Metamath Proof Explorer


Theorem poimirlem29

Description: Lemma for poimir connecting cubes of the tessellation to neighborhoods. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimir.i I = 0 1 1 N
poimir.r R = 𝑡 1 N × topGen ran .
poimir.1 φ F R 𝑡 I Cn R
poimirlem30.x X = F 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k n
poimirlem30.2 φ G : 0 1 N × f | f : 1 N 1-1 onto 1 N
poimirlem30.3 φ k ran 1 st G k 0 ..^ k
poimirlem30.4 φ k n 1 N r -1 j 0 N 0 r X
Assertion poimirlem29 φ i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i n 1 N v R 𝑡 I C v r -1 z v 0 r F z n

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimir.i I = 0 1 1 N
3 poimir.r R = 𝑡 1 N × topGen ran .
4 poimir.1 φ F R 𝑡 I Cn R
5 poimirlem30.x X = F 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k n
6 poimirlem30.2 φ G : 0 1 N × f | f : 1 N 1-1 onto 1 N
7 poimirlem30.3 φ k ran 1 st G k 0 ..^ k
8 poimirlem30.4 φ k n 1 N r -1 j 0 N 0 r X
9 fzfi 1 N Fin
10 retop topGen ran . Top
11 10 fconst6 1 N × topGen ran . : 1 N Top
12 pttop 1 N Fin 1 N × topGen ran . : 1 N Top 𝑡 1 N × topGen ran . Top
13 9 11 12 mp2an 𝑡 1 N × topGen ran . Top
14 3 13 eqeltri R Top
15 ovex 0 1 1 N V
16 2 15 eqeltri I V
17 elrest R Top I V v R 𝑡 I z R v = z I
18 14 16 17 mp2an v R 𝑡 I z R v = z I
19 eqid abs 2 = abs 2
20 3 19 ptrecube z R C z c + m = 1 N C m ball abs 2 c z
21 20 ex z R C z c + m = 1 N C m ball abs 2 c z
22 inss1 z I z
23 sseq1 v = z I v z z I z
24 22 23 mpbiri v = z I v z
25 24 sseld v = z I C v C z
26 ssrin m = 1 N C m ball abs 2 c z m = 1 N C m ball abs 2 c I z I
27 sseq2 v = z I m = 1 N C m ball abs 2 c I v m = 1 N C m ball abs 2 c I z I
28 26 27 syl5ibr v = z I m = 1 N C m ball abs 2 c z m = 1 N C m ball abs 2 c I v
29 28 reximdv v = z I c + m = 1 N C m ball abs 2 c z c + m = 1 N C m ball abs 2 c I v
30 25 29 imim12d v = z I C z c + m = 1 N C m ball abs 2 c z C v c + m = 1 N C m ball abs 2 c I v
31 21 30 syl5com z R v = z I C v c + m = 1 N C m ball abs 2 c I v
32 31 rexlimiv z R v = z I C v c + m = 1 N C m ball abs 2 c I v
33 18 32 sylbi v R 𝑡 I C v c + m = 1 N C m ball abs 2 c I v
34 33 imp v R 𝑡 I C v c + m = 1 N C m ball abs 2 c I v
35 34 adantl φ v R 𝑡 I C v c + m = 1 N C m ball abs 2 c I v
36 resttop R Top I V R 𝑡 I Top
37 14 16 36 mp2an R 𝑡 I Top
38 reex V
39 unitssre 0 1
40 mapss V 0 1 0 1 1 N 1 N
41 38 39 40 mp2an 0 1 1 N 1 N
42 2 41 eqsstri I 1 N
43 ovex 1 N V
44 uniretop = topGen ran .
