| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
poimirlem28.1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 ) |
| 3 |
|
poimirlem28.2 |
⊢ ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) |
| 4 |
|
poimirlem28.3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) |
| 5 |
|
poimirlem28.4 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) ) |
| 6 |
|
poimirlem28.5 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 7 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 8 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 9 |
8
|
leidd |
⊢ ( 𝜑 → 𝑁 ≤ 𝑁 ) |
| 10 |
7 7 9
|
3jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁 ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 1 ... 𝑘 ) = ( 1 ... 0 ) ) |
| 12 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 1 ... 𝑘 ) = ∅ ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑘 = 0 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ∅ ) ) |
| 15 |
|
fzofi |
⊢ ( 0 ..^ 𝐾 ) ∈ Fin |
| 16 |
|
map0e |
⊢ ( ( 0 ..^ 𝐾 ) ∈ Fin → ( ( 0 ..^ 𝐾 ) ↑m ∅ ) = 1o ) |
| 17 |
15 16
|
ax-mp |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ∅ ) = 1o |
| 18 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 19 |
17 18
|
eqtri |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ∅ ) = { ∅ } |
| 20 |
14 19
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = { ∅ } ) |
| 21 |
|
eqidd |
⊢ ( 𝑘 = 0 → 𝑓 = 𝑓 ) |
| 22 |
21 13 13
|
f1oeq123d |
⊢ ( 𝑘 = 0 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ∅ –1-1-onto→ ∅ ) ) |
| 23 |
|
eqid |
⊢ ∅ = ∅ |
| 24 |
|
f1o00 |
⊢ ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ ( 𝑓 = ∅ ∧ ∅ = ∅ ) ) |
| 25 |
23 24
|
mpbiran2 |
⊢ ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ 𝑓 = ∅ ) |
| 26 |
22 25
|
bitrdi |
⊢ ( 𝑘 = 0 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 = ∅ ) ) |
| 27 |
26
|
abbidv |
⊢ ( 𝑘 = 0 → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓 ∣ 𝑓 = ∅ } ) |
| 28 |
|
df-sn |
⊢ { ∅ } = { 𝑓 ∣ 𝑓 = ∅ } |
| 29 |
27 28
|
eqtr4di |
⊢ ( 𝑘 = 0 → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { ∅ } ) |
| 30 |
20 29
|
xpeq12d |
⊢ ( 𝑘 = 0 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( { ∅ } × { ∅ } ) ) |
| 31 |
|
0ex |
⊢ ∅ ∈ V |
| 32 |
31 31
|
xpsn |
⊢ ( { ∅ } × { ∅ } ) = { 〈 ∅ , ∅ 〉 } |
| 33 |
30 32
|
eqtr2di |
⊢ ( 𝑘 = 0 → { 〈 ∅ , ∅ 〉 } = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ) |
| 34 |
|
elsni |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → 𝑠 = 〈 ∅ , ∅ 〉 ) |
| 35 |
31 31
|
op1std |
⊢ ( 𝑠 = 〈 ∅ , ∅ 〉 → ( 1st ‘ 𝑠 ) = ∅ ) |
| 36 |
34 35
|
syl |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( 1st ‘ 𝑠 ) = ∅ ) |
| 37 |
36
|
oveq1d |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) = ( ∅ ∘f + ∅ ) ) |
| 38 |
|
f0 |
⊢ ∅ : ∅ ⟶ ∅ |
| 39 |
|
ffn |
⊢ ( ∅ : ∅ ⟶ ∅ → ∅ Fn ∅ ) |
| 40 |
38 39
|
mp1i |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ∅ Fn ∅ ) |
| 41 |
31
|
a1i |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ∅ ∈ V ) |
| 42 |
|
inidm |
⊢ ( ∅ ∩ ∅ ) = ∅ |
| 43 |
|
0fv |
⊢ ( ∅ ‘ 𝑛 ) = ∅ |
| 44 |
43
|
a1i |
⊢ ( ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∧ 𝑛 ∈ ∅ ) → ( ∅ ‘ 𝑛 ) = ∅ ) |
| 45 |
40 40 41 41 42 44 44
|
offval |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ∅ ∘f + ∅ ) = ( 𝑛 ∈ ∅ ↦ ( ∅ + ∅ ) ) ) |
| 46 |
|
mpt0 |
⊢ ( 𝑛 ∈ ∅ ↦ ( ∅ + ∅ ) ) = ∅ |
| 47 |
45 46
|
eqtrdi |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ∅ ∘f + ∅ ) = ∅ ) |
| 48 |
37 47
|
eqtrd |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) = ∅ ) |
| 49 |
48
|
uneq1d |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ∅ ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
| 50 |
|
uncom |
⊢ ( ∅ ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ∪ ∅ ) |
| 51 |
|
un0 |
⊢ ( ( ( 1 ... 𝑁 ) × { 0 } ) ∪ ∅ ) = ( ( 1 ... 𝑁 ) × { 0 } ) |
| 52 |
50 51
|
eqtri |
⊢ ( ∅ ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ( 1 ... 𝑁 ) × { 0 } ) |
| 53 |
49 52
|
eqtr2di |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( ( 1 ... 𝑁 ) × { 0 } ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
| 54 |
53
|
csbeq1d |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
| 55 |
54
|
eqeq2d |
⊢ ( 𝑠 ∈ { 〈 ∅ , ∅ 〉 } → ( 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ↔ 0 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 56 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 ... 𝑘 ) = ( 0 ... 0 ) ) |
| 57 |
|
0z |
⊢ 0 ∈ ℤ |
| 58 |
|
fzsn |
⊢ ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } ) |
| 59 |
57 58
|
ax-mp |
⊢ ( 0 ... 0 ) = { 0 } |
| 60 |
56 59
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 ... 𝑘 ) = { 0 } ) |
| 61 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... 0 ) ) |
| 62 |
61
|
imaeq2d |
⊢ ( 𝑘 = 0 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) ) |
| 63 |
62
|
xpeq1d |
⊢ ( 𝑘 = 0 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) |
| 64 |
63
|
uneq2d |
⊢ ( 𝑘 = 0 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) |
| 65 |
64
|
oveq2d |
⊢ ( 𝑘 = 0 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ) |
| 66 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 + 1 ) = ( 0 + 1 ) ) |
| 67 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 68 |
66 67
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 𝑘 + 1 ) = 1 ) |
| 69 |
68
|
oveq1d |
⊢ ( 𝑘 = 0 → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 ) ) |
| 70 |
69
|
xpeq1d |
⊢ ( 𝑘 = 0 → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( 1 ... 𝑁 ) × { 0 } ) ) |
| 71 |
65 70
|
uneq12d |
⊢ ( 𝑘 = 0 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
| 72 |
71
|
csbeq1d |
⊢ ( 𝑘 = 0 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
| 73 |
72
|
eqeq2d |
⊢ ( 𝑘 = 0 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 74 |
60 73
|
rexeqbidv |
⊢ ( 𝑘 = 0 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ { 0 } 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 75 |
|
c0ex |
⊢ 0 ∈ V |
| 76 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 1 ... 𝑗 ) = ( 1 ... 0 ) ) |
| 77 |
76 12
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( 1 ... 𝑗 ) = ∅ ) |
| 78 |
77
|
imaeq2d |
⊢ ( 𝑗 = 0 → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ 𝑠 ) “ ∅ ) ) |
| 79 |
|
ima0 |
⊢ ( ( 2nd ‘ 𝑠 ) “ ∅ ) = ∅ |
| 80 |
78 79
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ∅ ) |
| 81 |
80
|
xpeq1d |
⊢ ( 𝑗 = 0 → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ∅ × { 1 } ) ) |
| 82 |
|
0xp |
⊢ ( ∅ × { 1 } ) = ∅ |
| 83 |
81 82
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ∅ ) |
| 84 |
|
oveq1 |
⊢ ( 𝑗 = 0 → ( 𝑗 + 1 ) = ( 0 + 1 ) ) |
| 85 |
84 67
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( 𝑗 + 1 ) = 1 ) |
| 86 |
85
|
oveq1d |
⊢ ( 𝑗 = 0 → ( ( 𝑗 + 1 ) ... 0 ) = ( 1 ... 0 ) ) |
| 87 |
86 12
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( 𝑗 + 1 ) ... 0 ) = ∅ ) |
| 88 |
87
