Metamath Proof Explorer


Theorem poimirlem31

Description: Lemma for poimir , assigning values to the vertices of the tessellation that meet the hypotheses of both poimirlem30 and poimirlem28 . Equation (2) of Kulpa p. 547. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimir.i I = 0 1 1 N
poimir.r R = 𝑡 1 N × topGen ran .
poimir.1 φ F R 𝑡 I Cn R
poimir.2 φ n 1 N z I z n = 0 F z n 0
poimirlem31.p P = 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0
poimirlem31.3 φ G : 0 1 N × f | f : 1 N 1-1 onto 1 N
poimirlem31.4 φ k ran 1 st G k 0 ..^ k
poimirlem31.5 φ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
Assertion poimirlem31 φ k n 1 N r -1 j 0 N 0 r F P ÷ f 1 N × k n

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimir.i I = 0 1 1 N
3 poimir.r R = 𝑡 1 N × topGen ran .
4 poimir.1 φ F R 𝑡 I Cn R
5 poimir.2 φ n 1 N z I z n = 0 F z n 0
6 poimirlem31.p P = 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0
7 poimirlem31.3 φ G : 0 1 N × f | f : 1 N 1-1 onto 1 N
8 poimirlem31.4 φ k ran 1 st G k 0 ..^ k
9 poimirlem31.5 φ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
10 elpri r -1 r = r = -1
11 simprr φ k n 1 N n 1 N
12 fz1ssfz0 1 N 0 N
13 12 sseli n 1 N n 0 N
14 13 anim2i k n 1 N k n 0 N
15 eleq1 i = n i 0 N n 0 N
16 15 anbi2d i = n k i 0 N k n 0 N
17 16 anbi2d i = n φ k i 0 N φ k n 0 N
18 eqeq1 i = n i = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
19 18 rexbidv i = n j 0 N i = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < j 0 N n = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
20 17 19 imbi12d i = n φ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < φ k n 0 N j 0 N n = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
21 20 9 chvarvv φ k n 0 N j 0 N n = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
22 elfzle1 n 1 N 1 n
23 1re 1
24 elfzelz n 1 N n
25 24 zred n 1 N n
26 lenlt 1 n 1 n ¬ n < 1
27 23 25 26 sylancr n 1 N 1 n ¬ n < 1
28 22 27 mpbid n 1 N ¬ n < 1
29 elsni n 0 n = 0
30 0lt1 0 < 1
31 29 30 eqbrtrdi n 0 n < 1
32 28 31 nsyl n 1 N ¬ n 0
33 ltso < Or
34 snfi 0 Fin
35 fzfi 1 N Fin
36 rabfi 1 N Fin a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 Fin
37 35 36 ax-mp a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 Fin
38 unfi 0 Fin a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 Fin 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 Fin
39 34 37 38 mp2an 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 Fin
40 c0ex 0 V
41 40 snid 0 0
42 elun1 0 0 0 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
43 ne0i 0 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
44 41 42 43 mp2b 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
45 0re 0
46 snssi 0 0
47 45 46 ax-mp 0
48 ssrab2 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 1 N
49 24 ssriv 1 N
50 zssre
51 49 50 sstri 1 N
52 48 51 sstri a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
53 47 52 unssi 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
54 39 44 53 3pm3.2i 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 Fin 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
55 fisupcl < Or 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 Fin 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
56 33 54 55 mp2an sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
57 eleq1 n = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
58 56 57 mpbiri n = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
59 elun n 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 n 0 n a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
