Metamath Proof Explorer


Theorem poimirlem29

Description: Lemma for poimir connecting cubes of the tessellation to neighborhoods. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimir.i 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) )
poimir.r 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) )
poimir.1 ( 𝜑𝐹 ∈ ( ( 𝑅t 𝐼 ) Cn 𝑅 ) )
poimirlem30.x 𝑋 = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 )
poimirlem30.2 ( 𝜑𝐺 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
poimirlem30.3 ( ( 𝜑𝑘 ∈ ℕ ) → ran ( 1st ‘ ( 𝐺𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) )
poimirlem30.4 ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ≤ } ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 )
Assertion poimirlem29 ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅t 𝐼 ) ( 𝐶𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimir.i 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) )
3 poimir.r 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) )
4 poimir.1 ( 𝜑𝐹 ∈ ( ( 𝑅t 𝐼 ) Cn 𝑅 ) )
5 poimirlem30.x 𝑋 = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 )
6 poimirlem30.2 ( 𝜑𝐺 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
7 poimirlem30.3 ( ( 𝜑𝑘 ∈ ℕ ) → ran ( 1st ‘ ( 𝐺𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) )
8 poimirlem30.4 ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ≤ } ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 )
9 fzfi ( 1 ... 𝑁 ) ∈ Fin
10 retop ( topGen ‘ ran (,) ) ∈ Top
11 10 fconst6 ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top
12 pttop ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top ) → ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ∈ Top )
13 9 11 12 mp2an ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ∈ Top
14 3 13 eqeltri 𝑅 ∈ Top
15 ovex ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ∈ V
16 2 15 eqeltri 𝐼 ∈ V
17 elrest ( ( 𝑅 ∈ Top ∧ 𝐼 ∈ V ) → ( 𝑣 ∈ ( 𝑅t 𝐼 ) ↔ ∃ 𝑧𝑅 𝑣 = ( 𝑧𝐼 ) ) )
18 14 16 17 mp2an ( 𝑣 ∈ ( 𝑅t 𝐼 ) ↔ ∃ 𝑧𝑅 𝑣 = ( 𝑧𝐼 ) )
19 eqid ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) )
20 3 19 ptrecube ( ( 𝑧𝑅𝐶𝑧 ) → ∃ 𝑐 ∈ ℝ+ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 )
21 20 ex ( 𝑧𝑅 → ( 𝐶𝑧 → ∃ 𝑐 ∈ ℝ+ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 ) )
22 inss1 ( 𝑧𝐼 ) ⊆ 𝑧
23 sseq1 ( 𝑣 = ( 𝑧𝐼 ) → ( 𝑣𝑧 ↔ ( 𝑧𝐼 ) ⊆ 𝑧 ) )
24 22 23 mpbiri ( 𝑣 = ( 𝑧𝐼 ) → 𝑣𝑧 )
25 24 sseld ( 𝑣 = ( 𝑧𝐼 ) → ( 𝐶𝑣𝐶𝑧 ) )
26 ssrin ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 → ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ ( 𝑧𝐼 ) )
27 sseq2 ( 𝑣 = ( 𝑧𝐼 ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ↔ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ ( 𝑧𝐼 ) ) )
28 26 27 syl5ibr ( 𝑣 = ( 𝑧𝐼 ) → ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 → ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) )
29 28 reximdv ( 𝑣 = ( 𝑧𝐼 ) → ( ∃ 𝑐 ∈ ℝ+ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) )
30 25 29 imim12d ( 𝑣 = ( 𝑧𝐼 ) → ( ( 𝐶𝑧 → ∃ 𝑐 ∈ ℝ+ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ⊆ 𝑧 ) → ( 𝐶𝑣 → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) )
31 21 30 syl5com ( 𝑧𝑅 → ( 𝑣 = ( 𝑧𝐼 ) → ( 𝐶𝑣 → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) )
32 31 rexlimiv ( ∃ 𝑧𝑅 𝑣 = ( 𝑧𝐼 ) → ( 𝐶𝑣 → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) )
33 18 32 sylbi ( 𝑣 ∈ ( 𝑅t 𝐼 ) → ( 𝐶𝑣 → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) )
34 33 imp ( ( 𝑣 ∈ ( 𝑅t 𝐼 ) ∧ 𝐶𝑣 ) → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 )
35 34 adantl ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑅t 𝐼 ) ∧ 𝐶𝑣 ) ) → ∃ 𝑐 ∈ ℝ+ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 )
36 resttop ( ( 𝑅 ∈ Top ∧ 𝐼 ∈ V ) → ( 𝑅t 𝐼 ) ∈ Top )
37 14 16 36 mp2an ( 𝑅t 𝐼 ) ∈ Top
38 reex ℝ ∈ V
39 unitssre ( 0 [,] 1 ) ⊆ ℝ
40 mapss ( ( ℝ ∈ V ∧ ( 0 [,] 1 ) ⊆ ℝ ) → ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) )
41 38 39 40 mp2an ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) )
42 2 41 eqsstri 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) )
43 ovex ( 1 ... 𝑁 ) ∈ V
44 uniretop ℝ = ( topGen ‘ ran (,) )
45 3 44 ptuniconst ( ( ( 1 ... 𝑁 ) ∈ V ∧ ( topGen ‘ ran (,) ) ∈ Top ) → ( ℝ ↑m ( 1 ... 𝑁 ) ) = 𝑅 )
46 43 10 45 mp2an ( ℝ ↑m ( 1 ... 𝑁 ) ) = 𝑅
47 46 restuni ( ( 𝑅 ∈ Top ∧ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → 𝐼 = ( 𝑅t 𝐼 ) )
48 14 42 47 mp2an 𝐼 = ( 𝑅t 𝐼 )
49 48 eltopss ( ( ( 𝑅t 𝐼 ) ∈ Top ∧ 𝑣 ∈ ( 𝑅t 𝐼 ) ) → 𝑣𝐼 )
50 37 49 mpan ( 𝑣 ∈ ( 𝑅t 𝐼 ) → 𝑣𝐼 )
51 50 sselda ( ( 𝑣 ∈ ( 𝑅t 𝐼 ) ∧ 𝐶𝑣 ) → 𝐶𝐼 )
52 2rp 2 ∈ ℝ+
53 rpdivcl ( ( 2 ∈ ℝ+𝑐 ∈ ℝ+ ) → ( 2 / 𝑐 ) ∈ ℝ+ )
54 52 53 mpan ( 𝑐 ∈ ℝ+ → ( 2 / 𝑐 ) ∈ ℝ+ )
55 54 rpred ( 𝑐 ∈ ℝ+ → ( 2 / 𝑐 ) ∈ ℝ )
56 ceicl ( ( 2 / 𝑐 ) ∈ ℝ → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℤ )
57 55 56 syl ( 𝑐 ∈ ℝ+ → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℤ )
58 0red ( 𝑐 ∈ ℝ+ → 0 ∈ ℝ )
59 57 zred ( 𝑐 ∈ ℝ+ → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℝ )
60 54 rpgt0d ( 𝑐 ∈ ℝ+ → 0 < ( 2 / 𝑐 ) )
61 ceige ( ( 2 / 𝑐 ) ∈ ℝ → ( 2 / 𝑐 ) ≤ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) )
62 55 61 syl ( 𝑐 ∈ ℝ+ → ( 2 / 𝑐 ) ≤ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) )
63 58 55 59 60 62 ltletrd ( 𝑐 ∈ ℝ+ → 0 < - ( ⌊ ‘ - ( 2 / 𝑐 ) ) )
64 elnnz ( - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℕ ↔ ( - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℤ ∧ 0 < - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) )
65 57 63 64 sylanbrc ( 𝑐 ∈ ℝ+ → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℕ )
66 fveq2 ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( ℤ𝑖 ) = ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) )
67 oveq2 ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( 1 / 𝑖 ) = ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) )
68 67 oveq2d ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) = ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) )
69 68 eleq2d ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
70 69 ralbidv ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
71 66 70 rexeqbidv ( 𝑖 = - ( ⌊ ‘ - ( 2 / 𝑐 ) ) → ( ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ∃ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
72 71 rspcv ( - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℕ → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∃ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
73 65 72 syl ( 𝑐 ∈ ℝ+ → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∃ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
74 73 adantl ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∃ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
75 uznnssnn ( - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℕ → ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ⊆ ℕ )
76 65 75 syl ( 𝑐 ∈ ℝ+ → ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ⊆ ℕ )
77 76 sseld ( 𝑐 ∈ ℝ+ → ( 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → 𝑘 ∈ ℕ ) )
78 77 adantl ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → ( 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → 𝑘 ∈ ℕ ) )
79 78 imdistani ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) )
80 65 nnrpd ( 𝑐 ∈ ℝ+ → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℝ+ )
81 54 80 lerecd ( 𝑐 ∈ ℝ+ → ( ( 2 / 𝑐 ) ≤ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ↔ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 1 / ( 2 / 𝑐 ) ) ) )
82 62 81 mpbid ( 𝑐 ∈ ℝ+ → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 1 / ( 2 / 𝑐 ) ) )
83 rpcn ( 𝑐 ∈ ℝ+𝑐 ∈ ℂ )
84 rpne0 ( 𝑐 ∈ ℝ+𝑐 ≠ 0 )
85 2cn 2 ∈ ℂ
86 2ne0 2 ≠ 0
87 recdiv ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 𝑐 ∈ ℂ ∧ 𝑐 ≠ 0 ) ) → ( 1 / ( 2 / 𝑐 ) ) = ( 𝑐 / 2 ) )
88 85 86 87 mpanl12 ( ( 𝑐 ∈ ℂ ∧ 𝑐 ≠ 0 ) → ( 1 / ( 2 / 𝑐 ) ) = ( 𝑐 / 2 ) )
89 83 84 88 syl2anc ( 𝑐 ∈ ℝ+ → ( 1 / ( 2 / 𝑐 ) ) = ( 𝑐 / 2 ) )
90 82 89 breqtrd ( 𝑐 ∈ ℝ+ → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 𝑐 / 2 ) )
91 90 ad4antlr ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 𝑐 / 2 ) )
92 elmapi ( 𝐶 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝐶 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
93 92 2 eleq2s ( 𝐶𝐼𝐶 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
94 93 ad4antlr ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝐶 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
95 94 ffvelrnda ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶𝑚 ) ∈ ( 0 [,] 1 ) )
96 39 95 sselid ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶𝑚 ) ∈ ℝ )
97 simp-4l ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝜑 )
98 simplr ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ )
99 97 98 jca ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝜑𝑘 ∈ ℕ ) )
100 6 ffvelrnda ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐺𝑘 ) ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
101 xp1st ( ( 𝐺𝑘 ) ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 𝐺𝑘 ) ) ∈ ( ℕ0m ( 1 ... 𝑁 ) ) )
102 elmapi ( ( 1st ‘ ( 𝐺𝑘 ) ) ∈ ( ℕ0m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ℕ0 )
103 100 101 102 3syl ( ( 𝜑𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ℕ0 )
104 103 ffvelrnda ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) ∈ ℕ0 )
105 104 nn0red ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) ∈ ℝ )
106 simplr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ )
107 105 106 nndivred ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ )
108 99 107 sylan ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ )
109 96 108 resubcld ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℝ )
110 109 recnd ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℂ )
111 110 abscld ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ )
112 65 nnrecred ( 𝑐 ∈ ℝ+ → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ )
113 112 ad4antlr ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ )
114 rphalfcl ( 𝑐 ∈ ℝ+ → ( 𝑐 / 2 ) ∈ ℝ+ )
115 114 rpred ( 𝑐 ∈ ℝ+ → ( 𝑐 / 2 ) ∈ ℝ )
116 115 ad4antlr ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 / 2 ) ∈ ℝ )
117 ltletr ( ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ∧ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ ∧ ( 𝑐 / 2 ) ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∧ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 𝑐 / 2 ) ) → ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ) )
118 111 113 116 117 syl3anc ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∧ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 𝑐 / 2 ) ) → ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ) )
119 91 118 mpan2d ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ) )
120 79 119 sylanl1 ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ) )
121 simpl ( ( 𝜑𝐶𝐼 ) → 𝜑 )
122 76 sselda ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → 𝑘 ∈ ℕ )
123 121 122 anim12i ( ( ( 𝜑𝐶𝐼 ) ∧ ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) → ( 𝜑𝑘 ∈ ℕ ) )
124 123 anassrs ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 𝜑𝑘 ∈ ℕ ) )
125 1re 1 ∈ ℝ
