Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimir.i |
⊢ 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) |
3 |
|
poimir.r |
⊢ 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) |
4 |
|
poimir.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
5 |
|
poimirlem30.x |
⊢ 𝑋 = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) |
6 |
|
poimirlem30.2 |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
7 |
|
poimirlem30.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ran ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) |
8 |
|
poimirlem30.4 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ◡ ≤ } ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 ) |
9 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
10 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
11 |
10
|
fconst6 |
⊢ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top |
12 |
|
pttop |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top ) → ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ∈ Top ) |
13 |
9 11 12
|
mp2an |
⊢ ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ∈ Top |
14 |
3 13
|
eqeltri |
⊢ 𝑅 ∈ Top |
15 |
|
ovex |
⊢ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ∈ V |
16 |
2 15
|
eqeltri |
⊢ 𝐼 ∈ V |
17 |
|
elrest |
⊢ ( ( 𝑅 ∈ Top ∧ 𝐼 ∈ V ) → ( 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ↔ ∃ 𝑧 ∈ 𝑅 𝑣 = ( 𝑧 ∩ 𝐼 ) ) ) |
18 |
14 16 17
|
mp2an |
⊢ ( 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ↔ ∃ 𝑧 ∈ 𝑅 𝑣 = ( 𝑧 ∩ 𝐼 ) ) |
19 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
20 |
3 19
|
ptrecube |
⊢ ( ( 𝑧 ∈ 𝑅 ∧ 𝐶 ∈ 𝑧 ) → ∃ 𝑐 ∈ ℝ+ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 ) |
21 |
20
|
ex |
⊢ ( 𝑧 ∈ 𝑅 → ( 𝐶 ∈ 𝑧 → ∃ 𝑐 ∈ ℝ+ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 ) ) |
22 |
|
inss1 |
⊢ ( 𝑧 ∩ 𝐼 ) ⊆ 𝑧 |
23 |
|
sseq1 |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝐼 ) → ( 𝑣 ⊆ 𝑧 ↔ ( 𝑧 ∩ 𝐼 ) ⊆ 𝑧 ) ) |
24 |
22 23
|
mpbiri |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝐼 ) → 𝑣 ⊆ 𝑧 ) |
25 |
24
|
sseld |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝐼 ) → ( 𝐶 ∈ 𝑣 → 𝐶 ∈ 𝑧 ) ) |
26 |
|
ssrin |
⊢ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 → ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ ( 𝑧 ∩ 𝐼 ) ) |
27 |
|
sseq2 |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝐼 ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ↔ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ ( 𝑧 ∩ 𝐼 ) ) ) |
28 |
26 27
|
syl5ibr |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝐼 ) → ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 → ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) |
29 |
28
|
reximdv |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝐼 ) → ( ∃ 𝑐 ∈ ℝ+ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) |
30 |
25 29
|
imim12d |
⊢ ( 𝑣 = ( 𝑧 ∩ 𝐼 ) → ( ( 𝐶 ∈ 𝑧 → ∃ 𝑐 ∈ ℝ+ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 ) → ( 𝐶 ∈ 𝑣 → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) ) |
31 |
21 30
|
syl5com |
⊢ ( 𝑧 ∈ 𝑅 → ( 𝑣 = ( 𝑧 ∩ 𝐼 ) → ( 𝐶 ∈ 𝑣 → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) ) |
32 |
31
|
rexlimiv |
⊢ ( ∃ 𝑧 ∈ 𝑅 𝑣 = ( 𝑧 ∩ 𝐼 ) → ( 𝐶 ∈ 𝑣 → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) |
33 |
18 32
|
sylbi |
⊢ ( 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) → ( 𝐶 ∈ 𝑣 → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) |
34 |
33
|
imp |
⊢ ( ( 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ∧ 𝐶 ∈ 𝑣 ) → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ∧ 𝐶 ∈ 𝑣 ) ) → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) |
36 |
|
resttop |
⊢ ( ( 𝑅 ∈ Top ∧ 𝐼 ∈ V ) → ( 𝑅 ↾t 𝐼 ) ∈ Top ) |
37 |
14 16 36
|
mp2an |
⊢ ( 𝑅 ↾t 𝐼 ) ∈ Top |
38 |
|
reex |
⊢ ℝ ∈ V |
39 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
40 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ( 0 [,] 1 ) ⊆ ℝ ) → ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
41 |
38 39 40
|
mp2an |
⊢ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) |
42 |
2 41
|
eqsstri |
⊢ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) |
43 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
44 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
45 |
3 44
|
ptuniconst |
⊢ ( ( ( 1 ... 𝑁 ) ∈ V ∧ ( topGen ‘ ran (,) ) ∈ Top ) → ( ℝ ↑m ( 1 ... 𝑁 ) ) = ∪ 𝑅 ) |
46 |
43 10 45
|
mp2an |
⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) = ∪ 𝑅 |
47 |
46
|
restuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → 𝐼 = ∪ ( 𝑅 ↾t 𝐼 ) ) |
48 |
14 42 47
|
mp2an |
⊢ 𝐼 = ∪ ( 𝑅 ↾t 𝐼 ) |
49 |
48
|
eltopss |
⊢ ( ( ( 𝑅 ↾t 𝐼 ) ∈ Top ∧ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ) → 𝑣 ⊆ 𝐼 ) |
50 |
37 49
|
mpan |
⊢ ( 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) → 𝑣 ⊆ 𝐼 ) |
51 |
50
|
sselda |
⊢ ( ( 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ∧ 𝐶 ∈ 𝑣 ) → 𝐶 ∈ 𝐼 ) |
52 |
|
2rp |
⊢ 2 ∈ ℝ+ |
53 |
|
rpdivcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+ ) → ( 2 / 𝑐 ) ∈ ℝ+ ) |
54 |
52 53
|
mpan |
⊢ ( 𝑐 ∈ ℝ+ → ( 2 / 𝑐 ) ∈ ℝ+ ) |
55 |
54
|
rpred |
⊢ ( 𝑐 ∈ ℝ+ → ( 2 / 𝑐 ) ∈ ℝ ) |
56 |
|
ceicl |
⊢ ( ( 2 / 𝑐 ) ∈ ℝ → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℤ ) |
57 |
55 56
|
syl |
⊢ ( 𝑐 ∈ ℝ+ → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℤ ) |
58 |
|
0red |
⊢ ( 𝑐 ∈ ℝ+ → 0 ∈ ℝ ) |
59 |
57
|
zred |
⊢ ( 𝑐 ∈ ℝ+ → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℝ ) |
60 |
54
|
rpgt0d |
⊢ ( 𝑐 ∈ ℝ+ → 0 < ( 2 / 𝑐 ) ) |
61 |
|
ceige |
⊢ ( ( 2 / 𝑐 ) ∈ ℝ → ( 2 / 𝑐 ) ≤ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) |