60 58 59 sylib n = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n 0 n a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
61 oveq2 a = n 1 a = 1 n
62 61 raleqdv a = n b 1 a 0 F P ÷ f 1 N × k b P b 0 b 1 n 0 F P ÷ f 1 N × k b P b 0
63 62 elrab n a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 n 1 N b 1 n 0 F P ÷ f 1 N × k b P b 0
64 elfzuz n 1 N n 1
65 eluzfz2 n 1 n 1 n
66 64 65 syl n 1 N n 1 n
67 simpl 0 F P ÷ f 1 N × k b P b 0 0 F P ÷ f 1 N × k b
68 67 ralimi b 1 n 0 F P ÷ f 1 N × k b P b 0 b 1 n 0 F P ÷ f 1 N × k b
69 fveq2 b = n F P ÷ f 1 N × k b = F P ÷ f 1 N × k n
70 69 breq2d b = n 0 F P ÷ f 1 N × k b 0 F P ÷ f 1 N × k n
71 70 rspcva n 1 n b 1 n 0 F P ÷ f 1 N × k b 0 F P ÷ f 1 N × k n
72 66 68 71 syl2an n 1 N b 1 n 0 F P ÷ f 1 N × k b P b 0 0 F P ÷ f 1 N × k n
73 63 72 sylbi n a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 0 F P ÷ f 1 N × k n
74 73 orim2i n 0 n a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 n 0 0 F P ÷ f 1 N × k n
75 60 74 syl n = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n 0 0 F P ÷ f 1 N × k n
76 orel1 ¬ n 0 n 0 0 F P ÷ f 1 N × k n 0 F P ÷ f 1 N × k n
77 32 75 76 syl2im n 1 N n = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < 0 F P ÷ f 1 N × k n
78 77 reximdv n 1 N j 0 N n = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < j 0 N 0 F P ÷ f 1 N × k n
79 21 78 syl5 n 1 N φ k n 0 N j 0 N 0 F P ÷ f 1 N × k n
80 14 79 sylan2i n 1 N φ k n 1 N j 0 N 0 F P ÷ f 1 N × k n
81 11 80 mpcom φ k n 1 N j 0 N 0 F P ÷ f 1 N × k n
82 breq r = 0 r F P ÷ f 1 N × k n 0 F P ÷ f 1 N × k n
83 82 rexbidv r = j 0 N 0 r F P ÷ f 1 N × k n j 0 N 0 F P ÷ f 1 N × k n
84 81 83 syl5ibrcom φ k n 1 N r = j 0 N 0 r F P ÷ f 1 N × k n
85 1 nnzd φ N
86 elfzm1b n N n 1 N n 1 0 N 1
87 24 85 86 syl2anr φ n 1 N n 1 N n 1 0 N 1
88 87 biimpd φ n 1 N n 1 N n 1 0 N 1
89 88 ex φ n 1 N n 1 N n 1 0 N 1
90 89 pm2.43d φ n 1 N n 1 0 N 1
91 1 nncnd φ N
92 npcan1 N N - 1 + 1 = N
93 91 92 syl φ N - 1 + 1 = N
94 nnm1nn0 N N 1 0
95 1 94 syl φ N 1 0
96 95 nn0zd φ N 1
97 uzid N 1 N 1 N 1
98 peano2uz N 1 N 1 N - 1 + 1 N 1
99 96 97 98 3syl φ N - 1 + 1 N 1
100 93 99 eqeltrrd φ N N 1
101 fzss2 N N 1 0 N 1 0 N
102 100 101 syl φ 0 N 1 0 N
103 102 sseld φ n 1 0 N 1 n 1 0 N
104 90 103 syld φ n 1 N n 1 0 N
105 104 anim2d φ k n 1 N k n 1 0 N
106 105 imp φ k n 1 N k n 1 0 N
107 ovex n 1 V
108 eleq1 i = n 1 i 0 N n 1 0 N
109 108 anbi2d i = n 1 k i 0 N k n 1 0 N
110 109 anbi2d i = n 1 φ k i 0 N φ k n 1 0 N
111 eqeq1 i = n 1 i = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
112 111 rexbidv i = n 1 j 0 N i = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < j 0 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
113 110 112 imbi12d i = n 1 φ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < φ k n 1 0 N j 0 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
114 107 113 9 vtocl φ k n 1 0 N j 0 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
115 106 114 syldan φ k n 1 N j 0 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
116 eleq1 n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n 1 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
117 56 116 mpbiri n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n 1 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
118 elun n 1 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 n 1 0 n 1 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
119 107 elsn n 1 0 n 1 = 0
120 oveq2 a = n 1 1 a = 1 n 1
121 120 raleqdv a = n 1 b 1 a 0 F P ÷ f 1 N × k b P b 0 b 1 n 1 0 F P ÷ f 1 N × k b P b 0