126 snssi ( 1 ∈ ℝ → { 1 } ⊆ ℝ )
127 125 126 ax-mp { 1 } ⊆ ℝ
128 0re 0 ∈ ℝ
129 snssi ( 0 ∈ ℝ → { 0 } ⊆ ℝ )
130 128 129 ax-mp { 0 } ⊆ ℝ
131 127 130 unssi ( { 1 } ∪ { 0 } ) ⊆ ℝ
132 1ex 1 ∈ V
133 132 fconst ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 }
134 c0ex 0 ∈ V
135 134 fconst ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 }
136 133 135 pm3.2i ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } )
137 xp2nd ( ( 𝐺𝑘 ) ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 𝐺𝑘 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
138 100 137 syl ( ( 𝜑𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐺𝑘 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
139 fvex ( 2nd ‘ ( 𝐺𝑘 ) ) ∈ V
140 f1oeq1 ( 𝑓 = ( 2nd ‘ ( 𝐺𝑘 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
141 139 140 elab ( ( 2nd ‘ ( 𝐺𝑘 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
142 138 141 sylib ( ( 𝜑𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
143 dff1o3 ( ( 2nd ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ( 2nd ‘ ( 𝐺𝑘 ) ) ) )
144 143 simprbi ( ( 2nd ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ( 2nd ‘ ( 𝐺𝑘 ) ) )
145 imain ( Fun ( 2nd ‘ ( 𝐺𝑘 ) ) → ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) )
146 142 144 145 3syl ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) )
147 elfznn0 ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℕ0 )
148 147 nn0red ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℝ )
149 148 ltp1d ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 < ( 𝑗 + 1 ) )
150 fzdisj ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ )
151 149 150 syl ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ )
152 151 imaeq2d ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ∅ ) )
153 ima0 ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ∅ ) = ∅
154 152 153 eqtrdi ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ )
155 146 154 sylan9req ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ )
156 fun ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) ∧ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) )
157 136 155 156 sylancr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) )
158 imaundi ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
159 nn0p1nn ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ )
160 147 159 syl ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ℕ )
161 nnuz ℕ = ( ℤ ‘ 1 )
162 160 161 eleqtrdi ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) )
163 elfzuz3 ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝑗 ) )
164 fzsplit2 ( ( ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ𝑗 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
165 162 163 164 syl2anc ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
166 165 imaeq2d ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) )
167 f1ofo ( ( 2nd ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) )
168 foima ( ( 2nd ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
169 142 167 168 3syl ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
170 166 169 sylan9req ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ ( 𝜑𝑘 ∈ ℕ ) ) → ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
171 170 ancoms ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
172 158 171 eqtr3id ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
173 172 feq2d ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) )
174 157 173 mpbid ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) )
175 174 ffvelrnda ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ ( { 1 } ∪ { 0 } ) )
176 131 175 sselid ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ ℝ )
177 simpllr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ )
178 176 177 nndivred ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ )
179 178 recnd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ )
180 179 absnegd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) )
181 124 180 sylanl1 ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) )
182 124 175 sylanl1 ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ ( { 1 } ∪ { 0 } ) )
183 elun ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ ( { 1 } ∪ { 0 } ) ↔ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } ∨ ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } ) )
184 182 183 sylib ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } ∨ ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } ) )
185 nnrecre ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ )
186 nnrp ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ )
187 186 rpreccld ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ )
188 187 rpge0d ( 𝑘 ∈ ℕ → 0 ≤ ( 1 / 𝑘 ) )
189 185 188 absidd ( 𝑘 ∈ ℕ → ( abs ‘ ( 1 / 𝑘 ) ) = ( 1 / 𝑘 ) )
190 122 189 syl ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( abs ‘ ( 1 / 𝑘 ) ) = ( 1 / 𝑘 ) )
191 122 nnrecred ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 1 / 𝑘 ) ∈ ℝ )
192 112 adantr ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ )
193 115 adantr ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 𝑐 / 2 ) ∈ ℝ )
194 eluzle ( 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ≤ 𝑘 )
195 194 adantl ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ≤ 𝑘 )
196 65 adantr ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℕ )
197 196 nnrpd ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ∈ ℝ+ )
198 122 nnrpd ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → 𝑘 ∈ ℝ+ )