62 |
55 61
|
syl |
⊢ ( 𝑐 ∈ ℝ+ → ( 2 / 𝑐 ) ≤ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) |
63 |
58 55 59 60 62
|
ltletrd |
⊢ ( 𝑐 ∈ ℝ+ → 0 < - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) |
64 |
|
elnnz |
⊢ ( - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℕ ↔ ( - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℤ ∧ 0 < - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) |
65 |
57 63 64
|
sylanbrc |
⊢ ( 𝑐 ∈ ℝ+ → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℕ ) |
66 |
|
fveq2 |
⊢ ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) |
67 |
|
oveq2 |
⊢ ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( 1 / 𝑖 ) = ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) |
68 |
67
|
oveq2d |
⊢ ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) = ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) |
69 |
68
|
eleq2d |
⊢ ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
70 |
69
|
ralbidv |
⊢ ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
71 |
66 70
|
rexeqbidv |
⊢ ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ∃ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
72 |
71
|
rspcv |
⊢ ( - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℕ → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
73 |
65 72
|
syl |
⊢ ( 𝑐 ∈ ℝ+ → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
74 |
73
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
75 |
|
uznnssnn |
⊢ ( - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℕ → ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ⊆ ℕ ) |
76 |
65 75
|
syl |
⊢ ( 𝑐 ∈ ℝ+ → ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ⊆ ℕ ) |
77 |
76
|
sseld |
⊢ ( 𝑐 ∈ ℝ+ → ( 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → 𝑘 ∈ ℕ ) ) |
78 |
77
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → ( 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → 𝑘 ∈ ℕ ) ) |
79 |
78
|
imdistani |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ) |
80 |
65
|
nnrpd |
⊢ ( 𝑐 ∈ ℝ+ → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℝ+ ) |
81 |
54 80
|
lerecd |
⊢ ( 𝑐 ∈ ℝ+ → ( ( 2 / 𝑐 ) ≤ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ↔ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 1 / ( 2 / 𝑐 ) ) ) ) |
82 |
62 81
|
mpbid |
⊢ ( 𝑐 ∈ ℝ+ → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 1 / ( 2 / 𝑐 ) ) ) |
83 |
|
rpcn |
⊢ ( 𝑐 ∈ ℝ+ → 𝑐 ∈ ℂ ) |
84 |
|
rpne0 |
⊢ ( 𝑐 ∈ ℝ+ → 𝑐 ≠ 0 ) |
85 |
|
2cn |
⊢ 2 ∈ ℂ |
86 |
|
2ne0 |
⊢ 2 ≠ 0 |
87 |
|
recdiv |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 𝑐 ∈ ℂ ∧ 𝑐 ≠ 0 ) ) → ( 1 / ( 2 / 𝑐 ) ) = ( 𝑐 / 2 ) ) |
88 |
85 86 87
|
mpanl12 |
⊢ ( ( 𝑐 ∈ ℂ ∧ 𝑐 ≠ 0 ) → ( 1 / ( 2 / 𝑐 ) ) = ( 𝑐 / 2 ) ) |
89 |
83 84 88
|
syl2anc |
⊢ ( 𝑐 ∈ ℝ+ → ( 1 / ( 2 / 𝑐 ) ) = ( 𝑐 / 2 ) ) |
90 |
82 89
|
breqtrd |
⊢ ( 𝑐 ∈ ℝ+ → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 𝑐 / 2 ) ) |
91 |
90
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 𝑐 / 2 ) ) |
92 |
|
elmapi |
⊢ ( 𝐶 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝐶 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
93 |
92 2
|
eleq2s |
⊢ ( 𝐶 ∈ 𝐼 → 𝐶 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
94 |
93
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝐶 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
95 |
94
|
ffvelrnda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑚 ) ∈ ( 0 [,] 1 ) ) |
96 |
39 95
|
sselid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑚 ) ∈ ℝ ) |
97 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝜑 ) |
98 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
99 |
97 98
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) |
100 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
101 |
|
xp1st |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
102 |
|
elmapi |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ℕ0 ) |
103 |
100 101 102
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ℕ0 ) |
104 |
103
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) ∈ ℕ0 ) |
105 |
104
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) ∈ ℝ ) |
106 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
107 |
105 106
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ ) |
108 |
99 107
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ ) |
109 |
96 108
|
resubcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℝ ) |
110 |
109
|
recnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℂ ) |
111 |
110
|
abscld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ) |
112 |
65
|
nnrecred |
⊢ ( 𝑐 ∈ ℝ+ → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ ) |
113 |
112
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ ) |
114 |
|
rphalfcl |
⊢ ( 𝑐 ∈ ℝ+ → ( 𝑐 / 2 ) ∈ ℝ+ ) |
115 |
114
|
rpred |
⊢ ( 𝑐 ∈ ℝ+ → ( 𝑐 / 2 ) ∈ ℝ ) |
116 |
115
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 / 2 ) ∈ ℝ ) |
117 |
|
ltletr |
⊢ ( ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ∧ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ ∧ ( 𝑐 / 2 ) ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∧ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 𝑐 / 2 ) ) → ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ) ) |
118 |
111 113 116 117
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∧ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 𝑐 / 2 ) ) → ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ) ) |
119 |
91 118
|
mpan2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ) ) |
120 |
79 119