122 121 elrab n 1 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0
123 119 122 orbi12i n 1 0 n 1 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 n 1 = 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0
124 118 123 bitri n 1 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 n 1 = 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0
125 117 124 sylib n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n 1 = 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0
126 125 a1i n 1 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n 1 = 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0
127 ltm1 n n 1 < n
128 peano2rem n n 1
129 ltnle n 1 n n 1 < n ¬ n n 1
130 128 129 mpancom n n 1 < n ¬ n n 1
131 127 130 mpbid n ¬ n n 1
132 25 131 syl n 1 N ¬ n n 1
133 breq2 n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n n 1 n sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
134 133 notbid n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < ¬ n n 1 ¬ n sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
135 132 134 syl5ibcom n 1 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < ¬ n sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
136 elun2 n a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 n 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
137 fimaxre2 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 Fin x y 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 y x
138 53 39 137 mp2an x y 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 y x
139 53 44 138 3pm3.2i 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 x y 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 y x
140 139 suprubii n 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 n sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
141 136 140 syl n a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 n sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 <
142 141 con3i ¬ n sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < ¬ n a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0
143 ianor ¬ n 1 N b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ n 1 N ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0
144 143 63 xchnxbir ¬ n a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 ¬ n 1 N ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0
145 142 144 sylib ¬ n sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < ¬ n 1 N ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0
146 135 145 syl6 n 1 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < ¬ n 1 N ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0
147 pm2.63 n 1 N ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ n 1 N ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0
148 147 orcs n 1 N ¬ n 1 N ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0
149 146 148 syld n 1 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0
150 126 149 jcad n 1 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < n 1 = 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0
151 andir n 1 = 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 n 1 = 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0
152 24 zcnd n 1 N n
153 ax-1cn 1
154 0cn 0
155 subadd n 1 0 n 1 = 0 1 + 0 = n
156 153 154 155 mp3an23 n n 1 = 0 1 + 0 = n
157 152 156 syl n 1 N n 1 = 0 1 + 0 = n
158 157 biimpa n 1 N n 1 = 0 1 + 0 = n
159 1p0e1 1 + 0 = 1
160 158 159 eqtr3di n 1 N n 1 = 0 n = 1
161 1z 1
162 fzsn 1 1 1 = 1
163 161 162 ax-mp 1 1 = 1
