) |
86 |
85
|
oveq1d |
⊢ ( 𝑗 = 0 → ( ( 𝑗 + 1 ) ... 0 ) = ( 1 ... 0 ) ) |
87 |
86 12
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( 𝑗 + 1 ) ... 0 ) = ∅ ) |
88 |
87
|
imaeq2d |
⊢ ( 𝑗 = 0 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) = ( ( 2nd ‘ 𝑠 ) “ ∅ ) ) |
89 |
88 79
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) = ∅ ) |
90 |
89
|
xpeq1d |
⊢ ( 𝑗 = 0 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) = ( ∅ × { 0 } ) ) |
91 |
|
0xp |
⊢ ( ∅ × { 0 } ) = ∅ |
92 |
90 91
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) = ∅ ) |
93 |
83 92
|
uneq12d |
⊢ ( 𝑗 = 0 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) = ( ∅ ∪ ∅ ) ) |
94 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
95 |
93 94
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) = ∅ ) |
96 |
95
|
oveq2d |
⊢ ( 𝑗 = 0 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ) |
97 |
96
|
uneq1d |
⊢ ( 𝑗 = 0 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
98 |
97
|
csbeq1d |
⊢ ( 𝑗 = 0 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
99 |
98
|
eqeq2d |
⊢ ( 𝑗 = 0 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
100 |
75 99
|
rexsn |
⊢ ( ∃ 𝑗 ∈ { 0 } 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
101 |
74 100
|
bitrdi |
⊢ ( 𝑘 = 0 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
102 |
60 101
|
raleqbidv |
⊢ ( 𝑘 = 0 → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ { 0 } 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
103 |
|
eqeq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 0 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
104 |
75 103
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { 0 } 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 0 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
105 |
102 104
|
bitr2di |
⊢ ( 𝑘 = 0 → ( 0 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
106 |
55 105
|
sylan9bbr |
⊢ ( ( 𝑘 = 0 ∧ 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ) → ( 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
107 |
33 106
|
rabeqbidva |
⊢ ( 𝑘 = 0 → { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) |
108 |
107
|
eqcomd |
⊢ ( 𝑘 = 0 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) |
109 |
108
|
fveq2d |
⊢ ( 𝑘 = 0 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) |
110 |
109
|
breq2d |
⊢ ( 𝑘 = 0 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) ) |
111 |
110
|
notbid |
⊢ ( 𝑘 = 0 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) ) |
112 |
111
|
imbi2d |
⊢ ( 𝑘 = 0 → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
113 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 1 ... 𝑘 ) = ( 1 ... 𝑚 ) ) |
114 |
113
|
oveq2d |
⊢ ( 𝑘 = 𝑚 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ) |
115 |
|
eqidd |
⊢ ( 𝑘 = 𝑚 → 𝑓 = 𝑓 ) |
116 |
115 113 113
|
f1oeq123d |
⊢ ( 𝑘 = 𝑚 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) ) ) |
117 |
116
|
abbidv |
⊢ ( 𝑘 = 𝑚 → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) |
118 |
114 117
|
xpeq12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ) |
119 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 0 ... 𝑘 ) = ( 0 ... 𝑚 ) ) |
120 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... 𝑚 ) ) |
121 |
120
|
imaeq2d |
⊢ ( 𝑘 = 𝑚 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) ) |
122 |
121
|
xpeq1d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) |
123 |
122
|
uneq2d |
⊢ ( 𝑘 = 𝑚 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) |
124 |
123
|
oveq2d |
⊢ ( 𝑘 = 𝑚 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ) |
125 |
|
oveq1 |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 + 1 ) = ( 𝑚 + 1 ) ) |
126 |
125
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( ( 𝑚 + 1 ) ... 𝑁 ) ) |
127 |
126
|
xpeq1d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) |
128 |
124 127
|
uneq12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
129 |
128
|
csbeq1d |
⊢ ( 𝑘 = 𝑚 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
130 |
129
|
eqeq2d |
⊢ ( 𝑘 = 𝑚 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
131 |
119 130
|
rexeqbidv |
⊢ ( 𝑘 = 𝑚 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
132 |
119 131
|
raleqbidv |
⊢ ( 𝑘 = 𝑚 → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
133 |
118 132
|
rabeqbidv |
⊢ ( 𝑘 = 𝑚 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) |
134 |
133
|
fveq2d |
⊢ ( 𝑘 = 𝑚 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) |
135 |
134
|
breq2d |
⊢ ( 𝑘 = 𝑚 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
136 |
135
|
notbid |
⊢ ( 𝑘 = 𝑚 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
137 |
136
|
imbi2d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
138 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 1 ... 𝑘 ) = ( 1 ... ( 𝑚 + 1 ) ) ) |
139 |
138
|
oveq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ) |
140 |
|
eqidd |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → 𝑓 = 𝑓 ) |
141 |
140 138 138
|
f1oeq123d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) ) ) |
142 |
141
|
abbidv |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) |
143 |
139 142
|
xpeq12d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ) |
144 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 0 ... 𝑘 ) = ( 0 ... ( 𝑚 + 1 ) ) ) |
145 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) |
146 |
145
|
imaeq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
147 |
146
|