45 3 44 ptuniconst 1 N V topGen ran . Top 1 N = R
46 43 10 45 mp2an 1 N = R
47 46 restuni R Top I 1 N I = R 𝑡 I
48 14 42 47 mp2an I = R 𝑡 I
49 48 eltopss R 𝑡 I Top v R 𝑡 I v I
50 37 49 mpan v R 𝑡 I v I
51 50 sselda v R 𝑡 I C v C I
52 2rp 2 +
53 rpdivcl 2 + c + 2 c +
54 52 53 mpan c + 2 c +
55 54 rpred c + 2 c
56 ceicl 2 c 2 c
57 55 56 syl c + 2 c
58 0red c + 0
59 57 zred c + 2 c
60 54 rpgt0d c + 0 < 2 c
61 ceige 2 c 2 c 2 c
62 55 61 syl c + 2 c 2 c
63 58 55 59 60 62 ltletrd c + 0 < 2 c
64 elnnz 2 c 2 c 0 < 2 c
65 57 63 64 sylanbrc c + 2 c
66 fveq2 i = 2 c i = 2 c
67 oveq2 i = 2 c 1 i = 1 2 c
68 67 oveq2d i = 2 c C m ball abs 2 1 i = C m ball abs 2 1 2 c
69 68 eleq2d i = 2 c 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c
70 69 ralbidv i = 2 c m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c
71 66 70 rexeqbidv i = 2 c k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i k 2 c m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c
72 71 rspcv 2 c i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i k 2 c m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c
73 65 72 syl c + i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i k 2 c m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c
74 73 adantl φ C I c + i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i k 2 c m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c
75 uznnssnn 2 c 2 c
76 65 75 syl c + 2 c
77 76 sseld c + k 2 c k
78 77 adantl φ C I c + k 2 c k
79 78 imdistani φ C I c + k 2 c φ C I c + k
80 65 nnrpd c + 2 c +
81 54 80 lerecd c + 2 c 2 c 1 2 c 1 2 c
82 62 81 mpbid c + 1 2 c 1 2 c
83 rpcn c + c
84 rpne0 c + c 0
85 2cn 2
86 2ne0 2 0
87 recdiv 2 2 0 c c 0 1 2 c = c 2
88 85 86 87 mpanl12 c c 0 1 2 c = c 2
89 83 84 88 syl2anc c + 1 2 c = c 2
90 82 89 breqtrd c + 1 2 c c 2
91 90 ad4antlr φ C I c + k j 0 N m 1 N 1 2 c c 2
92 elmapi C 0 1 1 N C : 1 N 0 1
93 92 2 eleq2s C I C : 1 N 0 1
94 93 ad4antlr φ C I c + k j 0 N C : 1 N 0 1
95 94 ffvelrnda φ C I c + k j 0 N m 1 N C m 0 1
96 39 95 sselid φ C I c + k j 0 N m 1 N C m
97 simp-4l φ C I c + k j 0 N φ
98 simplr φ C I c + k j 0 N k
99 97 98 jca φ C I c + k j 0 N φ k
100 6 ffvelrnda φ k G k 0 1 N × f | f : 1 N 1-1 onto 1 N
101 xp1st G k 0 1 N × f | f : 1 N 1-1 onto 1 N 1 st G k 0 1 N
102 elmapi 1 st G k 0 1 N 1 st G k : 1 N 0
103 100 101 102 3syl φ k 1 st G k : 1 N 0
104 103 ffvelrnda φ k m 1 N 1 st G k m 0
105 104 nn0red φ k m 1 N 1 st G k m
106 simplr φ k m 1 N k
107 105 106 nndivred φ k m 1 N 1 st G k m k
108 99 107 sylan φ C I c + k j 0 N m 1 N 1 st G k m k
109 96 108 resubcld φ C I c + k j 0 N m 1 N C m 1 st G k m k
110 109 recnd φ C I c + k j 0 N m 1 N C m 1 st G k m k
111 110 abscld φ C I c + k j 0 N m 1 N C m 1 st G k m k
112 65 nnrecred c + 1 2 c
113 112 ad4antlr φ C I c + k j 0 N m 1 N 1 2 c
114 rphalfcl c + c 2 +
115 114 rpred c + c 2
116 115 ad4antlr φ C I c + k j 0 N m 1 N c 2
117 ltletr C m 1 st G k m k 1 2 c c 2 C m 1 st G k m k < 1 2 c 1 2 c c 2 C m 1 st G k m k < c 2
118 111 113 116 117 syl3anc φ C I c + k j 0 N m 1 N C m 1 st G k m k < 1 2 c 1 2 c c 2 C m 1 st G k m k < c 2
119 91 118 mpan2d φ C I c + k j 0 N m 1 N C m 1 st G k m k < 1 2 c C m 1 st G k m k < c 2
120 79 119 sylanl1 φ C I c + k 2 c j 0 N m 1 N C m 1 st G k m k < 1 2 c C m 1 st G k m k < c 2
121 simpl φ C I φ
122 76 sselda c + k 2 c k
123 121 122 anim12i φ C I c + k 2 c φ k
124 123 anassrs φ C I c + k 2 c φ k
125 1re 1
126 snssi 1 1
127 125 126 ax-mp 1
128 0re 0
129 snssi 0 0
130 128 129 ax-mp 0
131 127 130 unssi 1 0
132 1ex 1 V
133 132 fconst 2 nd G k 1 j × 1 : 2 nd G k 1 j 1
134 c0ex 0 V
135 134 fconst 2 nd G k j + 1 N × 0 : 2 nd G k j + 1 N 0
136 133 135 pm3.2i 2 nd G k 1 j × 1 : 2 nd G k 1 j 1 2 nd G k j + 1 N × 0 : 2 nd G k j + 1 N 0
137 xp2nd G k 0 1 N × f | f : 1 N 1-1 onto 1 N 2 nd G k f | f : 1 N 1-1 onto 1 N
138 100 137 syl φ k 2 nd G k f | f : 1 N 1-1 onto 1 N
139 fvex 2 nd G k V
140 f1oeq1 f = 2 nd G k f : 1 N 1-1 onto 1 N 2 nd G k : 1 N 1-1 onto 1 N
141 139 140 elab 2 nd G k f | f : 1 N 1-1 onto 1 N 2 nd G k : 1 N 1-1 onto 1 N