164 oveq2 n = 1 1 n = 1 1
165 sneq n = 1 n = 1
166 163 164 165 3eqtr4a n = 1 1 n = n
167 166 raleqdv n = 1 b 1 n 0 F P ÷ f 1 N × k b P b 0 b n 0 F P ÷ f 1 N × k b P b 0
168 167 notbid n = 1 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b n 0 F P ÷ f 1 N × k b P b 0
169 168 biimpd n = 1 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b n 0 F P ÷ f 1 N × k b P b 0
170 160 169 syl n 1 N n 1 = 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b n 0 F P ÷ f 1 N × k b P b 0
171 170 expimpd n 1 N n 1 = 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b n 0 F P ÷ f 1 N × k b P b 0
172 ralun b 1 n 1 0 F P ÷ f 1 N × k b P b 0 b n 0 F P ÷ f 1 N × k b P b 0 b 1 n 1 n 0 F P ÷ f 1 N × k b P b 0
173 npcan1 n n - 1 + 1 = n
174 152 173 syl n 1 N n - 1 + 1 = n
175 174 64 eqeltrd n 1 N n - 1 + 1 1
176 peano2zm n n 1
177 uzid n 1 n 1 n 1
178 peano2uz n 1 n 1 n - 1 + 1 n 1
179 24 176 177 178 4syl n 1 N n - 1 + 1 n 1
180 174 179 eqeltrrd n 1 N n n 1
181 fzsplit2 n - 1 + 1 1 n n 1 1 n = 1 n 1 n - 1 + 1 n
182 175 180 181 syl2anc n 1 N 1 n = 1 n 1 n - 1 + 1 n
183 174 oveq1d n 1 N n - 1 + 1 n = n n
184 fzsn n n n = n
185 24 184 syl n 1 N n n = n
186 183 185 eqtrd n 1 N n - 1 + 1 n = n
187 186 uneq2d n 1 N 1 n 1 n - 1 + 1 n = 1 n 1 n
188 182 187 eqtrd n 1 N 1 n = 1 n 1 n
189 188 raleqdv n 1 N b 1 n 0 F P ÷ f 1 N × k b P b 0 b 1 n 1 n 0 F P ÷ f 1 N × k b P b 0
190 172 189 syl5ibr n 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 b n 0 F P ÷ f 1 N × k b P b 0 b 1 n 0 F P ÷ f 1 N × k b P b 0
191 190 expdimp n 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 b n 0 F P ÷ f 1 N × k b P b 0 b 1 n 0 F P ÷ f 1 N × k b P b 0
192 191 con3d n 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b n 0 F P ÷ f 1 N × k b P b 0
193 192 adantrl n 1 N n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b n 0 F P ÷ f 1 N × k b P b 0
194 193 expimpd n 1 N n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b n 0 F P ÷ f 1 N × k b P b 0
195 171 194 jaod n 1 N n 1 = 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b n 0 F P ÷ f 1 N × k b P b 0
196 151 195 syl5bi n 1 N n 1 = 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ b n 0 F P ÷ f 1 N × k b P b 0
197 fveq2 b = n P b = P n
198 197 neeq1d b = n P b 0 P n 0
199 70 198 anbi12d b = n 0 F P ÷ f 1 N × k b P b 0 0 F P ÷ f 1 N × k n P n 0
200 199 ralsng n 1 N b n 0 F P ÷ f 1 N × k b P b 0 0 F P ÷ f 1 N × k n P n 0
201 200 notbid n 1 N ¬ b n 0 F P ÷ f 1 N × k b P b 0 ¬ 0 F P ÷ f 1 N × k n P n 0
202 ianor ¬ 0 F P ÷ f 1 N × k n P n 0 ¬ 0 F P ÷ f 1 N × k n ¬ P n 0
203 nne ¬ P n 0 P n = 0
204 203 orbi2i ¬ 0 F P ÷ f 1 N × k n ¬ P n 0 ¬ 0 F P ÷ f 1 N × k n P n = 0
205 202 204 bitri ¬ 0 F P ÷ f 1 N × k n P n 0 ¬ 0 F P ÷ f 1 N × k n P n = 0
206 201 205 bitrdi n 1 N ¬ b n 0 F P ÷ f 1 N × k b P b 0 ¬ 0 F P ÷ f 1 N × k n P n = 0
207 196 206 sylibd n 1 N n 1 = 0 n 1 1 N b 1 n 1 0 F P ÷ f 1 N × k b P b 0 ¬ b 1 n 0 F P ÷ f 1 N × k b P b 0 ¬ 0 F P ÷ f 1 N × k n P n = 0
208 150 207 syld n 1 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < ¬ 0 F P ÷ f 1 N × k n P n = 0
209 208 ad2antlr φ k n 1 N j 0 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < ¬ 0 F P ÷ f 1 N × k n P n = 0
210 retop topGen ran . Top
211 210 fconst6 1 N × topGen ran . : 1 N Top
212 pttop 1 N Fin 1 N × topGen ran . : 1 N Top 𝑡 1 N × topGen ran . Top
213 35 211 212 mp2an 𝑡 1 N × topGen ran . Top
214 3 213 eqeltri R Top
215 reex V
216 unitssre 0 1
217 mapss V 0 1 0 1 1 N 1 N
218 215 216 217 mp2an 0 1 1 N 1 N
219 2 218 eqsstri I 1 N
220 uniretop = topGen ran .
221 3 220 ptuniconst 1 N Fin topGen ran . Top 1 N = R
222 35 210 221 mp2an 1 N = R
223 222 restuni R Top I 1 N I = R 𝑡 I
224 214 219 223 mp2an I = R 𝑡 I
225 224 222 cnf F R 𝑡 I Cn R F : I 1 N
226 4 225 syl φ F : I 1 N
227 226 ad2antrr φ k j 0 N F : I 1 N
228 simplr φ k j 0 N k
229 elfzelz x 0 k x
230 229 zred x 0 k x
231 230 adantr x 0 k k x
232 nnre k k
233 232 adantl x 0 k k k
234 nnne0 k k 0
235 234 adantl x 0 k k k 0
236 231 233 235 redivcld x 0 k k x k
237 elfzle1 x 0 k 0 x
238 230 237 jca x 0 k x 0 x
239 nnrp k k +
240 239 rpregt0d k k 0 < k
241 divge0 x 0 x k 0 < k 0 x k
242 238 240 241 syl2an x 0 k k 0 x k
243 elfzle2 x 0 k x k
244 243 adantr x 0 k k x k
245 1red x 0 k k 1
246 239 adantl x 0 k k k +
247 231 245 246 ledivmuld x 0 k k x k 1 x k 1
248 nncn k k
249 248 mulid1d k k 1 = k
250 249 breq2d k x k 1 x k
251 250 adantl x 0 k k x k 1 x k
252 247 251 bitrd x 0 k k x k 1 x k
253 244 252 mpbird x 0 k k x k 1
254 elicc01 x k 0 1 x k 0 x k x k 1
255 236 242 253 254 syl3anbrc x 0 k k x k 0 1
256 255 ancoms k x 0 k x k 0 1
257 elsni y k y = k
258 257 oveq2d y k x y = x k
259 258 eleq1d y k x y 0 1 x k 0 1
260 256 259 syl5ibrcom k x 0 k y k x y 0 1
261 260 impr k x 0 k y k x y 0 1
262 228 261 sylan φ k j 0 N x 0 k y k x y 0 1
263 elun y 1 0 y 1 y 0
264 fzofzp1 x 0 ..^ k x + 1 0 k
265 elsni y 1 y = 1
266 265 oveq2d y 1 x + y = x + 1
267 266 eleq1d y 1 x + y 0 k x + 1 0 k
268 264 267 syl5ibrcom x 0 ..^ k y 1 x + y 0 k
269 elfzonn0 x 0 ..^ k x 0
270 269 nn0cnd x 0 ..^ k x
271 270 addid1d x 0 ..^ k x + 0 = x
272 elfzofz x 0 ..^ k x 0 k
273 271 272 eqeltrd x 0 ..^ k x + 0 0 k
274 elsni y 0 y = 0
275 274 oveq2d y 0 x + y = x + 0
276 275 eleq1d y 0 x + y 0 k x + 0 0 k
277 273 276 syl5ibrcom x 0 ..^ k y 0 x + y 0 k
278 268 277 jaod x 0 ..^ k y 1 y 0 x + y 0 k
279 263 278 syl5bi x 0 ..^ k y 1 0 x + y 0 k
280 279 imp x 0 ..^ k y 1 0 x + y 0 k
281 280 adantl φ k j 0 N x 0 ..^ k y 1 0 x + y 0 k
282 7 ffvelrnda φ k G k 0 1 N × f | f : 1 N 1-1 onto 1 N
283 xp1st G k 0 1 N × f | f : 1 N 1-1 onto 1 N 1 st G k 0 1 N
284 elmapfn 1 st G k 0 1 N 1 st G k Fn 1 N
285 282 283 284 3syl φ k 1 st G k Fn 1 N
286 df-f 1 st G k : 1 N 0 ..^ k 1 st G k Fn 1 N ran 1 st G k 0 ..^ k
287 285 8 286 sylanbrc φ k 1 st G k : 1 N 0 ..^ k
288 287 adantr φ k j 0 N 1 st G k : 1 N 0 ..^ k
289 1ex 1 V
290 289 fconst 2 nd G k 1 j × 1 : 2 nd G k 1 j 1
291 40 fconst 2 nd G k j + 1 N × 0 : 2 nd G k j + 1 N 0
292 290 291 pm3.2i 2 nd G k 1 j × 1 : 2 nd G k 1 j 1 2 nd G k j + 1 N × 0 : 2 nd G k j + 1 N 0
293 xp2nd G k 0 1 N × f | f : 1 N 1-1 onto 1 N 2 nd G k f | f : 1 N 1-1 onto 1 N
294 282 293 syl φ k 2 nd G k f | f : 1 N 1-1 onto 1 N
295 fvex 2 nd G k V
296 f1oeq1 f = 2 nd G k f : 1 N 1-1 onto 1 N 2 nd G k : 1 N 1-1 onto 1 N
297 295 296 elab 2 nd G k f | f : 1 N 1-1 onto 1 N 2 nd G k : 1 N 1-1 onto 1 N
298 294 297 sylib φ k 2 nd G k : 1 N 1-1 onto 1 N
299 dff1o3 2 nd G k : 1 N 1-1 onto 1 N 2 nd G k : 1 N onto 1 N Fun 2 nd G k -1
300 299 simprbi 2 nd G k : 1 N 1-1 onto 1 N Fun 2 nd G k -1
301 imain Fun 2 nd G k -1 2 nd G k 1 j j + 1 N = 2 nd G k 1 j 2 nd G k j + 1 N
302 298 300 301 3syl φ k 2 nd G k 1 j j + 1 N = 2 nd G k 1 j 2 nd G k j + 1 N
303 elfznn0 j 0 N j 0
304 303 nn0red j 0 N j
305 304 ltp1d j 0 N j < j + 1
306 fzdisj j < j + 1 1 j j + 1 N =
307 305 306 syl j 0 N 1 j j + 1 N =
308 307 imaeq2d j 0 N 2 nd G k 1 j j + 1 N = 2 nd G k
309 ima0 2 nd G k =
310 308 309 eqtrdi j 0 N 2 nd G k 1 j j + 1 N =
311 302 310 sylan9req φ k j 0 N 2 nd G k 1 j 2 nd G k j + 1 N =
312 fun 2 nd G k 1 j × 1 : 2 nd G k 1 j 1 2 nd G k j + 1 N × 0 : 2 nd G k j + 1 N 0 2 nd G k 1 j 2 nd G k j + 1 N = 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 2 nd G k 1 j 2 nd G k j + 1 N 1 0
313 292 311 312 sylancr φ k j 0 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 2 nd G k 1 j 2 nd G k j + 1 N 1 0
314 imaundi 2 nd G k 1 j j + 1 N = 2 nd G k 1 j 2 nd G k j + 1 N
315 nn0p1nn j 0 j + 1
316 303 315 syl j 0 N j + 1
317 nnuz = 1
318 316 317 eleqtrdi j 0 N j + 1 1
319 elfzuz3 j 0 N N j
320 fzsplit2 j + 1 1 N j 1 N = 1 j j + 1 N
321 318 319 320 syl2anc j 0 N 1 N = 1 j j + 1 N
322 321 imaeq2d j 0 N 2 nd G k 1 N = 2 nd G k 1 j j + 1 N
323 f1ofo 2 nd G k : 1 N 1-1 onto 1 N 2 nd G k : 1 N onto 1 N
324 foima 2 nd G k : 1 N onto 1 N 2 nd G k 1 N = 1 N
325 298 323 324 3syl φ k 2 nd G k 1 N = 1 N
326 322 325 sylan9req j 0 N φ k 2 nd G k 1 j j + 1 N = 1 N
327 326 ancoms φ k j 0 N 2 nd G k 1 j j + 1 N = 1 N
328 314 327 eqtr3id φ k j 0 N 2 nd G k 1 j 2 nd G k j + 1 N = 1 N
329 328 feq2d φ k j 0 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 2 nd G k 1 j 2 nd G k j + 1 N 1 0 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 1 N 1 0
330 313 329 mpbid φ k j 0 N 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 1 N 1 0
331 fzfid φ k j 0 N 1 N Fin
332 inidm 1 N 1 N = 1 N
333 281 288 330 331 331 332 off φ k j 0 N 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 1 N 0 k
334 6 feq1i P : 1 N 0 k 1 st G k + f 2 nd G k 1 j × 1 2 nd G k j + 1 N × 0 : 1 N 0 k
335 333 334 sylibr φ k j 0 N P : 1 N 0 k
336 vex k V
337 336 fconst 1 N × k : 1 N k
338 337 a1i φ k j 0 N 1 N × k : 1 N k
339 262 335 338 331 331 332 off φ k j 0 N P ÷ f 1 N × k : 1 N 0 1
340 2 eleq2i P ÷ f 1 N × k I P ÷ f 1 N × k 0 1 1 N
341 ovex 0 1 V
342 ovex 1 N V
343 341 342 elmap P ÷ f 1 N × k 0 1 1 N P ÷ f 1 N × k : 1 N 0 1
344 340 343 bitri P ÷ f 1 N × k I P ÷ f 1 N × k : 1 N 0 1
345 339 344 sylibr φ k j 0 N P ÷ f 1 N × k I
346 227 345 ffvelrnd φ k j 0 N F P ÷ f 1 N × k 1 N
347 elmapi F P ÷ f 1 N × k 1 N F P ÷ f 1 N × k : 1 N
348 346 347 syl φ k j 0 N F P ÷ f 1 N × k : 1 N
349 348 ffvelrnda φ k j 0 N n 1 N F P ÷ f 1 N × k n
350 349 an32s φ k n 1 N j 0 N F P ÷ f 1 N × k n
351 0red φ k n 1 N j 0 N 0
352 350 351 ltnled φ k n 1 N j 0 N F P ÷ f 1 N × k n < 0 ¬ 0 F P ÷ f 1 N × k n
353 ltle F P ÷ f 1 N × k n 0 F P ÷ f 1 N × k n < 0 F P ÷ f 1 N × k n 0
354 350 45 353 sylancl φ k n 1 N j 0 N F P ÷ f 1 N × k n < 0 F P ÷ f 1 N × k n 0
355 352 354 sylbird φ k n 1 N j 0 N ¬ 0 F P ÷ f 1 N × k n F P ÷ f 1 N × k n 0
356 248 234 div0d k 0 k = 0
357 oveq1 P n = 0 P n k = 0 k
358 357 eqeq1d P n = 0 P n k = 0 0 k = 0
359 356 358 syl5ibrcom k P n = 0 P n k = 0
360 359 ad3antlr φ k n 1 N j 0 N P n = 0 P n k = 0
361 335 ffnd φ k j 0 N P Fn 1 N
362 fnconstg k V 1 N × k Fn 1 N
363 336 362 mp1i φ k j 0 N 1 N × k Fn 1 N
364 eqidd φ k j 0 N n 1 N P n = P n
365 336 fvconst2 n 1 N 1 N × k n = k
366 365 adantl φ k j 0 N n 1 N 1 N × k n = k
367 361 363 331 331 332 364 366 ofval φ k j 0 N n 1 N P ÷ f 1 N × k n = P n k
368 367 an32s φ k n 1 N j 0 N P ÷ f 1 N × k n = P n k
369 368 eqeq1d φ k n 1 N j 0 N P ÷ f 1 N × k n = 0 P n k = 0
370 360 369 sylibrd φ k n 1 N j 0 N P n = 0 P ÷ f 1 N × k n = 0
371 simplll φ k n 1 N j 0 N φ
372 simplr φ k n 1 N j 0 N n 1 N
373 345 adantlr φ k n 1 N j 0 N P ÷ f 1 N × k I
374 ovex P ÷ f 1 N × k V
375 eleq1 z = P ÷ f 1 N × k z I P ÷ f 1 N × k I
376 fveq1 z = P ÷ f 1 N × k z n = P ÷ f 1 N × k n
377 376 eqeq1d z = P ÷ f 1 N × k z n = 0 P ÷ f 1 N × k n = 0
378 fveq2 z = P ÷ f 1 N × k F z = F P ÷ f 1 N × k
379 378 fveq1d z = P ÷ f 1 N × k F z n = F P ÷ f 1 N × k n
380 379 breq1d z = P ÷ f 1 N × k F z n 0 F P ÷ f 1 N × k n 0
381 377 380 imbi12d z = P ÷ f 1 N × k z n = 0 F z n 0 P ÷ f 1 N × k n = 0 F P ÷ f 1 N × k n 0
382 375 381 imbi12d z = P ÷ f 1 N × k z I z n = 0 F z n 0 P ÷ f 1 N × k I P ÷ f 1 N × k n = 0 F P ÷ f 1 N × k n 0
383 382 imbi2d z = P ÷ f 1 N × k n 1 N z I z n = 0 F z n 0 n 1 N P ÷ f 1 N × k I P ÷ f 1 N × k n = 0 F P ÷ f 1 N × k n 0
384 383 imbi2d z = P ÷ f 1 N × k φ n 1 N z I z n = 0 F z n 0 φ n 1 N P ÷ f 1 N × k I P ÷ f 1 N × k n = 0 F P ÷ f 1 N × k n 0
385 5 3exp2 φ n 1 N z I z n = 0 F z n 0
386 374 384 385 vtocl φ n 1 N P ÷ f 1 N × k I P ÷ f 1 N × k n = 0 F P ÷ f 1 N × k n 0
387 371 372 373 386 syl3c φ k n 1 N j 0 N P ÷ f 1 N × k n = 0 F P ÷ f 1 N × k n 0
388 370 387 syld φ k n 1 N j 0 N P n = 0 F P ÷ f 1 N × k n 0
389 355 388 jaod φ k n 1 N j 0 N ¬ 0 F P ÷ f 1 N × k n P n = 0 F P ÷ f 1 N × k n 0
390 209 389 syld φ k n 1 N j 0 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < F P ÷ f 1 N × k n 0
391 390 reximdva φ k n 1 N j 0 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < j 0 N F P ÷ f 1 N × k n 0
392 391 anasss φ k n 1 N j 0 N n 1 = sup 0 a 1 N | b 1 a 0 F P ÷ f 1 N × k b P b 0 < j 0 N F P ÷ f 1 N × k n 0
393 115 392 mpd φ k n 1 N j 0 N F P ÷ f 1 N × k n 0
394 breq r = -1 0 r F P ÷ f 1 N × k n 0 -1 F P ÷ f 1 N × k n
395 fvex F P ÷ f 1 N × k n V
396 40 395 brcnv 0 -1 F P ÷ f 1 N × k n F P ÷ f 1 N × k n 0
397 394 396 bitrdi r = -1 0 r F P ÷ f 1 N × k n F P ÷ f 1 N × k n 0
398 397 rexbidv r = -1 j 0 N 0 r F P ÷ f 1 N × k n j 0 N F P ÷ f 1 N × k n 0
399 393 398 syl5ibrcom φ k n 1 N r = -1 j 0 N 0 r F P ÷ f 1 N × k n
400 84 399 jaod φ k n 1 N r = r = -1 j 0 N 0 r F P ÷ f 1 N × k n
401 10 400 syl5 φ k n 1 N r -1 j 0 N 0 r F P ÷ f 1 N × k n
402 401 exp32 φ k n 1 N r -1 j 0 N 0 r F P ÷ f 1 N × k n
403 402 3imp2 φ k n 1 N r -1 j 0 N 0 r F P ÷ f 1 N × k n