Metamath Proof Explorer


Theorem poimirlem30

Description: Lemma for poimir combining poimirlem29 with bwth . (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimir.i I = 0 1 1 N
poimir.r R = 𝑡 1 N × topGen ran .
poimir.1 φ F R 𝑡 I Cn R
poimirlem30.x X = F 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k n
poimirlem30.2 φ G : 0 1 N × f | f : 1 N 1-1 onto 1 N
poimirlem30.3 φ k ran 1 st G k 0 ..^ k
poimirlem30.4 φ k n 1 N r -1 j 0 N 0 r X
Assertion poimirlem30 φ c I n 1 N v R 𝑡 I c v r -1 z v 0 r F z n

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimir.i I = 0 1 1 N
3 poimir.r R = 𝑡 1 N × topGen ran .
4 poimir.1 φ F R 𝑡 I Cn R
5 poimirlem30.x X = F 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 ÷ f 1 N × k n
6 poimirlem30.2 φ G : 0 1 N × f | f : 1 N 1-1 onto 1 N
7 poimirlem30.3 φ k ran 1 st G k 0 ..^ k
8 poimirlem30.4 φ k n 1 N r -1 j 0 N 0 r X
9 elfzonn0 i 0 ..^ k i 0
10 9 nn0red i 0 ..^ k i
11 nndivre i k i k
12 10 11 sylan i 0 ..^ k k i k
13 elfzole1 i 0 ..^ k 0 i
14 10 13 jca i 0 ..^ k i 0 i
15 nnrp k k +
16 15 rpregt0d k k 0 < k
17 divge0 i 0 i k 0 < k 0 i k
18 14 16 17 syl2an i 0 ..^ k k 0 i k
19 elfzo0le i 0 ..^ k i k
20 19 adantr i 0 ..^ k k i k
21 10 adantr i 0 ..^ k k i
22 1red i 0 ..^ k k 1
23 15 adantl i 0 ..^ k k k +
24 21 22 23 ledivmuld i 0 ..^ k k i k 1 i k 1
25 nncn k k
26 25 mulid1d k k 1 = k
27 26 breq2d k i k 1 i k
28 27 adantl i 0 ..^ k k i k 1 i k
29 24 28 bitrd i 0 ..^ k k i k 1 i k
30 20 29 mpbird i 0 ..^ k k i k 1
31 elicc01 i k 0 1 i k 0 i k i k 1
32 12 18 30 31 syl3anbrc i 0 ..^ k k i k 0 1
33 32 ancoms k i 0 ..^ k i k 0 1
34 elsni j k j = k
35 34 oveq2d j k i j = i k
36 35 eleq1d j k i j 0 1 i k 0 1
37 33 36 syl5ibrcom k i 0 ..^ k j k i j 0 1
38 37 impr k i 0 ..^ k j k i j 0 1
39 38 adantll φ k i 0 ..^ k j k i j 0 1
40 6 ffvelrnda φ k G k 0 1 N × f | f : 1 N 1-1 onto 1 N
41 xp1st G k 0 1 N × f | f : 1 N 1-1 onto 1 N 1 st G k 0 1 N
42 elmapfn 1 st G k 0 1 N 1 st G k Fn 1 N
43 40 41 42 3syl φ k 1 st G k Fn 1 N
44 df-f 1 st G k : 1 N 0 ..^ k 1 st G k Fn 1 N ran 1 st G k 0 ..^ k
45 43 7 44 sylanbrc φ k 1 st G k : 1 N 0 ..^ k
46 vex k V
47 46 fconst 1 N × k : 1 N k
48 47 a1i φ k 1 N × k : 1 N k
49 fzfid φ k 1 N Fin
50 inidm 1 N 1 N = 1 N
51 39 45 48 49 49 50 off φ k 1 st G k ÷ f 1 N × k : 1 N 0 1
52 2 eleq2i 1 st G k ÷ f 1 N × k I 1 st G k ÷ f 1 N × k 0 1 1 N
53 ovex 0 1 V
54 ovex 1 N V
55 53 54 elmap 1 st G k ÷ f 1 N × k 0 1 1 N 1 st G k ÷ f 1 N × k : 1 N 0 1
56 52 55 bitri 1 st G k ÷ f 1 N × k I 1 st G k ÷ f 1 N × k : 1 N 0 1
57 51 56 sylibr φ k 1 st G k ÷ f 1 N × k I
58 57 fmpttd φ k 1 st G k ÷ f 1 N × k : I
59 58 frnd φ ran k 1 st G k ÷ f 1 N × k I
60 ominf ¬ ω Fin
61 nnenom ω
62 enfi ω Fin ω Fin
63 61 62 ax-mp Fin ω Fin
64 iunid c ran k 1 st G k ÷ f 1 N × k c = ran k 1 st G k ÷ f 1 N × k