142 138 141 sylib φ k 2 nd G k : 1 N 1-1 onto 1 N
143 dff1o3 2 nd G k : 1 N 1-1 onto 1 N 2 nd G k : 1 N onto 1 N Fun 2 nd G k -1
144 143 simprbi 2 nd G k : 1 N 1-1 onto 1 N Fun 2 nd G k -1
145 imain Fun 2 nd G k -1 2 nd G k 1 j j + 1 N = 2 nd G k 1 j 2 nd G k j + 1 N
146 142 144 145 3syl φ k 2 nd G k 1 j j + 1 N = 2 nd G k 1 j 2 nd G k j + 1 N
147 elfznn0 j 0 N j 0
148 147 nn0red j 0 N j
149 148 ltp1d j 0 N j < j + 1
150 fzdisj j < j + 1 1 j j + 1 N =
151 149 150 syl j 0 N 1 j j + 1 N =
152 151 imaeq2d j 0 N 2 nd G k 1 j j + 1 N = 2 nd G k
153 ima0 2 nd G k =
154 152 153 eqtrdi j 0 N 2 nd G k 1 j j + 1 N =
155 146 154 sylan9req φ k j 0 N 2 nd G k 1 j 2 nd G k j + 1 N =
156 fun 2 nd G k 1 j × 1 : 2 nd G k 1 j 1 2 nd G k j + 1 N × 0 : 2 nd G k j + 1 N 0 2 nd G k 1 j 2 nd G k j + 1 N = 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 2 nd G k 1 j 2 nd G k j + 1 N 1 0
157 136 155 156 sylancr φ k j 0 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 2 nd G k 1 j 2 nd G k j + 1 N 1 0
158 imaundi 2 nd G k 1 j j + 1 N = 2 nd G k 1 j 2 nd G k j + 1 N
159 nn0p1nn j 0 j + 1
160 147 159 syl j 0 N j + 1
161 nnuz = 1
162 160 161 eleqtrdi j 0 N j + 1 1
163 elfzuz3 j 0 N N j
164 fzsplit2 j + 1 1 N j 1 N = 1 j j + 1 N
165 162 163 164 syl2anc j 0 N 1 N = 1 j j + 1 N
166 165 imaeq2d j 0 N 2 nd G k 1 N = 2 nd G k 1 j j + 1 N
167 f1ofo 2 nd G k : 1 N 1-1 onto 1 N 2 nd G k : 1 N onto 1 N
168 foima 2 nd G k : 1 N onto 1 N 2 nd G k 1 N = 1 N
169 142 167 168 3syl φ k 2 nd G k 1 N = 1 N
170 166 169 sylan9req j 0 N φ k 2 nd G k 1 j j + 1 N = 1 N
171 170 ancoms φ k j 0 N 2 nd G k 1 j j + 1 N = 1 N
172 158 171 eqtr3id φ k j 0 N 2 nd G k 1 j 2 nd G k j + 1 N = 1 N
173 172 feq2d φ k j 0 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 2 nd G k 1 j 2 nd G k j + 1 N 1 0 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 1 N 1 0
174 157 173 mpbid φ k j 0 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 1 N 1 0
175 174 ffvelrnda φ k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 0
176 131 175 sselid φ k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m
177 simpllr φ k j 0 N m 1 N k
178 176 177 nndivred φ k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
179 178 recnd φ k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
180 179 absnegd φ k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
181 124 180 sylanl1 φ C I c + k 2 c j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
182 124 175 sylanl1 φ C I c + k 2 c j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 0
183 elun 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 0 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 0
184 182 183 sylib φ C I c + k 2 c j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 0
185 nnrecre k 1 k
186 nnrp k k +
187 186 rpreccld k 1 k +
188 187 rpge0d k 0 1 k
189 185 188 absidd k 1 k = 1 k
190 122 189 syl c + k 2 c 1 k = 1 k
191 122 nnrecred c + k 2 c 1 k
192 112 adantr c + k 2 c 1 2 c
193 115 adantr c + k 2 c c 2
194 eluzle k 2 c 2 c k
195 194 adantl c + k 2 c 2 c k
196 65 adantr c + k 2 c 2 c
197 196 nnrpd c + k 2 c 2 c +
198 122 nnrpd c + k 2 c k +
199 197 198 lerecd c + k 2 c 2 c k 1 k 1 2 c
200 195 199 mpbid c + k 2 c 1 k 1 2 c
201 90 adantr c + k 2 c 1 2 c c 2
202 191 192 193 200 201 letrd c + k 2 c 1 k c 2
203 190 202 eqbrtrd c + k 2 c 1 k c 2
204 elsni 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m = 1
205 204 fvoveq1d 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = 1 k
206 205 breq1d 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2 1 k c 2
207 203 206 syl5ibrcom c + k 2 c 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2
208 114 rpge0d c + 0 c 2
209 nncn k k
210 nnne0 k k 0
211 209 210 div0d k 0 k = 0
212 211 abs00bd k 0 k = 0
213 212 breq1d k 0 k c 2 0 c 2
214 213 biimparc 0 c 2 k 0 k c 2
215 208 214 sylan c + k 0 k c 2
216 122 215 syldan c + k 2 c 0 k c 2
217 elsni 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 0 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m = 0