199 197 198 lerecd ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ≤ 𝑘 ↔ ( 1 / 𝑘 ) ≤ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) )
200 195 199 mpbid ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 1 / 𝑘 ) ≤ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) )
201 90 adantr ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ≤ ( 𝑐 / 2 ) )
202 191 192 193 200 201 letrd ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( 1 / 𝑘 ) ≤ ( 𝑐 / 2 ) )
203 190 202 eqbrtrd ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( abs ‘ ( 1 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) )
204 elsni ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } → ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) = 1 )
205 204 fvoveq1d ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( 1 / 𝑘 ) ) )
206 205 breq1d ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } → ( ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ↔ ( abs ‘ ( 1 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) )
207 203 206 syl5ibrcom ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) )
208 114 rpge0d ( 𝑐 ∈ ℝ+ → 0 ≤ ( 𝑐 / 2 ) )
209 nncn ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ )
210 nnne0 ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 )
211 209 210 div0d ( 𝑘 ∈ ℕ → ( 0 / 𝑘 ) = 0 )
212 211 abs00bd ( 𝑘 ∈ ℕ → ( abs ‘ ( 0 / 𝑘 ) ) = 0 )
213 212 breq1d ( 𝑘 ∈ ℕ → ( ( abs ‘ ( 0 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ↔ 0 ≤ ( 𝑐 / 2 ) ) )
214 213 biimparc ( ( 0 ≤ ( 𝑐 / 2 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 0 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) )
215 208 214 sylan ( ( 𝑐 ∈ ℝ+𝑘 ∈ ℕ ) → ( abs ‘ ( 0 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) )
216 122 215 syldan ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( abs ‘ ( 0 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) )
217 elsni ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } → ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) = 0 )
218 217 fvoveq1d ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( 0 / 𝑘 ) ) )
219 218 breq1d ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } → ( ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ↔ ( abs ‘ ( 0 / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) )
220 216 219 syl5ibrcom ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) )
221 207 220 jaod ( ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } ∨ ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } ) → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) )
222 221 adantll ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } ∨ ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } ) → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) )
223 222 ad2antrr ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 1 } ∨ ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ { 0 } ) → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) )
224 184 223 mpd ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) )
225 181 224 eqbrtrd ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) )
226 79 111 sylanl1 ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ )
227 simpll ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → 𝜑 )
228 227 anim1i ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) → ( 𝜑𝑘 ∈ ℕ ) )
229 178 renegcld ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ )
230 228 229 sylanl1 ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ )
231 230 recnd ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ )
232 231 abscld ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℝ )
233 79 232 sylanl1 ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℝ )
234 115 115 jca ( 𝑐 ∈ ℝ+ → ( ( 𝑐 / 2 ) ∈ ℝ ∧ ( 𝑐 / 2 ) ∈ ℝ ) )
235 234 ad4antlr ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑐 / 2 ) ∈ ℝ ∧ ( 𝑐 / 2 ) ∈ ℝ ) )
236 ltleadd ( ( ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ∧ ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℝ ) ∧ ( ( 𝑐 / 2 ) ∈ ℝ ∧ ( 𝑐 / 2 ) ∈ ℝ ) ) → ( ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ∧ ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) → ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) )
237 226 233 235 236 syl21anc ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) ∧ ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ≤ ( 𝑐 / 2 ) ) → ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) )
238 225 237 mpan2d ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 𝑐 / 2 ) → ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) )
239 110 231 abstrid ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ≤ ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) )
240 109 230 readdcld ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℝ )
241 240 recnd ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ∈ ℂ )
242 241 abscld ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ )
243 111 232 readdcld ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ )
244 115 115 readdcld ( 𝑐 ∈ ℝ+ → ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ∈ ℝ )
245 244 ad4antlr ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ∈ ℝ )
246 lelttr ( ( ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ∧ ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∈ ℝ ∧ ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ∈ ℝ ) → ( ( ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ≤ ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∧ ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) → ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) )