xpeq1d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) |
148 |
147
|
uneq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) |
149 |
148
|
oveq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ) |
150 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 𝑘 + 1 ) = ( ( 𝑚 + 1 ) + 1 ) ) |
151 |
150
|
oveq1d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) |
152 |
151
|
xpeq1d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) |
153 |
149 152
|
uneq12d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
154 |
153
|
csbeq1d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
155 |
154
|
eqeq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
156 |
144 155
|
rexeqbidv |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
157 |
144 156
|
raleqbidv |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
158 |
143 157
|
rabeqbidv |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) |
159 |
158
|
fveq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) |
160 |
159
|
breq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
161 |
160
|
notbid |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
162 |
161
|
imbi2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
163 |
|
oveq2 |
⊢ ( 𝑘 = 𝑁 → ( 1 ... 𝑘 ) = ( 1 ... 𝑁 ) ) |
164 |
163
|
oveq2d |
⊢ ( 𝑘 = 𝑁 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
165 |
|
eqidd |
⊢ ( 𝑘 = 𝑁 → 𝑓 = 𝑓 ) |
166 |
165 163 163
|
f1oeq123d |
⊢ ( 𝑘 = 𝑁 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
167 |
166
|
abbidv |
⊢ ( 𝑘 = 𝑁 → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
168 |
164 167
|
xpeq12d |
⊢ ( 𝑘 = 𝑁 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
169 |
|
oveq2 |
⊢ ( 𝑘 = 𝑁 → ( 0 ... 𝑘 ) = ( 0 ... 𝑁 ) ) |
170 |
|
oveq2 |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... 𝑁 ) ) |
171 |
170
|
imaeq2d |
⊢ ( 𝑘 = 𝑁 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
172 |
171
|
xpeq1d |
⊢ ( 𝑘 = 𝑁 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
173 |
172
|
uneq2d |
⊢ ( 𝑘 = 𝑁 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
174 |
173
|
oveq2d |
⊢ ( 𝑘 = 𝑁 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
175 |
|
oveq1 |
⊢ ( 𝑘 = 𝑁 → ( 𝑘 + 1 ) = ( 𝑁 + 1 ) ) |
176 |
175
|
oveq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( ( 𝑁 + 1 ) ... 𝑁 ) ) |
177 |
176
|
xpeq1d |
⊢ ( 𝑘 = 𝑁 → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) |
178 |
174 177
|
uneq12d |
⊢ ( 𝑘 = 𝑁 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
179 |
178
|
csbeq1d |
⊢ ( 𝑘 = 𝑁 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
180 |
179
|
eqeq2d |
⊢ ( 𝑘 = 𝑁 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
181 |
169 180
|
rexeqbidv |
⊢ ( 𝑘 = 𝑁 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
182 |
169 181
|
raleqbidv |
⊢ ( 𝑘 = 𝑁 → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
183 |
168 182
|
rabeqbidv |
⊢ ( 𝑘 = 𝑁 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) |
184 |
183
|
fveq2d |
⊢ ( 𝑘 = 𝑁 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) |
185 |
184
|
breq2d |
⊢ ( 𝑘 = 𝑁 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
186 |
185
|
notbid |
⊢ ( 𝑘 = 𝑁 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
187 |
186
|
imbi2d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
188 |
|
n2dvds1 |
⊢ ¬ 2 ∥ 1 |
189 |
|
opex |
⊢ 〈 ∅ , ∅ 〉 ∈ V |
190 |
|
hashsng |
⊢ ( 〈 ∅ , ∅ 〉 ∈ V → ( ♯ ‘ { 〈 ∅ , ∅ 〉 } ) = 1 ) |
191 |
189 190
|
ax-mp |
⊢ ( ♯ ‘ { 〈 ∅ , ∅ 〉 } ) = 1 |
192 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
193 |
1 192
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
194 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) ) |
195 |
193 194
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝑁 ) ) |
196 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
197 |
|
0elfz |
⊢ ( 𝐾 ∈ ℕ0 → 0 ∈ ( 0 ... 𝐾 ) ) |
198 |
|
fconst6g |
⊢ ( 0 ∈ ( 0 ... 𝐾 ) → ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
199 |
196 197 198
|
3syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
200 |
75
|
fvconst2 |
⊢ ( 1 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) |
201 |
195 200
|
syl |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) |
202 |
195 199 201
|
3jca |
⊢ ( 𝜑 → ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) |
203 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) |
204 |
|
nfcsb1v |
⊢ Ⅎ 𝑝 ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 |
205 |
204
|
nfeq1 |
⊢ Ⅎ 𝑝 ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 |
206 |
203 205
|
nfim |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) → ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 ) |
207 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
208 |
|
snex |
⊢ { 0 } ∈ V |
209 |
207 208
|
xpex |
⊢ ( ( 1 ... 𝑁 ) × { 0 } ) ∈ V |
210 |
|
feq1 |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
211 |
|
fveq1 |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( 𝑝 ‘ 1 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) ) |
212 |
211
|
eqeq1d |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( 𝑝 ‘ 1 ) = 0 ↔ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) |
213 |
210 212
|
3anbi23d |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ↔ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) ) |
214 |
213
|
anbi2d |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) ↔ ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) ) ) |
215 |
|
csbeq1a |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → 𝐵 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ) |