218 217 fvoveq1d 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 0 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = 0 k
219 218 breq1d 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 0 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2 0 k c 2
220 216 219 syl5ibrcom c + k 2 c 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 0 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2
221 207 220 jaod c + k 2 c 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 0 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2
222 221 adantll φ C I c + k 2 c 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 0 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2
223 222 ad2antrr φ C I c + k 2 c j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 1 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m 0 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2
224 184 223 mpd φ C I c + k 2 c j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2
225 181 224 eqbrtrd φ C I c + k 2 c j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2
226 79 111 sylanl1 φ C I c + k 2 c j 0 N m 1 N C m 1 st G k m k
227 simpll φ C I c + φ
228 227 anim1i φ C I c + k φ k
229 178 renegcld φ k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
230 228 229 sylanl1 φ C I c + k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
231 230 recnd φ C I c + k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
232 231 abscld φ C I c + k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
233 79 232 sylanl1 φ C I c + k 2 c j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
234 115 115 jca c + c 2 c 2
235 234 ad4antlr φ C I c + k 2 c j 0 N m 1 N c 2 c 2
236 ltleadd C m 1 st G k m k 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2 c 2 C m 1 st G k m k < c 2 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2 C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
237 226 233 235 236 syl21anc φ C I c + k 2 c j 0 N m 1 N C m 1 st G k m k < c 2 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2 C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
238 225 237 mpan2d φ C I c + k 2 c j 0 N m 1 N C m 1 st G k m k < c 2 C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
239 110 231 abstrid φ C I c + k j 0 N m 1 N C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
240 109 230 readdcld φ C I c + k j 0 N m 1 N C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
241 240 recnd φ C I c + k j 0 N m 1 N C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
242 241 abscld φ C I c + k j 0 N m 1 N C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
243 111 232 readdcld φ C I c + k j 0 N m 1 N C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
244 115 115 readdcld c + c 2 + c 2
245 244 ad4antlr φ C I c + k j 0 N m 1 N c 2 + c 2
246 lelttr C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k c 2 + c 2 C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2 C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
247 242 243 245 246 syl3anc φ C I c + k j 0 N m 1 N C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2 C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
248 239 247 mpand φ C I c + k j 0 N m 1 N C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2 C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
249 79 248 sylanl1 φ C I c + k 2 c j 0 N m 1 N C m 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2 C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
250 120 238 249 3syld φ C I c + k 2 c j 0 N m 1 N C m 1 st G k m k < 1 2 c C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
251 105 adantlr φ k j 0 N m 1 N 1 st G k m
252 251 176 readdcld φ k j 0 N m 1 N 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m
253 252 177 nndivred φ k j 0 N m 1 N 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
254 124 253 sylanl1 φ C I c + k 2 c j 0 N m 1 N 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
255 250 254 jctild φ C I c + k 2 c j 0 N m 1 N C m 1 st G k m k < 1 2 c 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