247 242 243 245 246 syl3anc ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ≤ ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) ∧ ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) → ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) )
248 239 247 mpand ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) → ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) )
249 79 248 sylanl1 ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) + ( abs ‘ - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) → ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) )
250 120 238 249 3syld ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) )
251 105 adantlr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) ∈ ℝ )
252 251 176 readdcld ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) ∈ ℝ )
253 252 177 nndivred ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ )
254 124 253 sylanl1 ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ )
255 250 254 jctild ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) )
256 255 adantld ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) )
257 79 adantr ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) )
258 93 ad3antlr ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) → 𝐶 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
259 258 ffvelrnda ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶𝑚 ) ∈ ( 0 [,] 1 ) )
260 39 259 sselid ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶𝑚 ) ∈ ℝ )
261 80 rpreccld ( 𝑐 ∈ ℝ+ → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ+ )
262 261 rpxrd ( 𝑐 ∈ ℝ+ → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ* )
263 262 ad3antlr ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ* )
264 19 rexmet ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ )
265 elbl ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( 𝐶𝑚 ) ∈ ℝ ∧ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ* ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
266 264 265 mp3an1 ( ( ( 𝐶𝑚 ) ∈ ℝ ∧ ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∈ ℝ* ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
267 260 263 266 syl2anc ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
268 elmapfn ( ( 1st ‘ ( 𝐺𝑘 ) ) ∈ ( ℕ0m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺𝑘 ) ) Fn ( 1 ... 𝑁 ) )
269 100 101 268 3syl ( ( 𝜑𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺𝑘 ) ) Fn ( 1 ... 𝑁 ) )
270 vex 𝑘 ∈ V
271 fnconstg ( 𝑘 ∈ V → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) )
272 270 271 mp1i ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) )
273 fzfid ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 ... 𝑁 ) ∈ Fin )
274 inidm ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 )
275 eqidd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) = ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) )
276 270 fvconst2 ( 𝑚 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑚 ) = 𝑘 )
277 276 adantl ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑚 ) = 𝑘 )
278 269 272 273 273 274 275 277 ofval ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) = ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) )
279 278 oveq2d ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) )
280 227 279 sylanl1 ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) )
281 227 107 sylanl1 ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ )
282 19 remetdval ( ( ( 𝐶𝑚 ) ∈ ℝ ∧ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ ) → ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) )
283 260 281 282 syl2anc ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) )
284 280 283 eqtrd ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) )
285 284 breq1d ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ↔ ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) )
286 285 anbi2d ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
287 267 286 bitrd ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
288 257 287 sylan ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ↔ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) )
289 rpxr ( 𝑐 ∈ ℝ+𝑐 ∈ ℝ* )
290 289 ad4antlr ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑐 ∈ ℝ* )
291 elbl ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( 𝐶𝑚 ) ∈ ℝ ∧ 𝑐 ∈ ℝ* ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < 𝑐 ) ) )
292 264 291 mp3an1 ( ( ( 𝐶𝑚 ) ∈ ℝ ∧ 𝑐 ∈ ℝ* ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < 𝑐 ) ) )
293 96 290 292 syl2anc ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < 𝑐 ) ) )
294 elun ( 𝑧 ∈ ( { 1 } ∪ { 0 } ) ↔ ( 𝑧 ∈ { 1 } ∨ 𝑧 ∈ { 0 } ) )
295 fzofzp1 ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑣 + 1 ) ∈ ( 0 ... 𝑘 ) )
296 elsni ( 𝑧 ∈ { 1 } → 𝑧 = 1 )
297 296 oveq2d ( 𝑧 ∈ { 1 } → ( 𝑣 + 𝑧 ) = ( 𝑣 + 1 ) )
298 297 eleq1d ( 𝑧 ∈ { 1 } → ( ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ↔ ( 𝑣 + 1 ) ∈ ( 0 ... 𝑘 ) ) )
299 295 298 syl5ibrcom ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑧 ∈ { 1 } → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ) )
300 elfzonn0 ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → 𝑣 ∈ ℕ0 )
301 300 nn0cnd ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → 𝑣 ∈ ℂ )
302 301 addid1d ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑣 + 0 ) = 𝑣 )