|
imaeq2d |
⊢ ( 𝑗 = 0 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) = ( ( 2nd ‘ 𝑠 ) “ ∅ ) ) |
| 89 |
88 79
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) = ∅ ) |
| 90 |
89
|
xpeq1d |
⊢ ( 𝑗 = 0 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) = ( ∅ × { 0 } ) ) |
| 91 |
|
0xp |
⊢ ( ∅ × { 0 } ) = ∅ |
| 92 |
90 91
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) = ∅ ) |
| 93 |
83 92
|
uneq12d |
⊢ ( 𝑗 = 0 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) = ( ∅ ∪ ∅ ) ) |
| 94 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
| 95 |
93 94
|
eqtrdi |
⊢ ( 𝑗 = 0 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) = ∅ ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝑗 = 0 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ) |
| 97 |
96
|
uneq1d |
⊢ ( 𝑗 = 0 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
| 98 |
97
|
csbeq1d |
⊢ ( 𝑗 = 0 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
| 99 |
98
|
eqeq2d |
⊢ ( 𝑗 = 0 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 100 |
75 99
|
rexsn |
⊢ ( ∃ 𝑗 ∈ { 0 } 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 0 ) ) × { 0 } ) ) ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
| 101 |
74 100
|
bitrdi |
⊢ ( 𝑘 = 0 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 102 |
60 101
|
raleqbidv |
⊢ ( 𝑘 = 0 → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ { 0 } 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 103 |
|
eqeq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 0 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 104 |
75 103
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { 0 } 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 0 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
| 105 |
102 104
|
bitr2di |
⊢ ( 𝑘 = 0 → ( 0 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ∅ ) ∪ ( ( 1 ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 106 |
55 105
|
sylan9bbr |
⊢ ( ( 𝑘 = 0 ∧ 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ) → ( 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 107 |
33 106
|
rabeqbidva |
⊢ ( 𝑘 = 0 → { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) |
| 108 |
107
|
eqcomd |
⊢ ( 𝑘 = 0 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) |
| 109 |
108
|
fveq2d |
⊢ ( 𝑘 = 0 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) |
| 110 |
109
|
breq2d |
⊢ ( 𝑘 = 0 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 111 |
110
|
notbid |
⊢ ( 𝑘 = 0 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 112 |
111
|
imbi2d |
⊢ ( 𝑘 = 0 → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
| 113 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 1 ... 𝑘 ) = ( 1 ... 𝑚 ) ) |
| 114 |
113
|
oveq2d |
⊢ ( 𝑘 = 𝑚 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ) |
| 115 |
|
eqidd |
⊢ ( 𝑘 = 𝑚 → 𝑓 = 𝑓 ) |
| 116 |
115 113 113
|
f1oeq123d |
⊢ ( 𝑘 = 𝑚 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) ) ) |
| 117 |
116
|
abbidv |
⊢ ( 𝑘 = 𝑚 → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) |
| 118 |
114 117
|
xpeq12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ) |
| 119 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 0 ... 𝑘 ) = ( 0 ... 𝑚 ) ) |
| 120 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... 𝑚 ) ) |
| 121 |
120
|
imaeq2d |
⊢ ( 𝑘 = 𝑚 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) ) |
| 122 |
121
|
xpeq1d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) |
| 123 |
122
|
uneq2d |
⊢ ( 𝑘 = 𝑚 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) |
| 124 |
123
|
oveq2d |
⊢ ( 𝑘 = 𝑚 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ) |
| 125 |
|
oveq1 |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 + 1 ) = ( 𝑚 + 1 ) ) |
| 126 |
125
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( ( 𝑚 + 1 ) ... 𝑁 ) ) |
| 127 |
126
|
xpeq1d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) |
| 128 |
124 127
|
uneq12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
| 129 |
128
|
csbeq1d |
⊢ ( 𝑘 = 𝑚 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
| 130 |
129
|
eqeq2d |
⊢ ( 𝑘 = 𝑚 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 131 |
119 130
|
rexeqbidv |
⊢ ( 𝑘 = 𝑚 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 132 |
119 131
|
raleqbidv |
⊢ ( 𝑘 = 𝑚 → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 133 |
118 132
|
rabeqbidv |
⊢ ( 𝑘 = 𝑚 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) |
| 134 |
133
|
fveq2d |
⊢ ( 𝑘 = 𝑚 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) |
| 135 |
134
|
breq2d |
⊢ ( 𝑘 = 𝑚 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 136 |
135
|
notbid |
⊢ ( 𝑘 = 𝑚 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 137 |
136
|
imbi2d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
| 138 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 1 ... 𝑘 ) = ( 1 ... ( 𝑚 + 1 ) ) ) |
| 139 |
138
|
oveq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ) |
| 140 |
|
eqidd |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → 𝑓 = 𝑓 ) |
| 141 |
140 138 138
|
f1oeq123d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) ) ) |
| 142 |
141
|
abbidv |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) |
| 143 |
139 142
|
xpeq12d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ) |
| 144 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 0 ... 𝑘 ) = ( 0 ... ( 𝑚 + 1 ) ) ) |
| 145 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) |
| 146 |
145
|
imaeq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
| 147 |
146
|
xpeq1d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) |
| 148 |
147
|
uneq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) |
| 149 |
148
|
oveq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ) |
| 150 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 𝑘 + 1 ) = ( ( 𝑚 + 1 ) + 1 ) ) |
| 151 |
150
|
oveq1d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) |
| 152 |
151
|
xpeq1d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) |
| 153 |
149 152
|
uneq12d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
| 154 |
153
|
csbeq1d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
| 155 |
154
|
eqeq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 156 |
144 155
|
rexeqbidv |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 157 |
144 156
|
raleqbidv |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 158 |
143 157
|
rabeqbidv |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) |
| 159 |
158
|
fveq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) |
| 160 |
159
|
breq2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 161 |
160
|
notbid |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 162 |
161
|
imbi2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
| 163 |
|
oveq2 |
⊢ ( 𝑘 = 𝑁 → ( 1 ... 𝑘 ) = ( 1 ... 𝑁 ) ) |
| 164 |