256 255 adantld φ C I c + k 2 c j 0 N m 1 N 1 st G k ÷ f 1 N × k m C m 1 st G k m k < 1 2 c 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
257 79 adantr φ C I c + k 2 c j 0 N φ C I c + k
258 93 ad3antlr φ C I c + k C : 1 N 0 1
259 258 ffvelrnda φ C I c + k m 1 N C m 0 1
260 39 259 sselid φ C I c + k m 1 N C m
261 80 rpreccld c + 1 2 c +
262 261 rpxrd c + 1 2 c *
263 262 ad3antlr φ C I c + k m 1 N 1 2 c *
264 19 rexmet abs 2 ∞Met
265 elbl abs 2 ∞Met C m 1 2 c * 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c 1 st G k ÷ f 1 N × k m C m abs 2 1 st G k ÷ f 1 N × k m < 1 2 c
266 264 265 mp3an1 C m 1 2 c * 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c 1 st G k ÷ f 1 N × k m C m abs 2 1 st G k ÷ f 1 N × k m < 1 2 c
267 260 263 266 syl2anc φ C I c + k m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c 1 st G k ÷ f 1 N × k m C m abs 2 1 st G k ÷ f 1 N × k m < 1 2 c
268 elmapfn 1 st G k 0 1 N 1 st G k Fn 1 N
269 100 101 268 3syl φ k 1 st G k Fn 1 N
270 vex k V
271 fnconstg k V 1 N × k Fn 1 N
272 270 271 mp1i φ k 1 N × k Fn 1 N
273 fzfid φ k 1 N Fin
274 inidm 1 N 1 N = 1 N
275 eqidd φ k m 1 N 1 st G k m = 1 st G k m
276 270 fvconst2 m 1 N 1 N × k m = k
277 276 adantl φ k m 1 N 1 N × k m = k
278 269 272 273 273 274 275 277 ofval φ k m 1 N 1 st G k ÷ f 1 N × k m = 1 st G k m k
279 278 oveq2d φ k m 1 N C m abs 2 1 st G k ÷ f 1 N × k m = C m abs 2 1 st G k m k
280 227 279 sylanl1 φ C I c + k m 1 N C m abs 2 1 st G k ÷ f 1 N × k m = C m abs 2 1 st G k m k
281 227 107 sylanl1 φ C I c + k m 1 N 1 st G k m k
282 19 remetdval C m 1 st G k m k C m abs 2 1 st G k m k = C m 1 st G k m k
283 260 281 282 syl2anc φ C I c + k m 1 N C m abs 2 1 st G k m k = C m 1 st G k m k
284 280 283 eqtrd φ C I c + k m 1 N C m abs 2 1 st G k ÷ f 1 N × k m = C m 1 st G k m k
285 284 breq1d φ C I c + k m 1 N C m abs 2 1 st G k ÷ f 1 N × k m < 1 2 c C m 1 st G k m k < 1 2 c
286 285 anbi2d φ C I c + k m 1 N 1 st G k ÷ f 1 N × k m C m abs 2 1 st G k ÷ f 1 N × k m < 1 2 c 1 st G k ÷ f 1 N × k m C m 1 st G k m k < 1 2 c
287 267 286 bitrd φ C I c + k m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c 1 st G k ÷ f 1 N × k m C m 1 st G k m k < 1 2 c
288 257 287 sylan φ C I c + k 2 c j 0 N m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c 1 st G k ÷ f 1 N × k m C m 1 st G k m k < 1 2 c
289 rpxr c + c *
290 289 ad4antlr φ C I c + k j 0 N m 1 N c *
291 elbl abs 2 ∞Met C m c * 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m abs 2 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m < c
292 264 291 mp3an1 C m c * 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m abs 2 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m < c
293 96 290 292 syl2anc φ C I c + k j 0 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m abs 2 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m < c
294 elun z 1 0 z 1 z 0
295 fzofzp1 v 0 ..^ k v + 1 0 k
296 elsni z 1 z = 1
297 296 oveq2d z 1 v + z = v + 1
298 297 eleq1d z 1 v + z 0 k v + 1 0 k
299 295 298 syl5ibrcom v 0 ..^ k z 1 v + z 0 k
300 elfzonn0 v 0 ..^ k v 0
301 300 nn0cnd v 0 ..^ k v
302 301 addid1d v 0 ..^ k v + 0 = v
303 elfzofz v 0 ..^ k v 0 k
304 302 303 eqeltrd v 0 ..^ k v + 0 0 k
305 elsni z 0 z = 0
306 305 oveq2d z 0 v + z = v + 0
307 306 eleq1d z 0 v + z 0 k v + 0 0 k
308 304 307 syl5ibrcom v 0 ..^ k z 0 v + z 0 k
309 299 308 jaod v 0 ..^ k z 1 z 0 v + z 0 k
310 294 309 syl5bi v 0 ..^ k z 1 0 v + z 0 k
311 310 imp v 0 ..^ k z 1 0 v + z 0 k
312 311 adantl φ k j 0 N v 0 ..^ k z 1 0 v + z 0 k
313 dffn3 1 st G k Fn 1 N 1 st G k : 1 N ran 1 st G k
314 269 313 sylib φ k 1 st G k : 1 N ran 1 st G k
315 314 7 fssd φ k 1 st G k : 1 N 0 ..^ k
316 315 adantr φ k j 0 N 1 st G k : 1 N 0 ..^ k
317 fzfid φ k j 0 N 1 N Fin
318 312 316 174 317 317 274 off φ k j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 1 N 0 k
319 318 ffnd φ k j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 Fn 1 N
320 270 271 mp1i φ k j 0 N 1 N × k Fn 1 N
321 269 adantr φ k j 0 N 1 st G k Fn 1 N