303 elfzofz ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → 𝑣 ∈ ( 0 ... 𝑘 ) )
304 302 303 eqeltrd ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑣 + 0 ) ∈ ( 0 ... 𝑘 ) )
305 elsni ( 𝑧 ∈ { 0 } → 𝑧 = 0 )
306 305 oveq2d ( 𝑧 ∈ { 0 } → ( 𝑣 + 𝑧 ) = ( 𝑣 + 0 ) )
307 306 eleq1d ( 𝑧 ∈ { 0 } → ( ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ↔ ( 𝑣 + 0 ) ∈ ( 0 ... 𝑘 ) ) )
308 304 307 syl5ibrcom ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑧 ∈ { 0 } → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ) )
309 299 308 jaod ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( ( 𝑧 ∈ { 1 } ∨ 𝑧 ∈ { 0 } ) → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ) )
310 294 309 syl5bi ( 𝑣 ∈ ( 0 ..^ 𝑘 ) → ( 𝑧 ∈ ( { 1 } ∪ { 0 } ) → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) ) )
311 310 imp ( ( 𝑣 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑧 ∈ ( { 1 } ∪ { 0 } ) ) → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) )
312 311 adantl ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑣 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑧 ∈ ( { 1 } ∪ { 0 } ) ) ) → ( 𝑣 + 𝑧 ) ∈ ( 0 ... 𝑘 ) )
313 dffn3 ( ( 1st ‘ ( 𝐺𝑘 ) ) Fn ( 1 ... 𝑁 ) ↔ ( 1st ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ran ( 1st ‘ ( 𝐺𝑘 ) ) )
314 269 313 sylib ( ( 𝜑𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ran ( 1st ‘ ( 𝐺𝑘 ) ) )
315 314 7 fssd ( ( 𝜑𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) )
316 315 adantr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) )
317 fzfid ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ Fin )
318 312 316 174 317 317 274 off ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) )
319 318 ffnd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) Fn ( 1 ... 𝑁 ) )
320 270 271 mp1i ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) )
321 269 adantr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺𝑘 ) ) Fn ( 1 ... 𝑁 ) )
322 174 ffnd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) )
323 eqidd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) = ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) )
324 eqidd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) = ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) )
325 321 322 317 317 274 323 324 ofval ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑚 ) = ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) )
326 276 adantl ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑚 ) = 𝑘 )
327 319 320 317 317 274 325 326 ofval ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) = ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) )
328 327 eleq1d ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ↔ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ) )
329 228 328 sylanl1 ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ↔ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ) )
330 327 adantl3r ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) = ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) )
331 330 oveq2d ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) )
332 93 ad3antlr ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝐶 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
333 332 ffvelrnda ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶𝑚 ) ∈ ( 0 [,] 1 ) )
334 39 333 sselid ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶𝑚 ) ∈ ℝ )
335 253 adantl3r ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ )
336 19 remetdval ( ( ( 𝐶𝑚 ) ∈ ℝ ∧ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ) → ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) = ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) ) )
337 334 335 336 syl2anc ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) = ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) ) )
338 251 recnd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) ∈ ℂ )
339 176 recnd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ∈ ℂ )
340 209 ad3antlr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℂ )
341 210 ad3antlr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ≠ 0 )
342 338 339 340 341 divdird ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) = ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) + ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) )
343 107 recnd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ )
344 343 adantlr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ )
345 344 179 subnegd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) − - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) = ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) + ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) )
346 342 345 eqtr4d ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) = ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) − - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) )
347 346 oveq2d ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) = ( ( 𝐶𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) − - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) )
348 347 adantl3r ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) = ( ( 𝐶𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) − - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) )
349 334 recnd ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶𝑚 ) ∈ ℂ )
350 107 adantllr ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ )
351 350 adantlr ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℝ )
352 351 recnd ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ )
353 179 adantl3r ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ )
354 353 negcld ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ∈ ℂ )
355 349 352 354 subsubd ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) − - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) = ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) )
356 348 355 eqtrd ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) = ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) )
357 356 fveq2d ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( abs ‘ ( ( 𝐶𝑚 ) − ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ) ) = ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) )
358 331 337 357 3eqtrd ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) )
359 358 adantl3r ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) = ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) )
360 83 2halvesd ( 𝑐 ∈ ℝ+ → ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) = 𝑐 )
361 360 eqcomd ( 𝑐 ∈ ℝ+𝑐 = ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) )
362 361 ad4antlr ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑐 = ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) )
363 359 362 breq12d ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < 𝑐 ↔ ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) )
364 329 363 anbi12d ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝐶𝑚 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) < 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) )
365 293 364 bitrd ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) )
366 79 365 sylanl1 ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) + ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) ) / 𝑘 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐶𝑚 ) − ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ‘ 𝑚 ) / 𝑘 ) ) + - ( ( ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑚 ) / 𝑘 ) ) ) < ( ( 𝑐 / 2 ) + ( 𝑐 / 2 ) ) ) ) )
367 256 288 366 3imtr4d ( ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) )
368 367 ralimdva ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) )
369 simplr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ )
370 elfznn0 ( 𝑣 ∈ ( 0 ... 𝑘 ) → 𝑣 ∈ ℕ0 )
371 370 nn0red ( 𝑣 ∈ ( 0 ... 𝑘 ) → 𝑣 ∈ ℝ )
372 nndivre ( ( 𝑣 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑣 / 𝑘 ) ∈ ℝ )
373 371 372 sylan ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑣 / 𝑘 ) ∈ ℝ )
374 elfzle1 ( 𝑣 ∈ ( 0 ... 𝑘 ) → 0 ≤ 𝑣 )
375 371 374 jca ( 𝑣 ∈ ( 0 ... 𝑘 ) → ( 𝑣 ∈ ℝ ∧ 0 ≤ 𝑣 ) )
376 186 rpregt0d ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) )
377 divge0 ( ( ( 𝑣 ∈ ℝ ∧ 0 ≤ 𝑣 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → 0 ≤ ( 𝑣 / 𝑘 ) )
378 375 376 377 syl2an ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝑣 / 𝑘 ) )
379 elfzle2 ( 𝑣 ∈ ( 0 ... 𝑘 ) → 𝑣𝑘 )
380 379 adantr ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑣𝑘 )
381 371 adantr ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑣 ∈ ℝ )
382 1red ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ )
383 186 adantl ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ )
384 381 382 383 ledivmuld ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑣 / 𝑘 ) ≤ 1 ↔ 𝑣 ≤ ( 𝑘 · 1 ) ) )
385 209 mulid1d ( 𝑘 ∈ ℕ → ( 𝑘 · 1 ) = 𝑘 )
386 385 breq2d ( 𝑘 ∈ ℕ → ( 𝑣 ≤ ( 𝑘 · 1 ) ↔ 𝑣𝑘 ) )
387 386 adantl ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑣 ≤ ( 𝑘 · 1 ) ↔ 𝑣𝑘 ) )
388 384 387 bitrd ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑣 / 𝑘 ) ≤ 1 ↔ 𝑣𝑘 ) )
389 380 388 mpbird ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑣 / 𝑘 ) ≤ 1 )
390 elicc01 ( ( 𝑣 / 𝑘 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑣 / 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝑣 / 𝑘 ) ∧ ( 𝑣 / 𝑘 ) ≤ 1 ) )
391 373 378 389 390 syl3anbrc ( ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑣 / 𝑘 ) ∈ ( 0 [,] 1 ) )
392 391 ancoms ( ( 𝑘 ∈ ℕ ∧ 𝑣 ∈ ( 0 ... 𝑘 ) ) → ( 𝑣 / 𝑘 ) ∈ ( 0 [,] 1 ) )
393 elsni ( 𝑧 ∈ { 𝑘 } → 𝑧 = 𝑘 )
394 393 oveq2d ( 𝑧 ∈ { 𝑘 } → ( 𝑣 / 𝑧 ) = ( 𝑣 / 𝑘 ) )
395 394 eleq1d ( 𝑧 ∈ { 𝑘 } → ( ( 𝑣 / 𝑧 ) ∈ ( 0 [,] 1 ) ↔ ( 𝑣 / 𝑘 ) ∈ ( 0 [,] 1 ) ) )
396 392 395 syl5ibrcom ( ( 𝑘 ∈ ℕ ∧ 𝑣 ∈ ( 0 ... 𝑘 ) ) → ( 𝑧 ∈ { 𝑘 } → ( 𝑣 / 𝑧 ) ∈ ( 0 [,] 1 ) ) )
397 396 impr ( ( 𝑘 ∈ ℕ ∧ ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑧 ∈ { 𝑘 } ) ) → ( 𝑣 / 𝑧 ) ∈ ( 0 [,] 1 ) )
398 369 397 sylan ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑣 ∈ ( 0 ... 𝑘 ) ∧ 𝑧 ∈ { 𝑘 } ) ) → ( 𝑣 / 𝑧 ) ∈ ( 0 [,] 1 ) )
399 270 fconst ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 }
400 399 a1i ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } )
401 398 318 400 317 317 274 off ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
402 401 ffnd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) )
403 124 402 sylan ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) )
404 368 403 jctild ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ) )
405 2 eleq2i ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) )
406 ovex ( 0 [,] 1 ) ∈ V
407 406 43 elmap ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ↔ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
408 405 407 bitri ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
409 401 408 sylibr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 )
410 124 409 sylan ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 )