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ) ) |
121 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) → 𝜑 ) |
122 |
76
|
sselda |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → 𝑘 ∈ ℕ ) |
123 |
121 122
|
anim12i |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) → ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) |
124 |
123
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) |
125 |
|
1re |
⊢ 1 ∈ ℝ |
126 |
|
snssi |
⊢ ( 1 ∈ ℝ → { 1 } ⊆ ℝ ) |
127 |
125 126
|
ax-mp |
⊢ { 1 } ⊆ ℝ |
128 |
|
0re |
⊢ 0 ∈ ℝ |
129 |
|
snssi |
⊢ ( 0 ∈ ℝ → { 0 } ⊆ ℝ ) |
130 |
128 129
|
ax-mp |
⊢ { 0 } ⊆ ℝ |
131 |
127 130
|
unssi |
⊢ ( { 1 } ∪ { 0 } ) ⊆ ℝ |
132 |
|
1ex |
⊢ 1 ∈ V |
133 |
132
|
fconst |
⊢ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } |
134 |
|
c0ex |
⊢ 0 ∈ V |
135 |
134
|
fconst |
⊢ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } |
136 |
133 135
|
pm3.2i |
⊢ ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) |
137 |
|
xp2nd |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
138 |
100 137
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
139 |
|
fvex |
⊢ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ V |
140 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
141 |
139 140
|
elab |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
142 |
138 141
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
143 |
|
dff1o3 |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
144 |
143
|
simprbi |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
145 |
|
imain |
⊢ ( Fun ◡ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
146 |
142 144 145
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
147 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℕ0 ) |
148 |
147
|
nn0red |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℝ ) |
149 |
148
|
ltp1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 < ( 𝑗 + 1 ) ) |
150 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
151 |
149 150
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
152 |
151
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ∅ ) ) |
153 |
|
ima0 |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ∅ ) = ∅ |
154 |
152 153
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
155 |
146 154
|
sylan9req |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
156 |
|
fun |
⊢ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) ∧ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
157 |
136 155 156
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
158 |
|
imaundi |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
159 |
|
nn0p1nn |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) |
160 |
147 159
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
161 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
162 |
160 161
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
163 |
|
elfzuz3 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
164 |
|
fzsplit2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
165 |
162 163 164
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
166 |
165
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
167 |
|
f1ofo |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
168 |
|
foima |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
169 |
142 167 168
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
170 |
166 169
|
sylan9req |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
171 |
170
|
ancoms |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
172 |
158 171
|
eqtr3id |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
173 |
172
|
feq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) ) |
174 |
157 173
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) |
175 |
174
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ ( { 1 } ∪ { 0 } ) ) |
176 |
131 175
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ ℝ ) |
177 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
178 |
176 177
|
nndivred |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ ) |
179 |
178
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ ) |
180 |
179
|
absnegd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) |
181 |
124 180
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) |
182 |
124 175
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ ( { 1 } ∪ { 0 } ) ) |
183 |
|
elun |
⊢ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ ( { 1 } ∪ { 0 } ) ↔ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } ∨ ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } ) ) |
184 |
182 183
|
sylib |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } ∨ ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } ) ) |
185 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
186 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
187 |
186
|
rpreccld |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ ) |
188 |
187
|
rpge0d |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 1 / 𝑘 ) ) |
189 |
185 188
|
absidd |
⊢ ( 𝑘 ∈ ℕ → ( abs ‘ ( 1 / 𝑘 ) ) = ( 1 / 𝑘 ) ) |
190 |
122 189
|
syl |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( abs ‘ ( 1 / 𝑘 ) ) = ( 1 / 𝑘 ) ) |
191 |
122
|
nnrecred |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 1 / 𝑘 ) ∈ ℝ ) |
192 |
112
|
adantr |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ ) |
193 |
115
|
adantr |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 𝑐 / 2 ) ∈ ℝ ) |
194 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ≤ 𝑘 ) |