163
|
oveq2d |
⊢ ( 𝑘 = 𝑁 → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) = ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
| 165 |
|
eqidd |
⊢ ( 𝑘 = 𝑁 → 𝑓 = 𝑓 ) |
| 166 |
165 163 163
|
f1oeq123d |
⊢ ( 𝑘 = 𝑁 → ( 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) ↔ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
| 167 |
166
|
abbidv |
⊢ ( 𝑘 = 𝑁 → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
| 168 |
164 167
|
xpeq12d |
⊢ ( 𝑘 = 𝑁 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) = ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
| 169 |
|
oveq2 |
⊢ ( 𝑘 = 𝑁 → ( 0 ... 𝑘 ) = ( 0 ... 𝑁 ) ) |
| 170 |
|
oveq2 |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑗 + 1 ) ... 𝑘 ) = ( ( 𝑗 + 1 ) ... 𝑁 ) ) |
| 171 |
170
|
imaeq2d |
⊢ ( 𝑘 = 𝑁 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) = ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 172 |
171
|
xpeq1d |
⊢ ( 𝑘 = 𝑁 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 173 |
172
|
uneq2d |
⊢ ( 𝑘 = 𝑁 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 174 |
173
|
oveq2d |
⊢ ( 𝑘 = 𝑁 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 175 |
|
oveq1 |
⊢ ( 𝑘 = 𝑁 → ( 𝑘 + 1 ) = ( 𝑁 + 1 ) ) |
| 176 |
175
|
oveq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑘 + 1 ) ... 𝑁 ) = ( ( 𝑁 + 1 ) ... 𝑁 ) ) |
| 177 |
176
|
xpeq1d |
⊢ ( 𝑘 = 𝑁 → ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) |
| 178 |
174 177
|
uneq12d |
⊢ ( 𝑘 = 𝑁 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
| 179 |
178
|
csbeq1d |
⊢ ( 𝑘 = 𝑁 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
| 180 |
179
|
eqeq2d |
⊢ ( 𝑘 = 𝑁 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 181 |
169 180
|
rexeqbidv |
⊢ ( 𝑘 = 𝑁 → ( ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 182 |
169 181
|
raleqbidv |
⊢ ( 𝑘 = 𝑁 → ( ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 183 |
168 182
|
rabeqbidv |
⊢ ( 𝑘 = 𝑁 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) |
| 184 |
183
|
fveq2d |
⊢ ( 𝑘 = 𝑁 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) |
| 185 |
184
|
breq2d |
⊢ ( 𝑘 = 𝑁 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 186 |
185
|
notbid |
⊢ ( 𝑘 = 𝑁 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 187 |
186
|
imbi2d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑘 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑘 ) –1-1-onto→ ( 1 ... 𝑘 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑘 ) ∃ 𝑗 ∈ ( 0 ... 𝑘 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑘 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑘 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ↔ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
| 188 |
|
n2dvds1 |
⊢ ¬ 2 ∥ 1 |
| 189 |
|
opex |
⊢ 〈 ∅ , ∅ 〉 ∈ V |
| 190 |
|
hashsng |
⊢ ( 〈 ∅ , ∅ 〉 ∈ V → ( ♯ ‘ { 〈 ∅ , ∅ 〉 } ) = 1 ) |
| 191 |
189 190
|
ax-mp |
⊢ ( ♯ ‘ { 〈 ∅ , ∅ 〉 } ) = 1 |
| 192 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 193 |
1 192
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 194 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) ) |
| 195 |
193 194
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝑁 ) ) |
| 196 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 197 |
|
0elfz |
⊢ ( 𝐾 ∈ ℕ0 → 0 ∈ ( 0 ... 𝐾 ) ) |
| 198 |
|
fconst6g |
⊢ ( 0 ∈ ( 0 ... 𝐾 ) → ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 199 |
196 197 198
|
3syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 200 |
75
|
fvconst2 |
⊢ ( 1 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) |
| 201 |
195 200
|
syl |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) |
| 202 |
195 199 201
|
3jca |
⊢ ( 𝜑 → ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) |
| 203 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) |
| 204 |
|
nfcsb1v |
⊢ Ⅎ 𝑝 ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 |
| 205 |
204
|
nfeq1 |
⊢ Ⅎ 𝑝 ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 |
| 206 |
203 205
|
nfim |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) → ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 ) |
| 207 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
| 208 |
|
snex |
⊢ { 0 } ∈ V |
| 209 |
207 208
|
xpex |
⊢ ( ( 1 ... 𝑁 ) × { 0 } ) ∈ V |
| 210 |
|
feq1 |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
| 211 |
|
fveq1 |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( 𝑝 ‘ 1 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) ) |
| 212 |
211
|
eqeq1d |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( 𝑝 ‘ 1 ) = 0 ↔ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) |
| 213 |
210 212
|
3anbi23d |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ↔ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) ) |
| 214 |
213
|
anbi2d |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) ↔ ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) ) ) |
| 215 |
|
csbeq1a |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → 𝐵 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ) |
| 216 |
215
|
eqeq1d |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( 𝐵 = 0 ↔ ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 ) ) |
| 217 |
214 216
|
imbi12d |
⊢ ( 𝑝 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 = 0 ) ↔ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) → ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 ) ) ) |
| 218 |
|
1ex |
⊢ 1 ∈ V |
| 219 |
|
eleq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ 1 ∈ ( 1 ... 𝑁 ) ) ) |
| 220 |
|
fveqeq2 |
⊢ ( 𝑛 = 1 → ( ( 𝑝 ‘ 𝑛 ) = 0 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
| 221 |
219 220
|
3anbi13d |
⊢ ( 𝑛 = 1 → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ↔ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
| 222 |
221
|
anbi2d |
⊢ ( 𝑛 = 1 → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) ↔ ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
| 223 |
|
breq2 |
⊢ ( 𝑛 = 1 → ( 𝐵 < 𝑛 ↔ 𝐵 < 1 ) ) |
| 224 |
222 223
|
imbi12d |
⊢ ( 𝑛 = 1 → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) ↔ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 < 1 ) ) ) |
| 225 |
218 224 4
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 < 1 ) |
| 226 |
|
elfznn0 |
⊢ ( 𝐵 ∈ ( 0 ... 𝑁 ) → 𝐵 ∈ ℕ0 ) |
| 227 |
|
nn0lt10b |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 < 1 ↔ 𝐵 = 0 ) ) |
| 228 |
3 226 227
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝐵 < 1 ↔ 𝐵 = 0 ) ) |
| 229 |
228
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → ( 𝐵 < 1 ↔ 𝐵 = 0 ) ) |
| 230 |
225 229
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 1 ) = 0 ) ) → 𝐵 = 0 ) |
| 231 |
206 209 217 230
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 1 ∈ ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 1 ) = 0 ) ) → ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 ) |
| 232 |
202 231
|