411 404 410 jctird ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ∧ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) ) )
412 elin ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ↔ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∧ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) )
413 ovex ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ V
414 413 elixp ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ↔ ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) )
415 414 anbi1i ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∧ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ∧ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) )
416 412 415 bitri ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ↔ ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ) ∧ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) )
417 411 416 syl6ibr ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ) )
418 ssel ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) )
419 418 com12 ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) )
420 417 419 syl6 ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) ) )
421 420 impd ( ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) → ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) )
422 421 ralrimdva ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ∧ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) )
423 422 expd ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ) ) )
424 8 3exp2 ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑟 ∈ { ≤ , ≤ } → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 ) ) ) )
425 424 imp43 ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ≤ } ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 )
426 r19.29 ( ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ∧ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ∧ 0 𝑟 𝑋 ) )
427 fveq2 ( 𝑧 = ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝐹𝑧 ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) )
428 427 fveq1d ( 𝑧 = ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝐹𝑧 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) )
429 428 5 eqtr4di ( 𝑧 = ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝐹𝑧 ) ‘ 𝑛 ) = 𝑋 )
430 429 breq2d ( 𝑧 = ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ↔ 0 𝑟 𝑋 ) )
431 430 rspcev ( ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ∧ 0 𝑟 𝑋 ) → ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) )
432 431 rexlimivw ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ∧ 0 𝑟 𝑋 ) → ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) )
433 426 432 syl ( ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 ∧ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 ) → ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) )
434 433 expcom ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
435 425 434 syl ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ≤ } ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
436 435 ralrimdvva ( ( 𝜑𝑘 ∈ ℕ ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
437 122 436 sylan2 ( ( 𝜑 ∧ ( 𝑐 ∈ ℝ+𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
438 437 anassrs ( ( ( 𝜑𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
439 438 adantllr ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
440 423 439 syl6d ( ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ) )
441 440 rexlimdva ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ ( ℤ ‘ - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / - ( ⌊ ‘ - ( 2 / 𝑐 ) ) ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ) )
442 74 441 syld ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ) )
443 442 com23 ( ( ( 𝜑𝐶𝐼 ) ∧ 𝑐 ∈ ℝ+ ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ) )
444 443 impr ( ( ( 𝜑𝐶𝐼 ) ∧ ( 𝑐 ∈ ℝ+ ∧ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
445 51 444 sylanl2 ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑅t 𝐼 ) ∧ 𝐶𝑣 ) ) ∧ ( 𝑐 ∈ ℝ+ ∧ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑐 ) ∩ 𝐼 ) ⊆ 𝑣 ) ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
446 35 445 rexlimddv ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑅t 𝐼 ) ∧ 𝐶𝑣 ) ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
447 446 expr ( ( 𝜑𝑣 ∈ ( 𝑅t 𝐼 ) ) → ( 𝐶𝑣 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ) )
448 447 com23 ( ( 𝜑𝑣 ∈ ( 𝑅t 𝐼 ) ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ( 𝐶𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ) )
449 r19.21v ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝐶𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ↔ ( 𝐶𝑣 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
450 448 449 syl6ibr ( ( 𝜑𝑣 ∈ ( 𝑅t 𝐼 ) ) → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝐶𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ) )
451 450 ralrimdva ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑣 ∈ ( 𝑅t 𝐼 ) ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝐶𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ) )
452 ralcom ( ∀ 𝑣 ∈ ( 𝑅t 𝐼 ) ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝐶𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅t 𝐼 ) ( 𝐶𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
453 451 452 syl6ib ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝐶𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅t 𝐼 ) ( 𝐶𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ) )