216 |
215
|
eqeq1d |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( 𝐵 = 0 ↔ ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 ) ) |
217 |
214 216
|
imbi12d |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 = 0 ) ↔ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) → ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 ) ) ) |
218 |
|
1ex |
⊢ 1 ∈ V |
219 |
|
eleq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ 1 ∈ ( 1 ... 𝑁 ) ) ) |
220 |
|
fveqeq2 |
⊢ ( 𝑛 = 1 → ( ( 𝑝 ‘ 𝑛 ) = 0 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
221 |
219 220
|
3anbi13d |
⊢ ( 𝑛 = 1 → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ↔ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
222 |
221
|
anbi2d |
⊢ ( 𝑛 = 1 → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) ↔ ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
223 |
|
breq2 |
⊢ ( 𝑛 = 1 → ( 𝐵 < 𝑛 ↔ 𝐵 < 1 ) ) |
224 |
222 223
|
imbi12d |
⊢ ( 𝑛 = 1 → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) ↔ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 < 1 ) ) ) |
225 |
218 224 4
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 < 1 ) |
226 |
|
elfznn0 |
⊢ ( 𝐵 ∈ ( 0 ... 𝑁 ) → 𝐵 ∈ ℕ0 ) |
227 |
|
nn0lt10b |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 < 1 ↔ 𝐵 = 0 ) ) |
228 |
3 226 227
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝐵 < 1 ↔ 𝐵 = 0 ) ) |
229 |
228
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → ( 𝐵 < 1 ↔ 𝐵 = 0 ) ) |
230 |
225 229
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 = 0 ) |
231 |
206 209 217 230
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) → ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 ) |
232 |
202 231
|
mpdan |
⊢ ( 𝜑 → ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 ) |
233 |
232
|
eqcomd |
⊢ ( 𝜑 → 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ) |
234 |
233
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑠 ∈ { 〈 ∅ , ∅ 〉 } 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ) |
235 |
|
rabid2 |
⊢ ( { 〈 ∅ , ∅ 〉 } = { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ↔ ∀ 𝑠 ∈ { 〈 ∅ , ∅ 〉 } 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ) |
236 |
234 235
|
sylibr |
⊢ ( 𝜑 → { 〈 ∅ , ∅ 〉 } = { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) |
237 |
236
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 〈 ∅ , ∅ 〉 } ) = ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) |
238 |
191 237
|
eqtr3id |
⊢ ( 𝜑 → 1 = ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) |
239 |
238
|
breq2d |
⊢ ( 𝜑 → ( 2 ∥ 1 ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) ) |
240 |
188 239
|
mtbii |
⊢ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) |
241 |
240
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) ) |
242 |
|
2z |
⊢ 2 ∈ ℤ |
243 |
|
fzfi |
⊢ ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin |
244 |
|
mapfi |
⊢ ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin ) |
245 |
15 243 244
|
mp2an |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin |
246 |
|
ovex |
⊢ ( 1 ... ( 𝑚 + 1 ) ) ∈ V |
247 |
246 246
|
mapval |
⊢ ( ( 1 ... ( 𝑚 + 1 ) ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } |
248 |
|
mapfi |
⊢ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin ∧ ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin ) → ( ( 1 ... ( 𝑚 + 1 ) ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin ) |
249 |
243 243 248
|
mp2an |
⊢ ( ( 1 ... ( 𝑚 + 1 ) ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin |
250 |
247 249
|
eqeltrri |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin |
251 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) → 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) ) |
252 |
251
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } |
253 |
|
ssfi |
⊢ ( ( { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } ) → { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin ) |
254 |
250 252 253
|
mp2an |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin |
255 |
|
xpfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin ) |
256 |
245 254 255
|
mp2an |
⊢ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin |
257 |
|
rabfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin ) |
258 |
|
hashcl |
⊢ ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℕ0 ) |
259 |
256 257 258
|
mp2b |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℕ0 |
260 |
259
|
nn0zi |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ |
261 |
|
rabfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin ) |
262 |
|
hashcl |
⊢ ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℕ0 ) |
263 |
256 261 262
|
mp2b |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℕ0 |
264 |
263
|
nn0zi |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ |
265 |
242 260 264
|
3pm3.2i |
⊢ ( 2 ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ ) |
266 |
|
nn0p1nn |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ ) |
267 |
266
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
268 |
|
uneq1 |
⊢ ( 𝑞 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
269 |
268
|
csbeq1d |
⊢ ( 𝑞 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
270 |
75
|
fconst |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) : ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ⟶ { 0 } |
271 |
270
|
jctr |