mpdan |
⊢ ( 𝜑 → ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 = 0 ) |
| 233 |
232
|
eqcomd |
⊢ ( 𝜑 → 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ) |
| 234 |
233
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑠 ∈ { 〈 ∅ , ∅ 〉 } 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ) |
| 235 |
|
rabid2 |
⊢ ( { 〈 ∅ , ∅ 〉 } = { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ↔ ∀ 𝑠 ∈ { 〈 ∅ , ∅ 〉 } 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 ) |
| 236 |
234 235
|
sylibr |
⊢ ( 𝜑 → { 〈 ∅ , ∅ 〉 } = { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) |
| 237 |
236
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 〈 ∅ , ∅ 〉 } ) = ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) |
| 238 |
191 237
|
eqtr3id |
⊢ ( 𝜑 → 1 = ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) |
| 239 |
238
|
breq2d |
⊢ ( 𝜑 → ( 2 ∥ 1 ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 240 |
188 239
|
mtbii |
⊢ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) |
| 241 |
240
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ { 〈 ∅ , ∅ 〉 } ∣ 0 = ⦋ ( ( 1 ... 𝑁 ) × { 0 } ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 242 |
|
2z |
⊢ 2 ∈ ℤ |
| 243 |
|
fzfi |
⊢ ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin |
| 244 |
|
mapfi |
⊢ ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin ) |
| 245 |
15 243 244
|
mp2an |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin |
| 246 |
|
ovex |
⊢ ( 1 ... ( 𝑚 + 1 ) ) ∈ V |
| 247 |
246 246
|
mapval |
⊢ ( ( 1 ... ( 𝑚 + 1 ) ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } |
| 248 |
|
mapfi |
⊢ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin ∧ ( 1 ... ( 𝑚 + 1 ) ) ∈ Fin ) → ( ( 1 ... ( 𝑚 + 1 ) ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin ) |
| 249 |
243 243 248
|
mp2an |
⊢ ( ( 1 ... ( 𝑚 + 1 ) ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin |
| 250 |
247 249
|
eqeltrri |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin |
| 251 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) → 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) ) |
| 252 |
251
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } |
| 253 |
|
ssfi |
⊢ ( ( { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 1 ... ( 𝑚 + 1 ) ) } ) → { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin ) |
| 254 |
250 252 253
|
mp2an |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin |
| 255 |
|
xpfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin ) |
| 256 |
245 254 255
|
mp2an |
⊢ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin |
| 257 |
|
rabfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin ) |
| 258 |
|
hashcl |
⊢ ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℕ0 ) |
| 259 |
256 257 258
|
mp2b |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℕ0 |
| 260 |
259
|
nn0zi |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ |
| 261 |
|
rabfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin ) |
| 262 |
|
hashcl |
⊢ ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℕ0 ) |
| 263 |
256 261 262
|
mp2b |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℕ0 |
| 264 |
263
|
nn0zi |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ |
| 265 |
242 260 264
|
3pm3.2i |
⊢ ( 2 ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ ) |
| 266 |
|
nn0p1nn |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ ) |
| 267 |
266
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 268 |
|
uneq1 |
⊢ ( 𝑞 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
| 269 |
268
|
csbeq1d |
⊢ ( 𝑞 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
| 270 |
75
|
fconst |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) : ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ⟶ { 0 } |
| 271 |
270
|
jctr |
⊢ ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) → ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) : ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ⟶ { 0 } ) ) |
| 272 |
266
|
nnred |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℝ ) |
| 273 |
272
|
ltp1d |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) < ( ( 𝑚 + 1 ) + 1 ) ) |
| 274 |
|
fzdisj |
⊢ ( ( 𝑚 + 1 ) < ( ( 𝑚 + 1 ) + 1 ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
| 275 |
273 274
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
| 276 |
|
fun |
⊢ ( ( ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) : ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ⟶ { 0 } ) ∧ ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ) |
| 277 |
271 275 276
|
syl2anr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ) |
| 278 |
277
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ) |
| 279 |
278
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ) |
| 280 |
266
|
peano2nnd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ℕ ) |
| 281 |
280 192
|
eleqtrdi |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 282 |
281
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 283 |
|
nn0z |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℤ ) |
| 284 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 285 |
|
zltp1le |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑚 < 𝑁 ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) ) |
| 286 |
283 284 285
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 < 𝑁 ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) ) |
| 287 |
286
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) → ( 𝑚 + 1 ) ≤ 𝑁 ) |
| 288 |
287
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 𝑚 + 1 ) ≤ 𝑁 ) |
| 289 |
283
|
peano2zd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℤ ) |
| 290 |
289
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℤ ) |
| 291 |
|
eluz |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) ) |
| 292 |
290 284 291
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑚 + 1 ) ≤ 𝑁 ) ) |
| 293 |
288 292
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) |
| 294 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ) |
| 295 |
282 293 294
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ) |
| 296 |
295
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 297 |
196 197
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝐾 ) ) |
| 298 |
297
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ( 0 ... 𝐾 ) ) |
| 299 |
|
ssequn2 |
⊢ ( { 0 } ⊆ ( 0 ... 𝐾 ) ↔ ( ( 0 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) ) |
| 300 |
298 299
|
sylib |
⊢ ( 𝜑 → ( ( 0 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) ) |
| 301 |
300
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ( 0 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) ) |
| 302 |
296 301
|
feq23d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
| 303 |
302