65 64 imaeq2i k 1 st G k ÷ f 1 N × k -1 c ran k 1 st G k ÷ f 1 N × k c = k 1 st G k ÷ f 1 N × k -1 ran k 1 st G k ÷ f 1 N × k
66 imaiun k 1 st G k ÷ f 1 N × k -1 c ran k 1 st G k ÷ f 1 N × k c = c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c
67 ovex 1 st G k ÷ f 1 N × k V
68 eqid k 1 st G k ÷ f 1 N × k = k 1 st G k ÷ f 1 N × k
69 67 68 fnmpti k 1 st G k ÷ f 1 N × k Fn
70 dffn3 k 1 st G k ÷ f 1 N × k Fn k 1 st G k ÷ f 1 N × k : ran k 1 st G k ÷ f 1 N × k
71 69 70 mpbi k 1 st G k ÷ f 1 N × k : ran k 1 st G k ÷ f 1 N × k
72 fimacnv k 1 st G k ÷ f 1 N × k : ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 ran k 1 st G k ÷ f 1 N × k =
73 71 72 ax-mp k 1 st G k ÷ f 1 N × k -1 ran k 1 st G k ÷ f 1 N × k =
74 65 66 73 3eqtr3ri = c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c
75 74 eleq1i Fin c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c Fin
76 63 75 bitr3i ω Fin c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c Fin
77 60 76 mtbi ¬ c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c Fin
78 ralnex k i ¬ 1 st G k ÷ f 1 N × k = c ¬ k i 1 st G k ÷ f 1 N × k = c
79 78 rexbii i k i ¬ 1 st G k ÷ f 1 N × k = c i ¬ k i 1 st G k ÷ f 1 N × k = c
80 rexnal i ¬ k i 1 st G k ÷ f 1 N × k = c ¬ i k i 1 st G k ÷ f 1 N × k = c
81 79 80 bitri i k i ¬ 1 st G k ÷ f 1 N × k = c ¬ i k i 1 st G k ÷ f 1 N × k = c
82 81 ralbii c ran k 1 st G k ÷ f 1 N × k i k i ¬ 1 st G k ÷ f 1 N × k = c c ran k 1 st G k ÷ f 1 N × k ¬ i k i 1 st G k ÷ f 1 N × k = c
83 ralnex c ran k 1 st G k ÷ f 1 N × k ¬ i k i 1 st G k ÷ f 1 N × k = c ¬ c ran k 1 st G k ÷ f 1 N × k i k i 1 st G k ÷ f 1 N × k = c
84 82 83 bitri c ran k 1 st G k ÷ f 1 N × k i k i ¬ 1 st G k ÷ f 1 N × k = c ¬ c ran k 1 st G k ÷ f 1 N × k i k i 1 st G k ÷ f 1 N × k = c
85 nnuz = 1
86 elnnuz i i 1
87 fzouzsplit i 1 1 = 1 ..^ i i
88 86 87 sylbi i 1 = 1 ..^ i i
89 85 88 syl5eq i = 1 ..^ i i
90 89 difeq1d i 1 ..^ i = 1 ..^ i i 1 ..^ i
91 uncom 1 ..^ i i = i 1 ..^ i
92 91 difeq1i 1 ..^ i i 1 ..^ i = i 1 ..^ i 1 ..^ i
93 difun2 i 1 ..^ i 1 ..^ i = i 1 ..^ i
94 92 93 eqtri 1 ..^ i i 1 ..^ i = i 1 ..^ i
95 90 94 eqtrdi i 1 ..^ i = i 1 ..^ i
96 difss i 1 ..^ i i
97 95 96 eqsstrdi i 1 ..^ i i
98 ssralv 1 ..^ i i k i ¬ 1 st G k ÷ f 1 N × k = c k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c
99 97 98 syl i k i ¬ 1 st G k ÷ f 1 N × k = c k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c
100 impexp k ¬ k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c k ¬ k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c
101 eldif k 1 ..^ i k ¬ k 1 ..^ i
102 101 imbi1i k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c k ¬ k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c
103 con34b 1 st G k ÷ f 1 N × k = c k 1 ..^ i ¬ k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c
104 103 imbi2i k 1 st G k ÷ f 1 N × k = c k 1 ..^ i k ¬ k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c
105 100 102 104 3bitr4i k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c k 1 st G k ÷ f 1 N × k = c k 1 ..^ i
106 105 albii k k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c k k 1 st G k ÷ f 1 N × k = c k 1 ..^ i
107 df-ral k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c k k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c
108 vex c V
109 68 mptiniseg c V k 1 st G k ÷ f 1 N × k -1 c = k | 1 st G k ÷ f 1 N × k = c
110 108 109 ax-mp k 1 st G k ÷ f 1 N × k -1 c = k | 1 st G k ÷ f 1 N × k = c
111 110 sseq1i k 1 st G k ÷ f 1 N × k -1 c 1 ..^ i k | 1 st G k ÷ f 1 N × k = c 1 ..^ i
112 rabss k | 1 st G k ÷ f 1 N × k = c 1 ..^ i k 1 st G k ÷ f 1 N × k = c k 1 ..^ i
113 df-ral k 1 st G k ÷ f 1 N × k = c k 1 ..^ i k k 1 st G k ÷ f 1 N × k = c k 1 ..^ i
114 111 112 113 3bitri k 1 st G k ÷ f 1 N × k -1 c 1 ..^ i k k 1 st G k ÷ f 1 N × k = c k 1 ..^ i
115 106 107 114 3bitr4i k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c k 1 st G k ÷ f 1 N × k -1 c 1 ..^ i
116 fzofi 1 ..^ i Fin
117 ssfi 1 ..^ i Fin k 1 st G k ÷ f 1 N × k -1 c 1 ..^ i k 1 st G k ÷ f 1 N × k -1 c Fin
118 116 117 mpan k 1 st G k ÷ f 1 N × k -1 c 1 ..^ i k 1 st G k ÷ f 1 N × k -1 c Fin
119 115 118 sylbi k 1 ..^ i ¬ 1 st G k ÷ f 1 N × k = c k 1 st G k ÷ f 1 N × k -1 c Fin
120 99 119 syl6 i k i ¬ 1 st G k ÷ f 1 N × k = c k 1 st G k ÷ f 1 N × k -1 c Fin
121 120 rexlimiv i k i ¬ 1 st G k ÷ f 1 N × k = c k 1 st G k ÷ f 1 N × k -1 c Fin
122 121 ralimi c ran k 1 st G k ÷ f 1 N × k i k i ¬ 1 st G k ÷ f 1 N × k = c c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c Fin
123 84 122 sylbir ¬ c ran k 1 st G k ÷ f 1 N × k i k i 1 st G k ÷ f 1 N × k = c c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c Fin
124 iunfi ran k 1 st G k ÷ f 1 N × k Fin c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c Fin c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c Fin
125 124 ex ran k 1 st G k ÷ f 1 N × k Fin c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c Fin c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c Fin
126 123 125 syl5 ran k 1 st G k ÷ f 1 N × k Fin ¬ c ran k 1 st G k ÷ f 1 N × k i k i 1 st G k ÷ f 1 N × k = c c ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k -1 c Fin
127 77 126 mt3i ran k 1 st G k ÷ f 1 N × k Fin c ran k 1 st G k ÷ f 1 N × k i k i 1 st G k ÷ f 1 N × k = c
128 ssrexv ran k 1 st G k ÷ f 1 N × k I c ran k 1 st G k ÷ f 1 N × k i k i 1 st G k ÷ f 1 N × k = c c I i k i 1 st G k ÷ f 1 N × k = c
129 59 127 128 syl2im φ ran k 1 st G k ÷ f 1 N × k Fin c I i k i 1 st G k ÷ f 1 N × k = c
130 unitssre 0 1
131 elmapi c 0 1 1 N c : 1 N 0 1
132 131 2 eleq2s c I c : 1 N 0 1
133 132 ffvelrnda c I m 1 N c m 0 1
134 130 133 sseldi c I m 1 N c m
135 nnrp i i +
136 135 rpreccld i 1 i +
137 eqid abs 2 = abs 2
138 137 rexmet abs 2 ∞Met
139 blcntr abs 2 ∞Met c m 1 i + c m c m ball abs 2 1 i
140 138 139 mp3an1 c m 1 i + c m c m ball abs 2 1 i
141 134 136 140 syl2an c I m 1 N i c m c m ball abs 2 1 i
142 141 an32s c I i m 1 N c m c m ball abs 2 1 i
143 fveq1 1 st G k ÷ f 1 N × k = c 1 st G k ÷ f 1 N × k m = c m
144 143 eleq1d 1 st G k ÷ f 1 N × k = c 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i c m c m ball abs 2 1 i
145 142 144 syl5ibrcom c I i m 1 N 1 st G k ÷ f 1 N × k = c 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
146 145 ralrimdva c I i 1 st G k ÷ f 1 N × k = c m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
147 146 reximdv c I i k i 1 st G k ÷ f 1 N × k = c k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
148 147 ralimdva c I i k i 1 st G k ÷ f 1 N × k = c i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
149 148 reximia c I i k i 1 st G k ÷ f 1 N × k = c c I i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
150 129 149 syl6 φ ran k 1 st G k ÷ f 1 N × k Fin c I i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
151 54 53 ixpconst n = 1 N 0 1 = 0 1 1 N
152 2 151 eqtr4i I = n = 1 N 0 1
153 3 152 oveq12i R 𝑡 I = 𝑡 1 N × topGen ran . 𝑡 n = 1 N 0 1
154 fzfid 1 N Fin
155 retop topGen ran . Top
156 155 fconst6 1 N × topGen ran . : 1 N Top
157 156 a1i 1 N × topGen ran . : 1 N Top
158 53 a1i n 1 N 0 1 V
159 154 157 158 ptrest 𝑡 1 N × topGen ran . 𝑡 n = 1 N 0 1 = 𝑡 n 1 N 1 N × topGen ran . n 𝑡 0 1
160 159 mptru 𝑡 1 N × topGen ran . 𝑡 n = 1 N 0 1 = 𝑡 n 1 N 1 N × topGen ran . n 𝑡 0 1
161 fvex topGen ran . V
162 161 fvconst2 n 1 N 1 N × topGen ran . n = topGen ran .
163 162 oveq1d n 1 N 1 N × topGen ran . n 𝑡 0 1 = topGen ran . 𝑡 0 1
164 163 mpteq2ia n 1 N 1 N × topGen ran . n 𝑡 0 1 = n 1 N topGen ran . 𝑡 0 1
165 fconstmpt 1 N × topGen ran . 𝑡 0 1 = n 1 N topGen ran . 𝑡 0 1
166 164 165 eqtr4i n 1 N 1 N × topGen ran . n 𝑡 0 1 = 1 N × topGen ran . 𝑡 0 1
167 166 fveq2i 𝑡 n 1 N 1 N × topGen ran . n 𝑡 0 1 = 𝑡 1 N × topGen ran . 𝑡 0 1
168 153 160 167 3eqtri R 𝑡 I = 𝑡 1 N × topGen ran . 𝑡 0 1
169 fzfi 1 N Fin
170 dfii2 II = topGen ran . 𝑡 0 1
171 iicmp II Comp
172 170 171 eqeltrri topGen ran . 𝑡 0 1 Comp
173 172 fconst6 1 N × topGen ran . 𝑡 0 1 : 1 N Comp
174 ptcmpfi 1 N Fin 1 N × topGen ran . 𝑡 0 1 : 1 N Comp 𝑡 1 N × topGen ran . 𝑡 0 1 Comp
175 169 173 174 mp2an 𝑡 1 N × topGen ran . 𝑡 0 1 Comp
176 168 175 eqeltri R 𝑡 I Comp
177 rehaus topGen ran . Haus
178 177 fconst6 1 N × topGen ran . : 1 N Haus
179 pthaus 1 N Fin 1 N × topGen ran . : 1 N Haus 𝑡 1 N × topGen ran . Haus
180 169 178 179 mp2an 𝑡 1 N × topGen ran . Haus
181 3 180 eqeltri R Haus
182 haustop R Haus R Top
183 181 182 ax-mp R Top
184 reex V
185 mapss V 0 1 0 1 1 N 1 N
186 184 130 185 mp2an 0 1 1 N 1 N
187 2 186 eqsstri I 1 N
188 uniretop = topGen ran .
189 3 188 ptuniconst 1 N Fin topGen ran . Top 1 N = R
190 169 155 189 mp2an 1 N = R
191 190 restuni R Top I 1 N I = R 𝑡 I
192 183 187 191 mp2an I = R 𝑡 I
193 192 bwth R 𝑡 I Comp ran k 1 st G k ÷ f 1 N × k I ¬ ran k 1 st G k ÷ f 1 N × k Fin c I c limPt R 𝑡 I ran k 1 st G k ÷ f 1 N × k
194 193 3expia R 𝑡 I Comp ran k 1 st G k ÷ f 1 N × k I ¬ ran k 1 st G k ÷ f 1 N × k Fin c I c limPt R 𝑡 I ran k 1 st G k ÷ f 1 N × k
195 176 59 194 sylancr φ ¬ ran k 1 st G k ÷ f 1 N × k Fin c I c limPt R 𝑡 I ran k 1 st G k ÷ f 1 N × k
196 cmptop R 𝑡 I Comp R 𝑡 I Top
197 176 196 ax-mp R 𝑡 I Top
198 192 islp3 R 𝑡 I Top ran k 1 st G k ÷ f 1 N × k I c I c limPt R 𝑡 I ran k 1 st G k ÷ f 1 N × k v R 𝑡 I c v v ran k 1 st G k ÷ f 1 N × k c
199 197 198 mp3an1 ran k 1 st G k ÷ f 1 N × k I c I c limPt R 𝑡 I ran k 1 st G k ÷ f 1 N × k v R 𝑡 I c v v ran k 1 st G k ÷ f 1 N × k c
200 59 199 sylan φ c I c limPt R 𝑡 I ran k 1 st G k ÷ f 1 N × k v R 𝑡 I c v v ran k 1 st G k ÷ f 1 N × k c
201 fzfid c I i 1 N Fin
202 156 a1i c I i 1 N × topGen ran . : 1 N Top
203 nnrecre i 1 i
204 203 rexrd i 1 i *
205 eqid MetOpen abs 2 = MetOpen abs 2
206 137 205 tgioo topGen ran . = MetOpen abs 2
207 206 blopn abs 2 ∞Met c m 1 i * c m ball abs 2 1 i topGen ran .
208 138 207 mp3an1 c m 1 i * c m ball abs 2 1 i topGen ran .
209 134 204 208 syl2an c I m 1 N i c m ball abs 2 1 i topGen ran .
210 209 an32s c I i m 1 N c m ball abs 2 1 i topGen ran .
211 161 fvconst2 m 1 N 1 N × topGen ran . m = topGen ran .
212 211 adantl c I i m 1 N 1 N × topGen ran . m = topGen ran .
213 210 212 eleqtrrd c I i m 1 N c m ball abs 2 1 i 1 N × topGen ran . m
214 noel ¬ m
215 difid 1 N 1 N =
216 215 eleq2i m 1 N 1 N m
217 214 216 mtbir ¬ m 1 N 1 N
218 217 pm2.21i m 1 N 1 N c m ball abs 2 1 i = 1 N × topGen ran . m
219 218 adantl c I i m 1 N 1 N c m ball abs 2 1 i = 1 N × topGen ran . m
220 201 202 201 213 219 ptopn c I i m = 1 N c m ball abs 2 1 i 𝑡 1 N × topGen ran .
221 220 3 eleqtrrdi c I i m = 1 N c m ball abs 2 1 i R
222 ovex 0 1 1 N V
223 2 222 eqeltri I V
224 elrestr R Haus I V m = 1 N c m ball abs 2 1 i R m = 1 N c m ball abs 2 1 i I R 𝑡 I
225 181 223 224 mp3an12 m = 1 N c m ball abs 2 1 i R m = 1 N c m ball abs 2 1 i I R 𝑡 I
226 221 225 syl c I i m = 1 N c m ball abs 2 1 i I R 𝑡 I
227 difss k 1 st G k ÷ f 1 N × k 1 ..^ i c k 1 st G k ÷ f 1 N × k 1 ..^ i
228 imassrn k 1 st G k ÷ f 1 N × k 1 ..^ i ran k 1 st G k ÷ f 1 N × k
229 227 228 sstri k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k
230 229 59 sstrid φ k 1 st G k ÷ f 1 N × k 1 ..^ i c I
231 haust1 R Haus R Fre
232 181 231 ax-mp R Fre
233 restt1 R Fre I V R 𝑡 I Fre
234 232 223 233 mp2an R 𝑡 I Fre
235 funmpt Fun k 1 st G k ÷ f 1 N × k
236 imafi Fun k 1 st G k ÷ f 1 N × k 1 ..^ i Fin k 1 st G k ÷ f 1 N × k 1 ..^ i Fin
237 235 116 236 mp2an k 1 st G k ÷ f 1 N × k 1 ..^ i Fin
238 diffi k 1 st G k ÷ f 1 N × k 1 ..^ i Fin k 1 st G k ÷ f 1 N × k 1 ..^ i c Fin
239 237 238 ax-mp k 1 st G k ÷ f 1 N × k 1 ..^ i c Fin
240 192 t1ficld R 𝑡 I Fre k 1 st G k ÷ f 1 N × k 1 ..^ i c I k 1 st G k ÷ f 1 N × k 1 ..^ i c Fin k 1 st G k ÷ f 1 N × k 1 ..^ i c Clsd R 𝑡 I
241 234 239 240 mp3an13 k 1 st G k ÷ f 1 N × k 1 ..^ i c I k 1 st G k ÷ f 1 N × k 1 ..^ i c Clsd R 𝑡 I
242 230 241 syl φ k 1 st G k ÷ f 1 N × k 1 ..^ i c Clsd R 𝑡 I
243 192 difopn m = 1 N c m ball abs 2 1 i I R 𝑡 I k 1 st G k ÷ f 1 N × k 1 ..^ i c Clsd R 𝑡 I m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c R 𝑡 I
244 226 242 243 syl2anr φ c I i m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c R 𝑡 I
245 244 anassrs φ c I i m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c R 𝑡 I
246 eleq2 v = m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c c v c m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c
247 ineq1 v = m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c v ran k 1 st G k ÷ f 1 N × k c = m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c
248 247 neeq1d v = m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c v ran k 1 st G k ÷ f 1 N × k c m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c
249 246 248 imbi12d v = m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c c v v ran k 1 st G k ÷ f 1 N × k c c m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c
250 249 rspcva m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c R 𝑡 I v R 𝑡 I c v v ran k 1 st G k ÷ f 1 N × k c c m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c
251 132 ffnd c I c Fn 1 N
252 251 adantr c I i c Fn 1 N
253 142 ralrimiva c I i m 1 N c m c m ball abs 2 1 i
254 108 elixp c m = 1 N c m ball abs 2 1 i c Fn 1 N m 1 N c m c m ball abs 2 1 i
255 252 253 254 sylanbrc c I i c m = 1 N c m ball abs 2 1 i
256 simpl c I i c I
257 255 256 elind c I i c m = 1 N c m ball abs 2 1 i I
258 neldifsnd c I i ¬ c k 1 st G k ÷ f 1 N × k 1 ..^ i c
259 257 258 eldifd c I i c m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c
260 259 adantll φ c I i c m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c
261 simplr j Fn 1 N m 1 N j m c m ball abs 2 1 i j I m 1 N j m c m ball abs 2 1 i
262 261 anim1i j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i m 1 N j m c m ball abs 2 1 i ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i
263 simpl j ran k 1 st G k ÷ f 1 N × k ¬ j c j ran k 1 st G k ÷ f 1 N × k
264 262 263 anim12i j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k ¬ j c m 1 N j m c m ball abs 2 1 i ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k
265 elin j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c j ran k 1 st G k ÷ f 1 N × k c
266 andir j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ ¬ j c j ran k 1 st G k ÷ f 1 N × k ¬ j c j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k ¬ j c j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ ¬ j c j ran k 1 st G k ÷ f 1 N × k ¬ j c
267 eldif j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c j m = 1 N c m ball abs 2 1 i I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i c
268 elin j m = 1 N c m ball abs 2 1 i I j m = 1 N c m ball abs 2 1 i j I
269 vex j V
270 269 elixp j m = 1 N c m ball abs 2 1 i j Fn 1 N m 1 N j m c m ball abs 2 1 i
271 270 anbi1i j m = 1 N c m ball abs 2 1 i j I j Fn 1 N m 1 N j m c m ball abs 2 1 i j I
272 268 271 bitri j m = 1 N c m ball abs 2 1 i I j Fn 1 N m 1 N j m c m ball abs 2 1 i j I
273 ianor ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i ¬ j c ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i ¬ ¬ j c
274 eldif j k 1 st G k ÷ f 1 N × k 1 ..^ i c j k 1 st G k ÷ f 1 N × k 1 ..^ i ¬ j c
275 273 274 xchnxbir ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i c ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i ¬ ¬ j c
276 272 275 anbi12i j m = 1 N c m ball abs 2 1 i I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i c j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i ¬ ¬ j c
277 andi j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i ¬ ¬ j c j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ ¬ j c
278 267 276 277 3bitri j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ ¬ j c
279 eldif j ran k 1 st G k ÷ f 1 N × k c j ran k 1 st G k ÷ f 1 N × k ¬ j c
280 278 279 anbi12i j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c j ran k 1 st G k ÷ f 1 N × k c j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ ¬ j c j ran k 1 st G k ÷ f 1 N × k ¬ j c
281 pm3.24 ¬ ¬ j c ¬ ¬ j c
282 simpr j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ ¬ j c ¬ ¬ j c
283 simpr j ran k 1 st G k ÷ f 1 N × k ¬ j c ¬ j c
284 282 283 anim12ci j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ ¬ j c j ran k 1 st G k ÷ f 1 N × k ¬ j c ¬ j c ¬ ¬ j c
285 281 284 mto ¬ j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ ¬ j c j ran k 1 st G k ÷ f 1 N × k ¬ j c
286 285 biorfi j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k ¬ j c j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k ¬ j c j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ ¬ j c j ran k 1 st G k ÷ f 1 N × k ¬ j c
287 266 280 286 3bitr4i j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c j ran k 1 st G k ÷ f 1 N × k c j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k ¬ j c
288 265 287 bitri j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c j Fn 1 N m 1 N j m c m ball abs 2 1 i j I ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k ¬ j c
289 ancom ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i m 1 N j m c m ball abs 2 1 i ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k
290 anass m 1 N j m c m ball abs 2 1 i ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k
291 289 290 bitr4i ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i m 1 N j m c m ball abs 2 1 i ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k
292 264 288 291 3imtr4i j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i
293 ancom ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k j ran k 1 st G k ÷ f 1 N × k ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i
294 eldif j ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i
295 293 294 bitr4i ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k j ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k 1 ..^ i
296 imadmrn k 1 st G k ÷ f 1 N × k dom k 1 st G k ÷ f 1 N × k = ran k 1 st G k ÷ f 1 N × k
297 67 68 dmmpti dom k 1 st G k ÷ f 1 N × k =
298 297 imaeq2i k 1 st G k ÷ f 1 N × k dom k 1 st G k ÷ f 1 N × k = k 1 st G k ÷ f 1 N × k
299 296 298 eqtr3i ran k 1 st G k ÷ f 1 N × k = k 1 st G k ÷ f 1 N × k
300 299 difeq1i ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k 1 ..^ i = k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k 1 ..^ i
301 imadifss k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k 1 ..^ i k 1 st G k ÷ f 1 N × k 1 ..^ i
302 300 301 eqsstri ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k 1 ..^ i k 1 st G k ÷ f 1 N × k 1 ..^ i
303 imass2 1 ..^ i i k 1 st G k ÷ f 1 N × k 1 ..^ i k 1 st G k ÷ f 1 N × k i
304 97 303 syl i k 1 st G k ÷ f 1 N × k 1 ..^ i k 1 st G k ÷ f 1 N × k i
305 df-ima k 1 st G k ÷ f 1 N × k i = ran k 1 st G k ÷ f 1 N × k i
306 uznnssnn i i
307 306 resmptd i k 1 st G k ÷ f 1 N × k i = k i 1 st G k ÷ f 1 N × k
308 307 rneqd i ran k 1 st G k ÷ f 1 N × k i = ran k i 1 st G k ÷ f 1 N × k
309 305 308 syl5eq i k 1 st G k ÷ f 1 N × k i = ran k i 1 st G k ÷ f 1 N × k
310 304 309 sseqtrd i k 1 st G k ÷ f 1 N × k 1 ..^ i ran k i 1 st G k ÷ f 1 N × k
311 302 310 sstrid i ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k 1 ..^ i ran k i 1 st G k ÷ f 1 N × k
312 311 sseld i j ran k 1 st G k ÷ f 1 N × k k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k i 1 st G k ÷ f 1 N × k
313 295 312 syl5bi i ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k j ran k i 1 st G k ÷ f 1 N × k
314 313 anim1d i ¬ j k 1 st G k ÷ f 1 N × k 1 ..^ i j ran k 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i j ran k i 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i
315 292 314 syl5 i j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c j ran k i 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i
316 315 eximdv i j j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c j j ran k i 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i
317 n0 m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c j j m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c
318 67 rgenw k i 1 st G k ÷ f 1 N × k V
319 eqid k i 1 st G k ÷ f 1 N × k = k i 1 st G k ÷ f 1 N × k
320 fveq1 j = 1 st G k ÷ f 1 N × k j m = 1 st G k ÷ f 1 N × k m
321 320 eleq1d j = 1 st G k ÷ f 1 N × k j m c m ball abs 2 1 i 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
322 321 ralbidv j = 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
323 319 322 rexrnmptw k i 1 st G k ÷ f 1 N × k V j ran k i 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
324 318 323 ax-mp j ran k i 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
325 df-rex j ran k i 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i j j ran k i 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i
326 324 325 bitr3i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i j j ran k i 1 st G k ÷ f 1 N × k m 1 N j m c m ball abs 2 1 i
327 316 317 326 3imtr4g i m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
328 327 adantl φ c I i m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
329 260 328 embantd φ c I i c m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c ran k 1 st G k ÷ f 1 N × k c k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
330 250 329 syl5 φ c I i m = 1 N c m ball abs 2 1 i I k 1 st G k ÷ f 1 N × k 1 ..^ i c R 𝑡 I v R 𝑡 I c v v ran k 1 st G k ÷ f 1 N × k c k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
331 245 330 mpand φ c I i v R 𝑡 I c v v ran k 1 st G k ÷ f 1 N × k c k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
332 331 ralrimdva φ c I v R 𝑡 I c v v ran k 1 st G k ÷ f 1 N × k c i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
333 200 332 sylbid φ c I c limPt R 𝑡 I ran k 1 st G k ÷ f 1 N × k i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
334 333 reximdva φ c I c limPt R 𝑡 I ran k 1 st G k ÷ f 1 N × k c I i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
335 195 334 syld φ ¬ ran k 1 st G k ÷ f 1 N × k Fin c I i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
336 150 335 pm2.61d φ c I i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i
337 1 2 3 4 5 6 7 8 poimirlem29 φ i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i n 1 N v R 𝑡 I c v r -1 z v 0 r F z n
338 337 reximdv φ c I i k i m 1 N 1 st G k ÷ f 1 N × k m c m ball abs 2 1 i c I n 1 N v R 𝑡 I c v r -1 z v 0 r F z n
339 336 338 mpd φ c I n 1 N v R 𝑡 I c v r -1 z v 0 r F z n