⊢ ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) → ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) : ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ⟶ { 0 } ) ) |
272 |
266
|
nnred |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℝ ) |
273 |
272
|
ltp1d |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) < ( ( 𝑚 + 1 ) + 1 ) ) |
274 |
|
fzdisj |
⊢ ( ( 𝑚 + 1 ) < ( ( 𝑚 + 1 ) + 1 ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
275 |
273 274
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
276 |
|
fun |
⊢ ( ( ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) : ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ⟶ { 0 } ) ∧ ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ) |
277 |
271 275 276
|
syl2anr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ) |
278 |
277
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ) |
279 |
278
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ) |
280 |
266
|
peano2nnd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ℕ ) |
281 |
280 192
|
eleqtrdi |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
282 |
281
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
283 |
|
nn0z |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℤ ) |
284 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
285 |
|
zltp1le |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑚 < 𝑁 ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) ) |
286 |
283 284 285
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 < 𝑁 ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) ) |
287 |
286
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) → ( 𝑚 + 1 ) ≤ 𝑁 ) |
288 |
287
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 𝑚 + 1 ) ≤ 𝑁 ) |
289 |
283
|
peano2zd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℤ ) |
290 |
289
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℤ ) |
291 |
|
eluz |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) ) |
292 |
290 284 291
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) ) |
293 |
288 292
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) |
294 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ) |
295 |
282 293 294
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ) |
296 |
295
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
297 |
196 197
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝐾 ) ) |
298 |
297
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ( 0 ... 𝐾 ) ) |
299 |
|
ssequn2 |
⊢ ( { 0 } ⊆ ( 0 ... 𝐾 ) ↔ ( ( 0 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) ) |
300 |
298 299
|
sylib |
⊢ ( 𝜑 → ( ( 0 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) ) |
301 |
300
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ( 0 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) ) |
302 |
296 301
|
feq23d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
303 |
302
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
304 |
279 303
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
305 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
306 |
|
nfcsb1v |
⊢ Ⅎ 𝑝 ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 |
307 |
306
|
nfel1 |
⊢ Ⅎ 𝑝 ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) |
308 |
305 307
|
nfim |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
309 |
|
vex |
⊢ 𝑞 ∈ V |
310 |
|
ovex |
⊢ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ∈ V |
311 |
310 208
|
xpex |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ∈ V |
312 |
309 311
|
unex |
⊢ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ∈ V |
313 |
|
feq1 |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
314 |
313
|
anbi2d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ↔ ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) ) |
315 |
|
csbeq1a |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → 𝐵 = ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
316 |
315
|
eleq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 ∈ ( 0 ... 𝑁 ) ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) ) |
317 |
314 316
|
imbi12d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) ↔ ( ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) ) ) |
318 |
308 312 317 3
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
319 |
304 318
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
320 |
319
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
321 |
|
elfznn0 |
⊢ ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℕ0 ) |
322 |
320 321
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℕ0 ) |
323 |
266
|
nnnn0d |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) |
324 |
323
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
325 |
324
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
326 |
|
leloe |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑚 + 1 ) ≤ 𝑁 ↔ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
327 |
272 8 326
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) ≤ 𝑁 ↔ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
328 |
286 327
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 < 𝑁 ↔ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
329 |
328
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 < 𝑁 → ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
330 |
329
|
imdistani |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) → ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
331 |
330
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