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... ( 𝑚 + 1 ) ) ∪ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ ( ( 0 ... 𝐾 ) ∪ { 0 } ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
| 304 |
279 303
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 305 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 306 |
|
nfcsb1v |
⊢ Ⅎ 𝑝 ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 |
| 307 |
306
|
nfel1 |
⊢ Ⅎ 𝑝 ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) |
| 308 |
305 307
|
nfim |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
| 309 |
|
vex |
⊢ 𝑞 ∈ V |
| 310 |
|
ovex |
⊢ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ∈ V |
| 311 |
310 208
|
xpex |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ∈ V |
| 312 |
309 311
|
unex |
⊢ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ∈ V |
| 313 |
|
feq1 |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
| 314 |
313
|
anbi2d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ↔ ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) ) |
| 315 |
|
csbeq1a |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → 𝐵 = ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
| 316 |
315
|
eleq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 ∈ ( 0 ... 𝑁 ) ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) ) |
| 317 |
314 316
|
imbi12d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) ↔ ( ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) ) ) |
| 318 |
308 312 317 3
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
| 319 |
304 318
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
| 320 |
319
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
| 321 |
|
elfznn0 |
⊢ ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℕ0 ) |
| 322 |
320 321
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℕ0 ) |
| 323 |
266
|
nnnn0d |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 324 |
323
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 325 |
324
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 326 |
|
leloe |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑚 + 1 ) ≤ 𝑁 ↔ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
| 327 |
272 8 326
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) ≤ 𝑁 ↔ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
| 328 |
286 327
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 < 𝑁 ↔ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
| 329 |
328
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 < 𝑁 → ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
| 330 |
329
|
imdistani |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) → ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
| 331 |
330
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ) |
| 332 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝜑 ) |
| 333 |
280
|
nnge1d |
⊢ ( 𝑚 ∈ ℕ0 → 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ) |
| 334 |
333
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ) |
| 335 |
|
zltp1le |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑚 + 1 ) < 𝑁 ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) |
| 336 |
289 284 335
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) < 𝑁 ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) |
| 337 |
336
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) |
| 338 |
289
|
peano2zd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ) |
| 339 |
|
1z |
⊢ 1 ∈ ℤ |
| 340 |
|
elfz |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) ) |
| 341 |
339 340
|
mp3an2 |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) ) |
| 342 |
338 284 341
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) ) |
| 343 |
342
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ ( ( 𝑚 + 1 ) + 1 ) ∧ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) ) |
| 344 |
334 337 343
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 345 |
344
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 346 |
|
nn0re |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) |
| 347 |
346
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 ∈ ℝ ) |
| 348 |
272
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℝ ) |
| 349 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑁 ∈ ℝ ) |
| 350 |
346
|
ltp1d |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 < ( 𝑚 + 1 ) ) |
| 351 |
350
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 < ( 𝑚 + 1 ) ) |
| 352 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑚 + 1 ) < 𝑁 ) |
| 353 |
347 348 349 351 352
|
lttrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 < 𝑁 ) |
| 354 |
353
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑚 < 𝑁 ) |
| 355 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) ↔ ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ) |
| 356 |
304
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 357 |
355 356
|
sylanb |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 358 |
357
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 359 |
354 358
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 360 |
|
ffn |
⊢ ( 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) → 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ) |
| 361 |
360
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ) |
| 362 |
275
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
| 363 |
|
eluz |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) |
| 364 |
338 284 363
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) |
| 365 |
364
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝑚 + 1 ) + 1 ) ≤ 𝑁 ) ) |
| 366 |
337 365
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 367 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑚 + 1 ) + 1 ) ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) |
| 368 |
366 367
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) |
| 369 |
368
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) |
| 370 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) |
| 371 |
75 370
|
ax-mp |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) |
| 372 |
|
fvun2 |
⊢ ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 373 |
371 372
|
mp3an2 |
⊢ ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 374 |
361 362 369 373
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 375 |
75
|
fvconst2 |
⊢ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) → ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) |
| 376 |
369 375
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) |
| 377 |
374 376
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) |
| 378 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) |
| 379 |
|
nfcv |
⊢ Ⅎ 𝑝 < |
| 380 |
|
nfcv |
⊢ Ⅎ 𝑝 ( ( 𝑚 + 1 ) + 1 ) |
| 381 |
306 379 380
|
nfbr |
⊢ Ⅎ 𝑝 ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) |
| 382 |