195 |
194
|
adantl |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ≤ 𝑘 ) |
196 |
65
|
adantr |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℕ ) |
197 |
196
|
nnrpd |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℝ+ ) |
198 |
122
|
nnrpd |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → 𝑘 ∈ ℝ+ ) |
199 |
197 198
|
lerecd |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ≤ 𝑘 ↔ ( 1 / 𝑘 ) ≤ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) |
200 |
195 199
|
mpbid |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 1 / 𝑘 ) ≤ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) |
201 |
90
|
adantr |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 𝑐 / 2 ) ) |
202 |
191 192 193 200 201
|
letrd |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 1 / 𝑘 ) ≤ ( 𝑐 / 2 ) ) |
203 |
190 202
|
eqbrtrd |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( abs ‘ ( 1 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) |
204 |
|
elsni |
⊢ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } → ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) = 1 ) |
205 |
204
|
fvoveq1d |
⊢ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( 1 / 𝑘 ) ) ) |
206 |
205
|
breq1d |
⊢ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } → ( ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ↔ ( abs ‘ ( 1 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) ) |
207 |
203 206
|
syl5ibrcom |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) ) |
208 |
114
|
rpge0d |
⊢ ( 𝑐 ∈ ℝ+ → 0 ≤ ( 𝑐 / 2 ) ) |
209 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
210 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
211 |
209 210
|
div0d |
⊢ ( 𝑘 ∈ ℕ → ( 0 / 𝑘 ) = 0 ) |
212 |
211
|
abs00bd |
⊢ ( 𝑘 ∈ ℕ → ( abs ‘ ( 0 / 𝑘 ) ) = 0 ) |
213 |
212
|
breq1d |
⊢ ( 𝑘 ∈ ℕ → ( ( abs ‘ ( 0 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ↔ 0 ≤ ( 𝑐 / 2 ) ) ) |
214 |
213
|
biimparc |
⊢ ( ( 0 ≤ ( 𝑐 / 2 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 0 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) |
215 |
208 214
|
sylan |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 0 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) |
216 |
122 215
|
syldan |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( abs ‘ ( 0 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) |
217 |
|
elsni |
⊢ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } → ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) = 0 ) |
218 |
217
|
fvoveq1d |
⊢ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( 0 / 𝑘 ) ) ) |
219 |
218
|
breq1d |
⊢ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } → ( ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ↔ ( abs ‘ ( 0 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) ) |
220 |
216 219
|
syl5ibrcom |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) ) |
221 |
207 220
|
jaod |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } ∨ ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } ) → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) ) |
222 |
221
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } ∨ ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } ) → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) ) |
223 |
222
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } ∨ ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } ) → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) ) |
224 |
184 223
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) |
225 |
181 224
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) |
226 |
79 111
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ) |
227 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → 𝜑 ) |
228 |
227
|
anim1i |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) → ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) |
229 |
178
|
renegcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ ) |
230 |
228 229
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ ) |
231 |
230
|
recnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ ) |
232 |
231
|
abscld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℝ ) |
233 |
79 232
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℝ ) |
234 |
115 115
|
jca |
⊢ ( 𝑐 ∈ ℝ+ → ( ( 𝑐 / 2 ) ∈ ℝ ∧ ( 𝑐 / 2 ) ∈ ℝ ) ) |
235 |
234
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑐 / 2 ) ∈ ℝ ∧ ( 𝑐 / 2 ) ∈ ℝ ) ) |
236 |
|
ltleadd |
⊢ ( ( ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ∧ ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℝ ) ∧ ( ( 𝑐 / 2 ) ∈ ℝ ∧ ( 𝑐 / 2 ) ∈ ℝ ) ) → ( ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ∧ ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) → ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) |
237 |
226 233 235 236
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ∧ ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) → ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) |
238 |
225 237
|
mpan2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) → ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) |
239 |
110 231
|
abstrid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ≤ ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ) |
240 |
109 230
|
readdcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℝ ) |
241 |
240
|
recnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℂ ) |
242 |
241
|
abscld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ) |
243 |
111 232