322 174 ffnd φ k j 0 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 Fn 1 N
323 eqidd φ k j 0 N m 1 N 1 st G k m = 1 st G k m
324 eqidd φ k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m = 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m
325 321 322 317 317 274 323 324 ofval φ k j 0 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m = 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m
326 276 adantl φ k j 0 N m 1 N 1 N × k m = k
327 319 320 317 317 274 325 326 ofval φ k j 0 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
328 327 eleq1d φ k j 0 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
329 228 328 sylanl1 φ C I c + k j 0 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
330 327 adantl3r φ C I k j 0 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
331 330 oveq2d φ C I k j 0 N m 1 N C m abs 2 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = C m abs 2 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
332 93 ad3antlr φ C I k j 0 N C : 1 N 0 1
333 332 ffvelrnda φ C I k j 0 N m 1 N C m 0 1
334 39 333 sselid φ C I k j 0 N m 1 N C m
335 253 adantl3r φ C I k j 0 N m 1 N 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
336 19 remetdval C m 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m abs 2 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = C m 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
337 334 335 336 syl2anc φ C I k j 0 N m 1 N C m abs 2 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = C m 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
338 251 recnd φ k j 0 N m 1 N 1 st G k m
339 176 recnd φ k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m
340 209 ad3antlr φ k j 0 N m 1 N k
341 210 ad3antlr φ k j 0 N m 1 N k 0
342 338 339 340 341 divdird φ k j 0 N m 1 N 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
343 107 recnd φ k m 1 N 1 st G k m k
344 343 adantlr φ k j 0 N m 1 N 1 st G k m k
345 344 179 subnegd φ k j 0 N m 1 N 1 st G k m k 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
346 342 345 eqtr4d φ k j 0 N m 1 N 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = 1 st G k m k 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
347 346 oveq2d φ k j 0 N m 1 N C m 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = C m 1 st G k m k 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
348 347 adantl3r φ C I k j 0 N m 1 N C m 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = C m 1 st G k m k 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
349 334 recnd φ C I k j 0 N m 1 N C m
350 107 adantllr φ C I k m 1 N 1 st G k m k
351 350 adantlr φ C I k j 0 N m 1 N 1 st G k m k
352 351 recnd φ C I k j 0 N m 1 N 1 st G k m k
353 179 adantl3r φ C I k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
354 353 negcld φ C I k j 0 N m 1 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
355 349 352 354 subsubd φ C I k j 0 N m 1 N C m 1 st G k m k 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
356 348 355 eqtrd φ C I k j 0 N m 1 N C m 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
357 356 fveq2d φ C I k j 0 N m 1 N C m 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k = C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
358 331 337 357 3eqtrd φ C I k j 0 N m 1 N C m abs 2 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
359 358 adantl3r φ C I c + k j 0 N m 1 N C m abs 2 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k
360 83 2halvesd c + c 2 + c 2 = c
361 360 eqcomd c + c = c 2 + c 2
362 361 ad4antlr φ C I c + k j 0 N m 1 N c = c 2 + c 2
363 359 362 breq12d φ C I c + k j 0 N m 1 N C m abs 2 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m < c C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
364 329 363 anbi12d φ C I c + k j 0 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m abs 2 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m < c 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
365 293 364 bitrd φ C I c + k j 0 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