378 381
|
nfim |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) |
| 383 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 384 |
383
|
eqeq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ↔ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) |
| 385 |
313 384
|
3anbi23d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ↔ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ) |
| 386 |
385
|
anbi2d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ↔ ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ) ) |
| 387 |
315
|
breq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 388 |
386 387
|
imbi12d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ↔ ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) ) |
| 389 |
|
ovex |
⊢ ( ( 𝑚 + 1 ) + 1 ) ∈ V |
| 390 |
|
eleq1 |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ) ) |
| 391 |
|
fveqeq2 |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( 𝑝 ‘ 𝑛 ) = 0 ↔ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) |
| 392 |
390 391
|
3anbi13d |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ↔ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ) |
| 393 |
392
|
anbi2d |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) ↔ ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) ) ) |
| 394 |
|
breq2 |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( 𝐵 < 𝑛 ↔ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 395 |
393 394
|
imbi12d |
⊢ ( 𝑛 = ( ( 𝑚 + 1 ) + 1 ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) ↔ ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) ) |
| 396 |
389 395 4
|
vtocl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) |
| 397 |
382 312 388 396
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ ( ( 𝑚 + 1 ) + 1 ) ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) |
| 398 |
332 345 359 377 397
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) |
| 399 |
355 320
|
sylanb |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 < 𝑁 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
| 400 |
399
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) ) |
| 401 |
400
|
elfzelzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℤ ) |
| 402 |
354 401
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℤ ) |
| 403 |
289
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( 𝑚 + 1 ) ∈ ℤ ) |
| 404 |
|
zleltp1 |
⊢ ( ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ) → ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 405 |
402 403 404
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 406 |
398 405
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) |
| 407 |
350
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → 𝑚 < ( 𝑚 + 1 ) ) |
| 408 |
|
breq2 |
⊢ ( ( 𝑚 + 1 ) = 𝑁 → ( 𝑚 < ( 𝑚 + 1 ) ↔ 𝑚 < 𝑁 ) ) |
| 409 |
408
|
biimpac |
⊢ ( ( 𝑚 < ( 𝑚 + 1 ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → 𝑚 < 𝑁 ) |
| 410 |
407 409
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → 𝑚 < 𝑁 ) |
| 411 |
|
elfzle2 |
⊢ ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ 𝑁 ) |
| 412 |
400 411
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ 𝑚 < 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ 𝑁 ) |
| 413 |
410 412
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ 𝑁 ) |
| 414 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → ( 𝑚 + 1 ) = 𝑁 ) |
| 415 |
413 414
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( 𝑚 + 1 ) = 𝑁 ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) |
| 416 |
406 415
|
jaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) |
| 417 |
416
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 + 1 ) < 𝑁 ∨ ( 𝑚 + 1 ) = 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) |
| 418 |
331 417
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) |
| 419 |
|
elfz2nn0 |
⊢ ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... ( 𝑚 + 1 ) ) ↔ ( ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ℕ0 ∧ ( 𝑚 + 1 ) ∈ ℕ0 ∧ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≤ ( 𝑚 + 1 ) ) ) |
| 420 |
322 325 418 419
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) |
| 421 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → ( 1 ... ( 𝑚 + 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
| 422 |
293 421
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 1 ... ( 𝑚 + 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
| 423 |
422
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
| 424 |
423
|
3ad2antr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
| 425 |
356
|
3ad2antr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 426 |
360
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ) |
| 427 |
275
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
| 428 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) |
| 429 |
|
fvun1 |
⊢ ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) Fn ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
| 430 |
371 429
|
mp3an2 |
⊢ ( ( 𝑞 Fn ( 1 ... ( 𝑚 + 1 ) ) ∧ ( ( ( 1 ... ( 𝑚 + 1 ) ) ∩ ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
| 431 |
426 427 428 430
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
| 432 |
431
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
| 433 |
432
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
| 434 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ( 𝑞 ‘ 𝑛 ) = 0 ) |
| 435 |
433 434
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
| 436 |
424 425 435
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) |
| 437 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) |
| 438 |
|
nfcv |
⊢ Ⅎ 𝑝 𝑛 |
| 439 |
306 379 438
|
nfbr |
⊢ Ⅎ 𝑝 ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 |
| 440 |
437 439
|
nfim |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) |
| 441 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝑝 ‘ 𝑛 ) = ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 442 |
441
|
eqeq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑝 ‘ 𝑛 ) = 0 ↔ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) |
| 443 |
313 442
|
3anbi23d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) ) |
| 444 |
443
|
anbi2d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) ↔ ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) ) ) |
| 445 |
315
|
breq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 < 𝑛 ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) ) |
| 446 |
444 445
|
imbi12d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → 𝐵 < 𝑛 ) ↔ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) ) ) |
| 447 |
440 312 446 4
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) |
| 448 |
447
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) |
| 449 |
436 448
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 0 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 < 𝑛 ) |
| 450 |
|
simp1 |
⊢ ( ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) → 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) |
| 451 |
423
|
anasss |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
| 452 |
450 451
|
sylanr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
| 453 |
|
simp2 |
⊢ ( ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) → 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ) |
| 454 |
453 304
|
sylanr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 455 |
431
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = ( 𝑞 ‘ 𝑛 ) ) |
| 456 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) → ( 𝑞 ‘ 𝑛 ) = 𝐾 ) |
| 457 |
455 456
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) |
| 458 |
457
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) |
| 459 |
458
|
adantrlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) |
| 460 |
452 454 459
|
3jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) |
| 461 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) |
| 462 |
|
nfcv |
⊢ Ⅎ 𝑝 ( 𝑛 − 1 ) |
| 463 |
306 462
|
nfne |
⊢ Ⅎ 𝑝 ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) |
| 464 |
461 463
|
nfim |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) |
| 465 |
441
|
eqeq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑝 ‘ 𝑛 ) = 𝐾 ↔ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) |
| 466 |
313 465
|
3anbi23d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝐾 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) ) |
| 467 |
466
|
anbi2d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝐾 ) ) ↔ ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) ) ) |
| 468 |
315
|
neeq1d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( 𝐵 ≠ ( 𝑛 − 1 ) ↔ ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) ) |
| 469 |
467 468
|
imbi12d |
⊢ ( 𝑝 = ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝐾 ) ) → 𝐵 ≠ ( 𝑛 − 1 ) ) ↔ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) ) ) |
| 470 |
464 312 469 5
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ‘ 𝑛 ) = 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) |
| 471 |
460 470
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) |
| 472 |
471
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( 𝑚 + 1 ) ) ∧ 𝑞 : ( 1 ... ( 𝑚 + 1 ) ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑞 ‘ 𝑛 ) = 𝐾 ) ) → ⦋ ( 𝑞 ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ≠ ( 𝑛 − 1 ) ) |
| 473 |
267 269 420 449 472
|
poimirlem27 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) |
| 474 |
267 269 420
|
poimirlem26 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 475 |
|
fzfi |
⊢ ( 0 ... ( 𝑚 + 1 ) ) ∈ Fin |
| 476 |
|
xpfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin ∧ ( 0 ... ( 𝑚 + 1 ) ) ∈ Fin ) → ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∈ Fin ) |
| 477 |
256 475 476
|
mp2an |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∈ Fin |
| 478 |
|
rabfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin ) |
| 479 |
|
hashcl |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℕ0 ) |
| 480 |
477 478 479
|
mp2b |
⊢ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℕ0 |
| 481 |
480
|
nn0zi |
⊢ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ |
| 482 |
|
zsubcl |
⊢ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∈ ℤ ) |
| 483 |
481 264 482
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∈ ℤ |
| 484 |
|
zsubcl |
⊢ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ∈ ℤ ) |
| 485 |
481 260 484
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ∈ ℤ |
| 486 |
|
dvds2sub |
⊢ ( ( 2 ∈ ℤ ∧ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∈ ℤ ∧ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ∈ ℤ ) → ( ( 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∧ 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) → 2 ∥ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) ) |
| 487 |
242 483 485 486
|
mp3an |
⊢ ( ( 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ∧ 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) → 2 ∥ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
| 488 |
473 474 487
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 2 ∥ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
| 489 |
480
|
nn0cni |
⊢ ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℂ |
| 490 |
263
|
nn0cni |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℂ |
| 491 |
259
|
nn0cni |
⊢ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℂ |
| 492 |
|
nnncan1 |
⊢ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℂ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℂ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℂ ) → ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) = ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) |
| 493 |
489 490 491 492
|
mp3an |
⊢ ( ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) − ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) × ( 0 ... ( 𝑚 + 1 ) ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... ( 𝑚 + 1 ) ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) = ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) |
| 494 |
488 493
|
breqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 2 ∥ ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) |
| 495 |
|
dvdssub2 |
⊢ ( ( ( 2 ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ∈ ℤ ∧ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ∈ ℤ ) ∧ 2 ∥ ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) |
| 496 |
265 494 495
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) ) |
| 497 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
| 498 |
|
pncan1 |
⊢ ( 𝑚 ∈ ℂ → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 499 |
497 498
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 500 |
499
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 0 ... 𝑚 ) ) |
| 501 |
500
|
rexeqdv |
⊢ ( 𝑚 ∈ ℕ0 → ( ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 502 |
500 501
|
raleqbidv |
⊢ ( 𝑚 ∈ ℕ0 → ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 503 |
502
|
3anbi1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) ) ) |
| 504 |
503
|
rabbidv |
⊢ ( 𝑚 ∈ ℕ0 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) |
| 505 |
504
|
fveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) |
| 506 |
505
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) |
| 507 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 𝑁 ∈ ℕ ) |
| 508 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 𝐾 ∈ ℕ ) |
| 509 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 𝑚 ∈ ℕ0 ) |
| 510 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → 𝑚 < 𝑁 ) |
| 511 |
507 508 509 510
|
poimirlem4 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) |