|
readdcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ) |
244 |
115 115
|
readdcld |
⊢ ( 𝑐 ∈ ℝ+ → ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ∈ ℝ ) |
245 |
244
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ∈ ℝ ) |
246 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ∧ ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ∧ ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ∈ ℝ ) → ( ( ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ≤ ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∧ ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) → ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) |
247 |
242 243 245 246
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ≤ ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∧ ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) → ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) |
248 |
239 247
|
mpand |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) → ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) |
249 |
79 248
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) → ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) |
250 |
120 238 249
|
3syld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) |
251 |
105
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) ∈ ℝ ) |
252 |
251 176
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) ∈ ℝ ) |
253 |
252 177
|
nndivred |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ) |
254 |
124 253
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ) |
255 |
250 254
|
jctild |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) ) |
256 |
255
|
adantld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) ) |
257 |
79
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ) |
258 |
93
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) → 𝐶 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
259 |
258
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑚 ) ∈ ( 0 [,] 1 ) ) |
260 |
39 259
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑚 ) ∈ ℝ ) |
261 |
80
|
rpreccld |
⊢ ( 𝑐 ∈ ℝ+ → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ+ ) |
262 |
261
|
rpxrd |
⊢ ( 𝑐 ∈ ℝ+ → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ* ) |
263 |
262
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ* ) |
264 |
19
|
rexmet |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
265 |
|
elbl |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( 𝐶 ‘ 𝑚 ) ∈ ℝ ∧ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ* ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
266 |
264 265
|
mp3an1 |
⊢ ( ( ( 𝐶 ‘ 𝑚 ) ∈ ℝ ∧ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ* ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
267 |
260 263 266
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
268 |
|
elmapfn |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) Fn ( 1 ... 𝑁 ) ) |
269 |
100 101 268
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) Fn ( 1 ... 𝑁 ) ) |
270 |
|
vex |
⊢ 𝑘 ∈ V |
271 |
|
fnconstg |
⊢ ( 𝑘 ∈ V → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) ) |
272 |
270 271
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) ) |
273 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... 𝑁 ) ∈ Fin ) |
274 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
275 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) = ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) ) |
276 |
270
|
fvconst2 |
⊢ ( 𝑚 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑚 ) = 𝑘 ) |
277 |
276
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑚 ) = 𝑘 ) |
278 |
269 272 273 273 274 275 277
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) = ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) |
279 |
278
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) |
280 |
227 279
|
sylanl1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) |
281 |
227 107
|
sylanl1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ ) |
282 |
19
|
remetdval |
⊢ ( ( ( 𝐶 ‘ 𝑚 ) ∈ ℝ ∧ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ ) → ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ) |
283 |
260 281 282
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ) |
284 |
280 283
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ) |
285 |
284
|
breq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ↔ ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) |
286 |
285
|
anbi2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
287 |
267 286
|
bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
288 |
257 287
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) ) |
289 |
|
rpxr |
⊢ ( 𝑐 ∈ ℝ+ → 𝑐 ∈ ℝ* ) |
290 |
289
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑐 ∈ ℝ* ) |
291 |
|
elbl |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( 𝐶 ‘ 𝑚 ) ∈ ℝ ∧ 𝑐 ∈ ℝ* ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < 𝑐 ) ) ) |
292 |
264 291
|
mp3an1 |
⊢ ( ( ( 𝐶 ‘ 𝑚 ) ∈ ℝ ∧ 𝑐 ∈ ℝ* ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < 𝑐 ) ) ) |
293 |
96 290 292
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < 𝑐 ) ) ) |
294 |
|
elun |
⊢ ( 𝑧 ∈ ( { 1 } ∪ { 0 } ) ↔ ( 𝑧 ∈ { 1 } ∨ 𝑧 ∈ { 0 } ) ) |
295 |
|
fzofzp1 |
⊢ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑣 + 1 ) ∈ ( 0 ... 𝑘 ) ) |
296 |
|
elsni |
⊢ ( 𝑧 ∈ { 1 } → 𝑧 = 1 ) |
297 |
296
|
oveq2d |
⊢ ( 𝑧 ∈ { 1 } → ( 𝑣 + 𝑧 ) = ( 𝑣 + 1 ) ) |
298 |
297
|
eleq1d |
⊢ ( 𝑧 ∈ { 1 } → ( ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ↔ ( 𝑣 + 1 ) ∈ ( 0 ... 𝑘 ) ) ) |