366 79 365 sylanl1 φ C I c + k 2 c j 0 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c 1 st G k m + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k C m - 1 st G k m k + 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 m k < c 2 + c 2
367 256 288 366 3imtr4d φ C I c + k 2 c j 0 N m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c
368 367 ralimdva φ C I c + k 2 c j 0 N m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c
369 simplr φ k j 0 N k
370 elfznn0 v 0 k v 0
371 370 nn0red v 0 k v
372 nndivre v k v k
373 371 372 sylan v 0 k k v k
374 elfzle1 v 0 k 0 v
375 371 374 jca v 0 k v 0 v
376 186 rpregt0d k k 0 < k
377 divge0 v 0 v k 0 < k 0 v k
378 375 376 377 syl2an v 0 k k 0 v k
379 elfzle2 v 0 k v k
380 379 adantr v 0 k k v k
381 371 adantr v 0 k k v
382 1red v 0 k k 1
383 186 adantl v 0 k k k +
384 381 382 383 ledivmuld v 0 k k v k 1 v k 1
385 209 mulid1d k k 1 = k
386 385 breq2d k v k 1 v k
387 386 adantl v 0 k k v k 1 v k
388 384 387 bitrd v 0 k k v k 1 v k
389 380 388 mpbird v 0 k k v k 1
390 elicc01 v k 0 1 v k 0 v k v k 1
391 373 378 389 390 syl3anbrc v 0 k k v k 0 1
392 391 ancoms k v 0 k v k 0 1
393 elsni z k z = k
394 393 oveq2d z k v z = v k
395 394 eleq1d z k v z 0 1 v k 0 1
396 392 395 syl5ibrcom k v 0 k z k v z 0 1
397 396 impr k v 0 k z k v z 0 1
398 369 397 sylan φ k j 0 N v 0 k z k v z 0 1
399 270 fconst 1 N × k : 1 N k
400 399 a1i φ k j 0 N 1 N × k : 1 N k
401 398 318 400 317 317 274 off φ k j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k : 1 N 0 1
402 401 ffnd φ k j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k Fn 1 N
403 124 402 sylan φ C I c + k 2 c j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k Fn 1 N
404 368 403 jctild φ C I c + k 2 c j 0 N m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k Fn 1 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c
405 2 eleq2i 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k I 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k 0 1 1 N
406 ovex 0 1 V
407 406 43 elmap 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k 0 1 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k : 1 N 0 1
408 405 407 bitri 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k I 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k : 1 N 0 1
409 401 408 sylibr φ k j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k I
410 124 409 sylan φ C I c + k 2 c j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k I
411 404 410 jctird φ C I c + k 2 c j 0 N m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k Fn 1 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k I
412 elin 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = 1 N C m ball abs 2 c I 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = 1 N C m ball abs 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k I
413 ovex 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k V
414 413 elixp 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = 1 N C m ball abs 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k Fn 1 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c
415 414 anbi1i 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = 1 N C m ball abs 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k I 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k Fn 1 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k I
416 412 415 bitri 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = 1 N C m ball abs 2 c I 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k Fn 1 N m 1 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m C m ball abs 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k I
417 411 416 syl6ibr φ C I c + k 2 c j 0 N m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = 1 N C m ball abs 2 c I
418 ssel m = 1 N C m ball abs 2 c I v 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = 1 N C m ball abs 2 c I 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v
419 418 com12 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k m = 1 N C m ball abs 2 c I m = 1 N C m ball abs 2 c I v 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v
420 417 419 syl6 φ C I c + k 2 c j 0 N m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c m = 1 N C m ball abs 2 c I v 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v
421 420 impd φ C I c + k 2 c j 0 N m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c m = 1 N C m ball abs 2 c I v 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v
422 421 ralrimdva φ C I c + k 2 c m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c m = 1 N C m ball abs 2 c I v j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v
423 422 expd φ C I c + k 2 c m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c m = 1 N C m ball abs 2 c I v j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v
424 8 3exp2 φ k n 1 N r -1 j 0 N 0 r X
425 424 imp43 φ k n 1 N r -1 j 0 N 0 r X
426 r19.29 j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v j 0 N 0 r X j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v 0 r X
427 fveq2 z = 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k F z = F 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k
428 427 fveq1d z = 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k F z n = F 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k n
429 428 5 eqtr4di z = 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k F z n = X
430 429 breq2d z = 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k 0 r F z n 0 r X
431 430 rspcev 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v 0 r X z v 0 r F z n
432 431 rexlimivw j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v 0 r X z v 0 r F z n
433 426 432 syl j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v j 0 N 0 r X z v 0 r F z n
434 433 expcom j 0 N 0 r X j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v z v 0 r F z n
435 425 434 syl φ k n 1 N r -1 j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v z v 0 r F z n
436 435 ralrimdvva φ k j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v n 1 N r -1 z v 0 r F z n
437 122 436 sylan2 φ c + k 2 c j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v n 1 N r -1 z v 0 r F z n
438 437 anassrs φ c + k 2 c j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v n 1 N r -1 z v 0 r F z n
439 438 adantllr φ C I c + k 2 c j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k v n 1 N r -1 z v 0 r F z n
440 423 439 syl6d φ C I c + k 2 c m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c m = 1 N C m ball abs 2 c I v n 1 N r -1 z v 0 r F z n
441 440 rexlimdva φ C I c + k 2 c m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 2 c m = 1 N C m ball abs 2 c I v n 1 N r -1 z v 0 r F z n
442 74 441 syld φ C I c + i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i m = 1 N C m ball abs 2 c I v n 1 N r -1 z v 0 r F z n
443 442 com23 φ C I c + m = 1 N C m ball abs 2 c I v i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i n 1 N r -1 z v 0 r F z n
444 443 impr φ C I c + m = 1 N C m ball abs 2 c I v i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i n 1 N r -1 z v 0 r F z n
445 51 444 sylanl2 φ v R 𝑡 I C v c + m = 1 N C m ball abs 2 c I v i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i n 1 N r -1 z v 0 r F z n
446 35 445 rexlimddv φ v R 𝑡 I C v i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i n 1 N r -1 z v 0 r F z n
447 446 expr φ v R 𝑡 I C v i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i n 1 N r -1 z v 0 r F z n
448 447 com23 φ v R 𝑡 I i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i C v n 1 N r -1 z v 0 r F z n
449 r19.21v n 1 N C v r -1 z v 0 r F z n C v n 1 N r -1 z v 0 r F z n
450 448 449 syl6ibr φ v R 𝑡 I i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i n 1 N C v r -1 z v 0 r F z n
451 450 ralrimdva φ i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i v R 𝑡 I n 1 N C v r -1 z v 0 r F z n
452 ralcom v R 𝑡 I n 1 N C v r -1 z v 0 r F z n n 1 N v R 𝑡 I C v r -1 z v 0 r F z n
453 451 452 syl6ib φ i k i m 1 N 1 st G k ÷ f 1 N × k m C m ball abs 2 1 i n 1 N v R 𝑡 I C v r -1 z v 0 r F z n