332 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝜑 ) |
333 |
280
|
nnge1d |
⊢ ( 𝑚 ∈ ℕ0 → 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ) |
334 |
333
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ) |
335 |
|
zltp1le |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑚 + 1 ) < 𝑁 ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) |
336 |
289 284 335
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) < 𝑁 ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) |
337 |
336
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) |
338 |
289
|
peano2zd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ) |
339 |
|
1z |
⊢ 1 ∈ ℤ |
340 |
|
elfz |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) ) |
341 |
339 340
|
mp3an2 |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) ) |
342 |
338 284 341
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) ) |
343 |
342
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) ) |
344 |
334 337 343
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ) |
345 |
344
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ) |
346 |
|
nn0re |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) |
347 |
346
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 ∈ ℝ ) |
348 |
272
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℝ ) |
349 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑁 ∈ ℝ ) |
350 |
346
|
ltp1d |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 < ( 𝑚 + 1 ) ) |
351 |
350
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 < ( 𝑚 + 1 ) ) |
352 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑚 + 1 ) < 𝑁 ) |
353 |
347 348 349 351 352
|
lttrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 < 𝑁 ) |
354 |
353
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 < 𝑁 ) |
355 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) ↔ ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ) |
356 |
304
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
357 |
355 356
|
sylanb |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
358 |
357
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
359 |
354 358
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
360 |
|
ffn |
⊢ ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) → 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ) |
361 |
360
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ) |
362 |
275
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
363 |
|
eluz |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) |
364 |
338 284 363
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) |
365 |
364
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) |
366 |
337 365
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
367 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑚 + 1 ) + 1 ) ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) |
368 |
366 367
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) |
369 |
368
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) |
370 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) |
371 |
75 370
|
ax-mp |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) |
372 |
|
fvun2 |
⊢ ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
373 |
371 372
|
mp3an2 |
⊢ ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
374 |
361 362 369 373
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
375 |
75
|
fvconst2 |
⊢ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) → ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) |
376 |
369 375
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) |
377 |
374 376
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) |
378 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) |
379 |
|
nfcv |
⊢ Ⅎ 𝑝 < |
380 |
|
nfcv |
⊢ Ⅎ 𝑝 ( ( 𝑚 + 1 ) + 1 ) |
381 |
306 379 380
|
nfbr |
⊢ Ⅎ 𝑝 ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) |
382 |
378 381
|
nfim |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) |
383 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
384 |
383
|
eqeq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ↔ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) |
385 |
313 384
|
3anbi23d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ↔ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ) |
386 |
385
|
anbi2d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ↔ ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ) ) |
387 |
315
|
breq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) |
388 |
386 387
|
imbi12d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) ) |
389 |
|
ovex |
⊢ ( ( 𝑚 + 1 ) + 1 ) ∈ V |
390 |
|
eleq1 |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ) ) |
391 |
|
fveqeq2 |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( 𝑝 ‘ 𝑛 ) = 0 ↔ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) |
392 |
390 391
|
3anbi13d |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ↔ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ) |
393 |
392
|
anbi2d |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) ↔ ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ) ) |
394 |
|
breq2 |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( 𝐵 < 𝑛 ↔ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) |
395 |
393 394
|
imbi12d |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) ↔ ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) ) |
396 |
389 395 4
|
vtocl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) |
397 |
382 312 388 396
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) |
398 |
332 345 359 377 397
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) |
399 |
355 320
|
sylanb |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
400 |
399
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
401 |
400
|
elfzelzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℤ ) |
402 |
354 401
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℤ ) |
403 |
289
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℤ ) |
404 |
|
zleltp1 |
⊢ ( ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ) → ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) |
405 |
402 403 404
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) |
406 |
398 405
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) |
407 |
350
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → 𝑚 < ( 𝑚 + 1 ) ) |
408 |
|
breq2 |
⊢ ( ( 𝑚 + 1 ) = 𝑁 → ( 𝑚 < ( 𝑚 + 1 ) ↔ 𝑚 < 𝑁 ) ) |
409 |
408
|
biimpac |
⊢ ( ( 𝑚 < ( 𝑚 + 1 ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → 𝑚 < 𝑁 ) |
410 |
407 409
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → 𝑚 < 𝑁 ) |
411 |
|
elfzle2 |
⊢ ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ 𝑁 ) |
412 |
400 411
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ 𝑁 ) |
413 |
410 412
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ 𝑁 ) |
414 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → ( 𝑚 + 1 ) = 𝑁 ) |
415 |
413 414
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) |
416 |
406 415
|
jaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) |
417 |
416
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) |
418 |
331 417
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) |
419 |
|
elfz2nn0 |
⊢ ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... ( 𝑚 + 1 ) ) ↔ ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℕ0 ∧ ( 𝑚 + 1 ) ∈ ℕ0 ∧ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) ) |
420 |
322 325 418 419
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) |
421 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → ( 1 ... ( 𝑚 + 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
422 |
293 421
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 1 ... ( 𝑚 + 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
423 |
422
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
424 |
423
|
3ad2antr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
425 |
356
|
3ad2antr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
426 |
360
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ) |
427 |
275
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
428 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) |
429 |
|
fvun1 |
⊢ ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
430 |
371 429
|
mp3an2 |
⊢ ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
431 |
426 427 428 430
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
432 |
431
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
433 |
432
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
434 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ( 𝑞 ‘ 𝑛 ) = 0 ) |
435 |
433 434
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
436 |
424 425 435
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) |
437 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) |
438 |
|
nfcv |
⊢ Ⅎ 𝑝 𝑛 |
439 |
306 379 438
|
nfbr |
⊢ Ⅎ 𝑝 ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 |
440 |
437 439
|
nfim |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) |
441 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝑝 ‘ 𝑛 ) = ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) ) |
442 |
441
|
eqeq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑝 ‘ 𝑛 ) = 0 ↔ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) |
443 |
313 442
|
3anbi23d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) ) |
444 |
443
|
anbi2d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) ↔ ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) ) ) |
445 |
315
|
breq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 < 𝑛 ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) ) |
446 |
444 445
|
imbi12d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) ↔ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) ) ) |
447 |
440 312 446 4
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) |
448 |
447
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) |
449 |
436 448
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) |
450 |
|
simp1 |
⊢ ( ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) → 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) |
451 |
423
|
anasss |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
452 |
450 451
|
sylanr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
453 |
|
simp2 |
⊢ ( ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) → 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) |
454 |
453 304
|
sylanr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
455 |
431
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
456 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) → ( 𝑞 ‘ 𝑛 ) = 𝐾 ) |
457 |
455 456
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) |
458 |
457
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) |
459 |
458
|
adantrlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) |
460 |
452 454 459
|
3jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) |
461 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) |
462 |
|
nfcv |
⊢ Ⅎ 𝑝 ( 𝑛 − 1 ) |
463 |
306 462
|
nfne |
⊢ Ⅎ 𝑝 ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) |
464 |
461 463
|
nfim |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) |
465 |
441
|
eqeq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑝 ‘ 𝑛 ) = 𝐾 ↔ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) |
466 |
313 465
|
3anbi23d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝐾 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) ) |
467 |
466
|
anbi2d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝐾 ) ) ↔ ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) ) ) |
468 |
315
|
neeq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 ≠ ( 𝑛 − 1 ) ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) ) |
469 |
467 468
|
imbi12d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) ) ↔ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) ) ) |
470 |
464 312 469 5
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) |
471 |
460 470
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) |
472 |
471
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) |
473 |
267 269 420 449 472
|
poimirlem27 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) |
474 |
267 269 420
|
poimirlem26 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
475 |
|
fzfi |
⊢ ( 0 ... ( 𝑚 + 1 ) ) ∈ Fin |
476 |
|
xpfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin ∧ ( 0 ... ( 𝑚 + 1 ) ) ∈ Fin ) → ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∈ Fin ) |
477 |
256 475 476
|
mp2an |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∈ Fin |
478 |
|
rabfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin ) |
479 |
|
hashcl |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℕ0 ) |
480 |
477 478 479
|
mp2b |
⊢ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℕ0 |
481 |
480
|
nn0zi |
⊢ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ |
482 |
|
zsubcl |
⊢ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∈ ℤ ) |
483 |
481 264 482
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∈ ℤ |
484 |
|
zsubcl |
⊢ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ∈ ℤ ) |
485 |
481 260 484
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ∈ ℤ |
486 |
|
dvds2sub |
⊢ ( ( 2 ∈ ℤ ∧ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∈ ℤ ∧ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ∈ ℤ ) → ( ( 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∧ 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) → 2 ∥ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) ) |
487 |
242 483 485 486
|
mp3an |
⊢ ( ( 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∧ 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) → 2 ∥ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
488 |
473 474 487
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 2 ∥ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
489 |
480
|
nn0cni |
⊢ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℂ |
490 |
263
|
nn0cni |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℂ |
491 |
259
|
nn0cni |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℂ |
492 |
|
nnncan1 |
⊢ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℂ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℂ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℂ ) → ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) = ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) |
493 |
489 490 491 492
|
mp3an |
⊢ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) = ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) |
494 |
488 493
|
breqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 2 ∥ ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) |
495 |
|
dvdssub2 |
⊢ ( ( ( 2 ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ ) ∧ 2 ∥ ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) |
496 |
265 494 495
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) |
497 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
498 |
|
pncan1 |
⊢ ( 𝑚 ∈ ℂ → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
499 |
497 498
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
500 |
499
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 0 ... 𝑚 ) ) |
501 |
500
|
rexeqdv |
⊢ ( 𝑚 ∈ ℕ0 → ( ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
502 |
500 501
|
raleqbidv |
⊢ ( 𝑚 ∈ ℕ0 → ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
503 |
502
|
3anbi1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) ) ) |
504 |
503
|
rabbidv |
⊢ ( 𝑚 ∈ ℕ0 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) |
505 |
504
|
fveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) |
506 |
505
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) |
507 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 𝑁 ∈ ℕ ) |
508 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 𝐾 ∈ ℕ ) |
509 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 𝑚 ∈ ℕ0 ) |
510 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 𝑚 < 𝑁 ) |
511 |
507 508 509 510
|
poimirlem4 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) |
512 |
|
fzfi |
⊢ ( 1 ... 𝑚 ) ∈ Fin |
513 |
|
mapfi |
⊢ ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑚 ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin ) |
514 |
15 512 513
|
mp2an |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin |
515 |
|
ovex |
⊢ ( 1 ... 𝑚 ) ∈ V |
516 |
515 515
|
mapval |
⊢ ( ( 1 ... 𝑚 ) ↑m ( 1 ... 𝑚 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } |
517 |
|
mapfi |
⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ ( 1 ... 𝑚 ) ∈ Fin ) → ( ( 1 ... 𝑚 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin ) |
518 |
512 512 517
|
mp2an |
⊢ ( ( 1 ... 𝑚 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin |
519 |
516 518
|
eqeltrri |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } ∈ Fin |
520 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) → 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) ) |
521 |
520
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } |
522 |
|
ssfi |
⊢ ( ( { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } ) → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ∈ Fin ) |
523 |
519 521 522
|
mp2an |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ∈ Fin |
524 |
|
xpfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∈ Fin ) |
525 |
514 523 524
|
mp2an |
⊢ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∈ Fin |
526 |
|
rabfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin ) |
527 |
525 526
|
ax-mp |
⊢ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin |
528 |
|
rabfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin ) |
529 |
256 528
|
ax-mp |
⊢ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin |
530 |
|
hashen |
⊢ ( ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin ∧ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin ) → ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ↔ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) |
531 |
527 529 530
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ↔ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) |
532 |
511 531
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) |
533 |
506 532
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) |
534 |
533
|
breq2d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
535 |
496 534
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
536 |
535
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) → 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
537 |
536
|
con3d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
538 |
537
|
expcom |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) → ( 𝜑 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
539 |
538
|
a2d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
540 |
539
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
541 |
112 137 162 187 241 540
|
fnn0ind |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁 ) → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
542 |
10 541
|
mpcom |
⊢ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) |
543 |
|
dvds0 |
⊢ ( 2 ∈ ℤ → 2 ∥ 0 ) |
544 |
242 543
|
ax-mp |
⊢ 2 ∥ 0 |
545 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
546 |
544 545
|
breqtrri |
⊢ 2 ∥ ( ♯ ‘ ∅ ) |
547 |
|
fveq2 |
⊢ ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = ∅ → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) = ( ♯ ‘ ∅ ) ) |
548 |
546 547
|
breqtrrid |
⊢ ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = ∅ → 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) |
549 |
8
|
ltp1d |
⊢ ( 𝜑 → 𝑁 < ( 𝑁 + 1 ) ) |
550 |
284
|
peano2zd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
551 |
|
fzn |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) ) |
552 |
550 284 551
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 < ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) ) |
553 |
549 552
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) |
554 |
553
|
xpeq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) = ( ∅ × { 0 } ) ) |
555 |
554 91
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) = ∅ ) |
556 |
555
|
uneq2d |
⊢ ( 𝜑 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ∅ ) ) |
557 |
|
un0 |
⊢ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ∅ ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
558 |
556 557
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
559 |
558
|
csbeq1d |
⊢ ( 𝜑 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
560 |
|
ovex |
⊢ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
561 |
560 2
|
csbie |
⊢ ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = 𝐶 |
562 |
559 561
|
eqtrdi |
⊢ ( 𝜑 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = 𝐶 ) |
563 |
562
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = 𝐶 ) ) |
564 |
563
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) |
565 |
564
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) |
566 |
565
|
rabbidv |
⊢ ( 𝜑 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
567 |
566
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) |
568 |
567
|
breq2d |
⊢ ( 𝜑 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) ) |
569 |
548 568
|
syl5ibr |
⊢ ( 𝜑 → ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = ∅ → 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
570 |
569
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ≠ ∅ ) ) |
571 |
542 570
|
mpd |
⊢ ( 𝜑 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ≠ ∅ ) |
572 |
|
rabn0 |
⊢ ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ≠ ∅ ↔ ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) |
573 |
571 572
|
sylib |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) |