299 |
295 298
|
syl5ibrcom |
⊢ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑧 ∈ { 1 } → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ) ) |
300 |
|
elfzonn0 |
⊢ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → 𝑣 ∈ ℕ0 ) |
301 |
300
|
nn0cnd |
⊢ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → 𝑣 ∈ ℂ ) |
302 |
301
|
addid1d |
⊢ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑣 + 0 ) = 𝑣 ) |
303 |
|
elfzofz |
⊢ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → 𝑣 ∈ ( 0 ... 𝑘 ) ) |
304 |
302 303
|
eqeltrd |
⊢ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑣 + 0 ) ∈ ( 0 ... 𝑘 ) ) |
305 |
|
elsni |
⊢ ( 𝑧 ∈ { 0 } → 𝑧 = 0 ) |
306 |
305
|
oveq2d |
⊢ ( 𝑧 ∈ { 0 } → ( 𝑣 + 𝑧 ) = ( 𝑣 + 0 ) ) |
307 |
306
|
eleq1d |
⊢ ( 𝑧 ∈ { 0 } → ( ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ↔ ( 𝑣 + 0 ) ∈ ( 0 ... 𝑘 ) ) ) |
308 |
304 307
|
syl5ibrcom |
⊢ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑧 ∈ { 0 } → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ) ) |
309 |
299 308
|
jaod |
⊢ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( ( 𝑧 ∈ { 1 } ∨ 𝑧 ∈ { 0 } ) → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ) ) |
310 |
294 309
|
syl5bi |
⊢ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑧 ∈ ( { 1 } ∪ { 0 } ) → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ) ) |
311 |
310
|
imp |
⊢ ( ( 𝑣 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑧 ∈ ( { 1 } ∪ { 0 } ) ) → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ) |
312 |
311
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑧 ∈ ( { 1 } ∪ { 0 } ) ) ) → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ) |
313 |
|
dffn3 |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) Fn ( 1 ... 𝑁 ) ↔ ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ran ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
314 |
269 313
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ran ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
315 |
314 7
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) ) |
316 |
315
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) ) |
317 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
318 |
312 316 174 317 317 274
|
off |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) |
319 |
318
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) Fn ( 1 ... 𝑁 ) ) |
320 |
270 271
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) ) |
321 |
269
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) Fn ( 1 ... 𝑁 ) ) |
322 |
174
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
323 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) = ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) ) |
324 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) = ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) |
325 |
321 322 317 317 274 323 324
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑚 ) = ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) ) |
326 |
276
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑚 ) = 𝑘 ) |
327 |
319 320 317 317 274 325 326
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) = ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) |
328 |
327
|
eleq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ↔ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ) ) |
329 |
228 328
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ↔ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ) ) |
330 |
327
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) = ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) |
331 |
330
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) ) |
332 |
93
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝐶 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
333 |
332
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑚 ) ∈ ( 0 [,] 1 ) ) |
334 |
39 333
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑚 ) ∈ ℝ ) |
335 |
253
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ) |
336 |
19
|
remetdval |
⊢ ( ( ( 𝐶 ‘ 𝑚 ) ∈ ℝ ∧ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ) → ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) = ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) ) ) |
337 |
334 335 336
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) = ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) ) ) |
338 |
251
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) ∈ ℂ ) |
339 |
176
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ ℂ ) |
340 |
209
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
341 |
210
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ≠ 0 ) |
342 |
338 339 340 341
|
divdird |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) = ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) + ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) |
343 |
107
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ ) |
344 |
343
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ ) |
345 |
344 179
|
subnegd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) − - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) + ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) |
346 |
342 345
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) = ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) − - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) |
347 |
346