| 512 |
|
fzfi |
⊢ ( 1 ... 𝑚 ) ∈ Fin |
| 513 |
|
mapfi |
⊢ ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑚 ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin ) |
| 514 |
15 512 513
|
mp2an |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin |
| 515 |
|
ovex |
⊢ ( 1 ... 𝑚 ) ∈ V |
| 516 |
515 515
|
mapval |
⊢ ( ( 1 ... 𝑚 ) ↑m ( 1 ... 𝑚 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } |
| 517 |
|
mapfi |
⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ ( 1 ... 𝑚 ) ∈ Fin ) → ( ( 1 ... 𝑚 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin ) |
| 518 |
512 512 517
|
mp2an |
⊢ ( ( 1 ... 𝑚 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin |
| 519 |
516 518
|
eqeltrri |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } ∈ Fin |
| 520 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) → 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) ) |
| 521 |
520
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } |
| 522 |
|
ssfi |
⊢ ( ( { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) ⟶ ( 1 ... 𝑚 ) } ) → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ∈ Fin ) |
| 523 |
519 521 522
|
mp2an |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ∈ Fin |
| 524 |
|
xpfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∈ Fin ) |
| 525 |
514 523 524
|
mp2an |
⊢ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∈ Fin |
| 526 |
|
rabfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin ) |
| 527 |
525 526
|
ax-mp |
⊢ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin |
| 528 |
|
rabfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin ) |
| 529 |
256 528
|
ax-mp |
⊢ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin |
| 530 |
|
hashen |
⊢ ( ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ Fin ∧ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ∈ Fin ) → ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ↔ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) |
| 531 |
527 529 530
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ↔ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) |
| 532 |
511 531
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ) |
| 533 |
506 532
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) |
| 534 |
533
|
breq2d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑚 + 1 ) ) } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 535 |
496 534
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 536 |
535
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) → 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 537 |
536
|
con3d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) ) → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 538 |
537
|
expcom |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) → ( 𝜑 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
| 539 |
538
|
a2d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
| 540 |
539
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁 ) → ( ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑚 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ( 1 ... 𝑚 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑚 ) ∃ 𝑗 ∈ ( 0 ... 𝑚 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑚 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑚 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑚 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑚 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑚 + 1 ) ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ∃ 𝑗 ∈ ( 0 ... ( 𝑚 + 1 ) ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑚 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑚 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) ) |
| 541 |
112 137 162 187 241 540
|
fnn0ind |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁 ) → ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 542 |
10 541
|
mpcom |
⊢ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) |
| 543 |
|
dvds0 |
⊢ ( 2 ∈ ℤ → 2 ∥ 0 ) |
| 544 |
242 543
|
ax-mp |
⊢ 2 ∥ 0 |
| 545 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 546 |
544 545
|
breqtrri |
⊢ 2 ∥ ( ♯ ‘ ∅ ) |
| 547 |
|
fveq2 |
⊢ ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = ∅ → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) = ( ♯ ‘ ∅ ) ) |
| 548 |
546 547
|
breqtrrid |
⊢ ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = ∅ → 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) |
| 549 |
8
|
ltp1d |
⊢ ( 𝜑 → 𝑁 < ( 𝑁 + 1 ) ) |
| 550 |
284
|
peano2zd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 551 |
|
fzn |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) ) |
| 552 |
550 284 551
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 < ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) ) |
| 553 |
549 552
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) |
| 554 |
553
|
xpeq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) = ( ∅ × { 0 } ) ) |
| 555 |
554 91
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) = ∅ ) |
| 556 |
555
|
uneq2d |
⊢ ( 𝜑 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ∅ ) ) |
| 557 |
|
un0 |
⊢ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ∅ ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 558 |
556 557
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 559 |
558
|
csbeq1d |
⊢ ( 𝜑 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
| 560 |
|
ovex |
⊢ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
| 561 |
560 2
|
csbie |
⊢ ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = 𝐶 |
| 562 |
559 561
|
eqtrdi |
⊢ ( 𝜑 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = 𝐶 ) |
| 563 |
562
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = 𝐶 ) ) |
| 564 |
563
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) |
| 565 |
564
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) |
| 566 |
565
|
rabbidv |
⊢ ( 𝜑 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
| 567 |
566
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) |
| 568 |
567
|
breq2d |
⊢ ( 𝜑 → ( 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ↔ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) ) |
| 569 |
548 568
|
imbitrrid |
⊢ ( 𝜑 → ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = ∅ → 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) ) |
| 570 |
569
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 2 ∥ ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑁 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ≠ ∅ ) ) |
| 571 |
542 570
|
mpd |
⊢ ( 𝜑 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ≠ ∅ ) |
| 572 |
|
rabn0 |
⊢ ( { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ≠ ∅ ↔ ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) |
| 573 |
571 572
|
sylib |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) |