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) = ( ( 𝐶 ‘ 𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) − - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ) |
348 |
347
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) = ( ( 𝐶 ‘ 𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) − - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ) |
349 |
334
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑚 ) ∈ ℂ ) |
350 |
107
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ ) |
351 |
350
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ ) |
352 |
351
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ ) |
353 |
179
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ ) |
354 |
353
|
negcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ ) |
355 |
349 352 354
|
subsubd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) − - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) = ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) |
356 |
348 355
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) = ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) |
357 |
356
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( 𝐶 ‘ 𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) ) = ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ) |
358 |
331 337 357
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ) |
359 |
358
|
adantl3r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ) |
360 |
83
|
2halvesd |
⊢ ( 𝑐 ∈ ℝ+ → ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) = 𝑐 ) |
361 |
360
|
eqcomd |
⊢ ( 𝑐 ∈ ℝ+ → 𝑐 = ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) |
362 |
361
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑐 = ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) |
363 |
359 362
|
breq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < 𝑐 ↔ ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) |
364 |
329 363
|
anbi12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶 ‘ 𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) ) |
365 |
293 364
|
bitrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) ) |
366 |
79 365
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐶 ‘ 𝑚 ) − ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) ) |
367 |
256 288 366
|
3imtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ) |
368 |
367
|
ralimdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ) |
369 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
370 |
|
elfznn0 |
⊢ ( 𝑣 ∈ ( 0 ... 𝑘 ) → 𝑣 ∈ ℕ0 ) |
371 |
370
|
nn0red |
⊢ ( 𝑣 ∈ ( 0 ... 𝑘 ) → 𝑣 ∈ ℝ ) |
372 |
|
nndivre |
⊢ ( ( 𝑣 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑣 / 𝑘 ) ∈ ℝ ) |
373 |
371 372
|
sylan |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑣 / 𝑘 ) ∈ ℝ ) |
374 |
|
elfzle1 |
⊢ ( 𝑣 ∈ ( 0 ... 𝑘 ) → 0 ≤ 𝑣 ) |
375 |
371 374
|
jca |
⊢ ( 𝑣 ∈ ( 0 ... 𝑘 ) → ( 𝑣 ∈ ℝ ∧ 0 ≤ 𝑣 ) ) |
376 |
186
|
rpregt0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
377 |
|
divge0 |
⊢ ( ( ( 𝑣 ∈ ℝ ∧ 0 ≤ 𝑣 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → 0 ≤ ( 𝑣 / 𝑘 ) ) |
378 |
375 376 377
|
syl2an |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝑣 / 𝑘 ) ) |
379 |
|
elfzle2 |
⊢ ( 𝑣 ∈ ( 0 ... 𝑘 ) → 𝑣 ≤ 𝑘 ) |
380 |
379
|
adantr |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑣 ≤ 𝑘 ) |
381 |
371
|
adantr |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑣 ∈ ℝ ) |
382 |
|
1red |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ ) |
383 |
186
|
adantl |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ ) |
384 |
381 382 383
|
ledivmuld |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑣 / 𝑘 ) ≤ 1 ↔ 𝑣 ≤ ( 𝑘 · 1 ) ) ) |
385 |
209
|
mulid1d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · 1 ) = 𝑘 ) |
386 |
385
|
breq2d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑣 ≤ ( 𝑘 · 1 ) ↔ 𝑣 ≤ 𝑘 ) ) |
387 |
386
|
adantl |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑣 ≤ ( 𝑘 · 1 ) ↔ 𝑣 ≤ 𝑘 ) ) |
388 |
384 387
|
bitrd |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑣 / 𝑘 ) ≤ 1 ↔ 𝑣 ≤ 𝑘 ) ) |
389 |
380 388
|
mpbird |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑣 / 𝑘 ) ≤ 1 ) |
390 |
|
elicc01 |
⊢ ( ( 𝑣 / 𝑘 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑣 / 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝑣 / 𝑘 ) ∧ ( 𝑣 / 𝑘 ) ≤ 1 ) ) |
391 |
373 378 389 390
|
syl3anbrc |
⊢ ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑣 / 𝑘 ) ∈ ( 0 [,] 1 ) ) |
392 |
391
|
ancoms |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑣 ∈ ( 0 ... 𝑘 ) ) → ( 𝑣 / 𝑘 ) ∈ ( 0 [,] 1 ) ) |
393 |
|
elsni |
⊢ ( 𝑧 ∈ { 𝑘 } → 𝑧 = 𝑘 ) |
394 |
393
|
oveq2d |
⊢ ( 𝑧 ∈ { 𝑘 } → ( 𝑣 / 𝑧 ) = ( 𝑣 / 𝑘 ) ) |
395 |
394
|
eleq1d |
⊢ ( 𝑧 ∈ { 𝑘 } → ( ( 𝑣 / 𝑧 ) ∈ ( 0 [,] 1 ) ↔ ( 𝑣 / 𝑘 ) ∈ ( 0 [,] 1 ) ) ) |
396 |
392 395
|
syl5ibrcom |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑣 ∈ ( 0 ... 𝑘 ) ) → ( 𝑧 ∈ { 𝑘 } → ( 𝑣 / 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
397 |
396
|
impr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑧 ∈ { 𝑘 } ) ) → ( 𝑣 / 𝑧 ) ∈ ( 0 [,] 1 ) ) |
398 |
369 397
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑧 ∈ { 𝑘 } ) ) → ( 𝑣 / 𝑧 ) ∈ ( 0 [,] 1 ) ) |
399 |
270
|
fconst |
⊢ ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } |
400 |
399
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } ) |
401 |
398 318 400 317 317 274
|
off |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
402 |
401
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ) |
403 |
124 402
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ) |
404 |
368 403
|
jctild |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ) ) |
405 |
2
|
eleq2i |
⊢ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ) |
406 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
407 |
406 43
|
elmap |
⊢ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ↔ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
408 |
405 407
|
bitri |
⊢ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
409 |
401 408
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) |
410 |
124 409
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) |
411 |
404 410
|
jctird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ∧ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) ) ) |
412 |
|
elin |
⊢ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ↔ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∧ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) ) |
413 |
|
ovex |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ V |
414 |
413
|
elixp |
⊢ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ) |
415 |
414
|
anbi1i |
⊢ ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∧ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ∧ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) ) |
416 |
412 415
|
bitri |
⊢ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ∧ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) ) |
417 |
411 416
|
syl6ibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ) ) |
418 |
|
ssel |
⊢ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) ) |
419 |
418
|
com12 |
⊢ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) ) |
420 |
417 419
|
syl6 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) ) ) |
421 |
420
|
impd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) ) |
422 |
421
|
ralrimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) ) |
423 |
422
|
expd |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) ) ) |
424 |
8
|
3exp2 |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑟 ∈ { ≤ , ◡ ≤ } → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 ) ) ) ) |
425 |
424
|
imp43 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ◡ ≤ } ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 ) |
426 |
|
r19.29 |
⊢ ( ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ∧ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ∧ 0 𝑟 𝑋 ) ) |
427 |
|
fveq2 |
⊢ ( 𝑧 = ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
428 |
427
|
fveq1d |
⊢ ( 𝑧 = ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
429 |
428 5
|
eqtr4di |
⊢ ( 𝑧 = ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = 𝑋 ) |
430 |
429
|
breq2d |
⊢ ( 𝑧 = ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ↔ 0 𝑟 𝑋 ) ) |
431 |
430
|
rspcev |
⊢ ( ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ∧ 0 𝑟 𝑋 ) → ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
432 |
431
|
rexlimivw |
⊢ ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ∧ 0 𝑟 𝑋 ) → ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
433 |
426 432
|
syl |
⊢ ( ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ∧ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 ) → ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
434 |
433
|
expcom |
⊢ ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
435 |
425 434
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ◡ ≤ } ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
436 |
435
|
ralrimdvva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
437 |
122 436
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ℝ+ ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
438 |
437
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
439 |
438
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
440 |
423 439
|
syl6d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |
441 |
440
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |
442 |
74 441
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |
443 |
442
|
com23 |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |
444 |
443
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐼 ) ∧ ( 𝑐 ∈ ℝ+ ∧ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
445 |
51 444
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ∧ 𝐶 ∈ 𝑣 ) ) ∧ ( 𝑐 ∈ ℝ+ ∧ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
446 |
35 445
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ∧ 𝐶 ∈ 𝑣 ) ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
447 |
446
|
expr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ) → ( 𝐶 ∈ 𝑣 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |
448 |
447
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ( 𝐶 ∈ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |
449 |
|
r19.21v |
⊢ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝐶 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ↔ ( 𝐶 ∈ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
450 |
448 449
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝐶 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |
451 |
450
|
ralrimdva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝐶 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |
452 |
|
ralcom |
⊢ ( ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝐶 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝐶 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
453 |
451 452
|
syl6ib |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝐶 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |