| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimir.i |
|- I = ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) |
| 3 |
|
poimir.r |
|- R = ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |
| 4 |
|
poimir.1 |
|- ( ph -> F e. ( ( R |`t I ) Cn R ) ) |
| 5 |
|
poimir.2 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 0 ) ) -> ( ( F ` z ) ` n ) <_ 0 ) |
| 6 |
|
poimirlem31.p |
|- P = ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 7 |
|
poimirlem31.3 |
|- ( ph -> G : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 8 |
|
poimirlem31.4 |
|- ( ( ph /\ k e. NN ) -> ran ( 1st ` ( G ` k ) ) C_ ( 0 ..^ k ) ) |
| 9 |
|
poimirlem31.5 |
|- ( ( ph /\ ( k e. NN /\ i e. ( 0 ... N ) ) ) -> E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) |
| 10 |
|
elpri |
|- ( r e. { <_ , `' <_ } -> ( r = <_ \/ r = `' <_ ) ) |
| 11 |
|
simprr |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> n e. ( 1 ... N ) ) |
| 12 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
| 13 |
12
|
sseli |
|- ( n e. ( 1 ... N ) -> n e. ( 0 ... N ) ) |
| 14 |
13
|
anim2i |
|- ( ( k e. NN /\ n e. ( 1 ... N ) ) -> ( k e. NN /\ n e. ( 0 ... N ) ) ) |
| 15 |
|
eleq1 |
|- ( i = n -> ( i e. ( 0 ... N ) <-> n e. ( 0 ... N ) ) ) |
| 16 |
15
|
anbi2d |
|- ( i = n -> ( ( k e. NN /\ i e. ( 0 ... N ) ) <-> ( k e. NN /\ n e. ( 0 ... N ) ) ) ) |
| 17 |
16
|
anbi2d |
|- ( i = n -> ( ( ph /\ ( k e. NN /\ i e. ( 0 ... N ) ) ) <-> ( ph /\ ( k e. NN /\ n e. ( 0 ... N ) ) ) ) ) |
| 18 |
|
eqeq1 |
|- ( i = n -> ( i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) <-> n = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 19 |
18
|
rexbidv |
|- ( i = n -> ( E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) <-> E. j e. ( 0 ... N ) n = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 20 |
17 19
|
imbi12d |
|- ( i = n -> ( ( ( ph /\ ( k e. NN /\ i e. ( 0 ... N ) ) ) -> E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) <-> ( ( ph /\ ( k e. NN /\ n e. ( 0 ... N ) ) ) -> E. j e. ( 0 ... N ) n = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) ) ) |
| 21 |
20 9
|
chvarvv |
|- ( ( ph /\ ( k e. NN /\ n e. ( 0 ... N ) ) ) -> E. j e. ( 0 ... N ) n = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) |
| 22 |
|
elfzle1 |
|- ( n e. ( 1 ... N ) -> 1 <_ n ) |
| 23 |
|
1re |
|- 1 e. RR |
| 24 |
|
elfzelz |
|- ( n e. ( 1 ... N ) -> n e. ZZ ) |
| 25 |
24
|
zred |
|- ( n e. ( 1 ... N ) -> n e. RR ) |
| 26 |
|
lenlt |
|- ( ( 1 e. RR /\ n e. RR ) -> ( 1 <_ n <-> -. n < 1 ) ) |
| 27 |
23 25 26
|
sylancr |
|- ( n e. ( 1 ... N ) -> ( 1 <_ n <-> -. n < 1 ) ) |
| 28 |
22 27
|
mpbid |
|- ( n e. ( 1 ... N ) -> -. n < 1 ) |
| 29 |
|
elsni |
|- ( n e. { 0 } -> n = 0 ) |
| 30 |
|
0lt1 |
|- 0 < 1 |
| 31 |
29 30
|
eqbrtrdi |
|- ( n e. { 0 } -> n < 1 ) |
| 32 |
28 31
|
nsyl |
|- ( n e. ( 1 ... N ) -> -. n e. { 0 } ) |
| 33 |
|
ltso |
|- < Or RR |
| 34 |
|
snfi |
|- { 0 } e. Fin |
| 35 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 36 |
|
rabfi |
|- ( ( 1 ... N ) e. Fin -> { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } e. Fin ) |
| 37 |
35 36
|
ax-mp |
|- { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } e. Fin |
| 38 |
|
unfi |
|- ( ( { 0 } e. Fin /\ { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } e. Fin ) -> ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) e. Fin ) |
| 39 |
34 37 38
|
mp2an |
|- ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) e. Fin |
| 40 |
|
c0ex |
|- 0 e. _V |
| 41 |
40
|
snid |
|- 0 e. { 0 } |
| 42 |
|
elun1 |
|- ( 0 e. { 0 } -> 0 e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) ) |
| 43 |
|
ne0i |
|- ( 0 e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) -> ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) =/= (/) ) |
| 44 |
41 42 43
|
mp2b |
|- ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) =/= (/) |
| 45 |
|
0re |
|- 0 e. RR |
| 46 |
|
snssi |
|- ( 0 e. RR -> { 0 } C_ RR ) |
| 47 |
45 46
|
ax-mp |
|- { 0 } C_ RR |
| 48 |
|
ssrab2 |
|- { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } C_ ( 1 ... N ) |
| 49 |
24
|
ssriv |
|- ( 1 ... N ) C_ ZZ |
| 50 |
|
zssre |
|- ZZ C_ RR |
| 51 |
49 50
|
sstri |
|- ( 1 ... N ) C_ RR |
| 52 |
48 51
|
sstri |
|- { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } C_ RR |
| 53 |
47 52
|
unssi |
|- ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) C_ RR |
| 54 |
39 44 53
|
3pm3.2i |
|- ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) e. Fin /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) =/= (/) /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) C_ RR ) |
| 55 |
|
fisupcl |
|- ( ( < Or RR /\ ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) e. Fin /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) =/= (/) /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) C_ RR ) ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) ) |
| 56 |
33 54 55
|
mp2an |
|- sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) |
| 57 |
|
eleq1 |
|- ( n = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( n e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) <-> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) ) ) |
| 58 |
56 57
|
mpbiri |
|- ( n = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> n e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) ) |
| 59 |
|
elun |
|- ( n e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) <-> ( n e. { 0 } \/ n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) ) |
| 60 |
58 59
|
sylib |
|- ( n = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( n e. { 0 } \/ n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) ) |
| 61 |
|
oveq2 |
|- ( a = n -> ( 1 ... a ) = ( 1 ... n ) ) |
| 62 |
61
|
raleqdv |
|- ( a = n -> ( A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) <-> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 63 |
62
|
elrab |
|- ( n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } <-> ( n e. ( 1 ... N ) /\ A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 64 |
|
elfzuz |
|- ( n e. ( 1 ... N ) -> n e. ( ZZ>= ` 1 ) ) |
| 65 |
|
eluzfz2 |
|- ( n e. ( ZZ>= ` 1 ) -> n e. ( 1 ... n ) ) |
| 66 |
64 65
|
syl |
|- ( n e. ( 1 ... N ) -> n e. ( 1 ... n ) ) |
| 67 |
|
simpl |
|- ( ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) -> 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) ) |
| 68 |
67
|
ralimi |
|- ( A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) -> A. b e. ( 1 ... n ) 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) ) |
| 69 |
|
fveq2 |
|- ( b = n -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) = ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 70 |
69
|
breq2d |
|- ( b = n -> ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) <-> 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 71 |
70
|
rspcva |
|- ( ( n e. ( 1 ... n ) /\ A. b e. ( 1 ... n ) 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) ) -> 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 72 |
66 68 71
|
syl2an |
|- ( ( n e. ( 1 ... N ) /\ A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 73 |
63 72
|
sylbi |
|- ( n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } -> 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 74 |
73
|
orim2i |
|- ( ( n e. { 0 } \/ n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) -> ( n e. { 0 } \/ 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 75 |
60 74
|
syl |
|- ( n = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( n e. { 0 } \/ 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 76 |
|
orel1 |
|- ( -. n e. { 0 } -> ( ( n e. { 0 } \/ 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) -> 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 77 |
32 75 76
|
syl2im |
|- ( n e. ( 1 ... N ) -> ( n = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 78 |
77
|
reximdv |
|- ( n e. ( 1 ... N ) -> ( E. j e. ( 0 ... N ) n = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> E. j e. ( 0 ... N ) 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 79 |
21 78
|
syl5 |
|- ( n e. ( 1 ... N ) -> ( ( ph /\ ( k e. NN /\ n e. ( 0 ... N ) ) ) -> E. j e. ( 0 ... N ) 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 80 |
14 79
|
sylan2i |
|- ( n e. ( 1 ... N ) -> ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> E. j e. ( 0 ... N ) 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 81 |
11 80
|
mpcom |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> E. j e. ( 0 ... N ) 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 82 |
|
breq |
|- ( r = <_ -> ( 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <-> 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 83 |
82
|
rexbidv |
|- ( r = <_ -> ( E. j e. ( 0 ... N ) 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <-> E. j e. ( 0 ... N ) 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 84 |
81 83
|
syl5ibrcom |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> ( r = <_ -> E. j e. ( 0 ... N ) 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 85 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 86 |
|
elfzm1b |
|- ( ( n e. ZZ /\ N e. ZZ ) -> ( n e. ( 1 ... N ) <-> ( n - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |
| 87 |
24 85 86
|
syl2anr |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( n e. ( 1 ... N ) <-> ( n - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |
| 88 |
87
|
biimpd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( n e. ( 1 ... N ) -> ( n - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |
| 89 |
88
|
ex |
|- ( ph -> ( n e. ( 1 ... N ) -> ( n e. ( 1 ... N ) -> ( n - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) ) |
| 90 |
89
|
pm2.43d |
|- ( ph -> ( n e. ( 1 ... N ) -> ( n - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |
| 91 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 92 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 93 |
91 92
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 94 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 95 |
1 94
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
| 96 |
95
|
nn0zd |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 97 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 98 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 99 |
96 97 98
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 100 |
93 99
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 101 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 102 |
100 101
|
syl |
|- ( ph -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 103 |
102
|
sseld |
|- ( ph -> ( ( n - 1 ) e. ( 0 ... ( N - 1 ) ) -> ( n - 1 ) e. ( 0 ... N ) ) ) |
| 104 |
90 103
|
syld |
|- ( ph -> ( n e. ( 1 ... N ) -> ( n - 1 ) e. ( 0 ... N ) ) ) |
| 105 |
104
|
anim2d |
|- ( ph -> ( ( k e. NN /\ n e. ( 1 ... N ) ) -> ( k e. NN /\ ( n - 1 ) e. ( 0 ... N ) ) ) ) |
| 106 |
105
|
imp |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> ( k e. NN /\ ( n - 1 ) e. ( 0 ... N ) ) ) |
| 107 |
|
ovex |
|- ( n - 1 ) e. _V |
| 108 |
|
eleq1 |
|- ( i = ( n - 1 ) -> ( i e. ( 0 ... N ) <-> ( n - 1 ) e. ( 0 ... N ) ) ) |
| 109 |
108
|
anbi2d |
|- ( i = ( n - 1 ) -> ( ( k e. NN /\ i e. ( 0 ... N ) ) <-> ( k e. NN /\ ( n - 1 ) e. ( 0 ... N ) ) ) ) |
| 110 |
109
|
anbi2d |
|- ( i = ( n - 1 ) -> ( ( ph /\ ( k e. NN /\ i e. ( 0 ... N ) ) ) <-> ( ph /\ ( k e. NN /\ ( n - 1 ) e. ( 0 ... N ) ) ) ) ) |
| 111 |
|
eqeq1 |
|- ( i = ( n - 1 ) -> ( i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) <-> ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 112 |
111
|
rexbidv |
|- ( i = ( n - 1 ) -> ( E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) <-> E. j e. ( 0 ... N ) ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 113 |
110 112
|
imbi12d |
|- ( i = ( n - 1 ) -> ( ( ( ph /\ ( k e. NN /\ i e. ( 0 ... N ) ) ) -> E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) <-> ( ( ph /\ ( k e. NN /\ ( n - 1 ) e. ( 0 ... N ) ) ) -> E. j e. ( 0 ... N ) ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) ) ) |
| 114 |
107 113 9
|
vtocl |
|- ( ( ph /\ ( k e. NN /\ ( n - 1 ) e. ( 0 ... N ) ) ) -> E. j e. ( 0 ... N ) ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) |
| 115 |
106 114
|
syldan |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> E. j e. ( 0 ... N ) ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) |
| 116 |
|
eleq1 |
|- ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) <-> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) ) ) |
| 117 |
56 116
|
mpbiri |
|- ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) ) |
| 118 |
|
elun |
|- ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) <-> ( ( n - 1 ) e. { 0 } \/ ( n - 1 ) e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) ) |
| 119 |
107
|
elsn |
|- ( ( n - 1 ) e. { 0 } <-> ( n - 1 ) = 0 ) |
| 120 |
|
oveq2 |
|- ( a = ( n - 1 ) -> ( 1 ... a ) = ( 1 ... ( n - 1 ) ) ) |
| 121 |
120
|
raleqdv |
|- ( a = ( n - 1 ) -> ( A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) <-> A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 122 |
121
|
elrab |
|- ( ( n - 1 ) e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } <-> ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 123 |
119 122
|
orbi12i |
|- ( ( ( n - 1 ) e. { 0 } \/ ( n - 1 ) e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) <-> ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) ) |
| 124 |
118 123
|
bitri |
|- ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) <-> ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) ) |
| 125 |
117 124
|
sylib |
|- ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) ) |
| 126 |
125
|
a1i |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) ) ) |
| 127 |
|
ltm1 |
|- ( n e. RR -> ( n - 1 ) < n ) |
| 128 |
|
peano2rem |
|- ( n e. RR -> ( n - 1 ) e. RR ) |
| 129 |
|
ltnle |
|- ( ( ( n - 1 ) e. RR /\ n e. RR ) -> ( ( n - 1 ) < n <-> -. n <_ ( n - 1 ) ) ) |
| 130 |
128 129
|
mpancom |
|- ( n e. RR -> ( ( n - 1 ) < n <-> -. n <_ ( n - 1 ) ) ) |
| 131 |
127 130
|
mpbid |
|- ( n e. RR -> -. n <_ ( n - 1 ) ) |
| 132 |
25 131
|
syl |
|- ( n e. ( 1 ... N ) -> -. n <_ ( n - 1 ) ) |
| 133 |
|
breq2 |
|- ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( n <_ ( n - 1 ) <-> n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 134 |
133
|
notbid |
|- ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( -. n <_ ( n - 1 ) <-> -. n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 135 |
132 134
|
syl5ibcom |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> -. n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 136 |
|
elun2 |
|- ( n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } -> n e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) ) |
| 137 |
|
fimaxre2 |
|- ( ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) C_ RR /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) e. Fin ) -> E. x e. RR A. y e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) y <_ x ) |
| 138 |
53 39 137
|
mp2an |
|- E. x e. RR A. y e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) y <_ x |
| 139 |
53 44 138
|
3pm3.2i |
|- ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) C_ RR /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) =/= (/) /\ E. x e. RR A. y e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) y <_ x ) |
| 140 |
139
|
suprubii |
|- ( n e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) -> n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) |
| 141 |
136 140
|
syl |
|- ( n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } -> n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) ) |
| 142 |
141
|
con3i |
|- ( -. n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> -. n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) |
| 143 |
|
ianor |
|- ( -. ( n e. ( 1 ... N ) /\ A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) <-> ( -. n e. ( 1 ... N ) \/ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 144 |
143 63
|
xchnxbir |
|- ( -. n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } <-> ( -. n e. ( 1 ... N ) \/ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 145 |
142 144
|
sylib |
|- ( -. n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( -. n e. ( 1 ... N ) \/ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 146 |
135 145
|
syl6 |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( -. n e. ( 1 ... N ) \/ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) ) |
| 147 |
|
pm2.63 |
|- ( ( n e. ( 1 ... N ) \/ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> ( ( -. n e. ( 1 ... N ) \/ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 148 |
147
|
orcs |
|- ( n e. ( 1 ... N ) -> ( ( -. n e. ( 1 ... N ) \/ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 149 |
146 148
|
syld |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 150 |
126 149
|
jcad |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) /\ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) ) |
| 151 |
|
andir |
|- ( ( ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) /\ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) <-> ( ( ( n - 1 ) = 0 /\ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) \/ ( ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) /\ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) ) |
| 152 |
24
|
zcnd |
|- ( n e. ( 1 ... N ) -> n e. CC ) |
| 153 |
|
ax-1cn |
|- 1 e. CC |
| 154 |
|
0cn |
|- 0 e. CC |
| 155 |
|
subadd |
|- ( ( n e. CC /\ 1 e. CC /\ 0 e. CC ) -> ( ( n - 1 ) = 0 <-> ( 1 + 0 ) = n ) ) |
| 156 |
153 154 155
|
mp3an23 |
|- ( n e. CC -> ( ( n - 1 ) = 0 <-> ( 1 + 0 ) = n ) ) |
| 157 |
152 156
|
syl |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) = 0 <-> ( 1 + 0 ) = n ) ) |
| 158 |
157
|
biimpa |
|- ( ( n e. ( 1 ... N ) /\ ( n - 1 ) = 0 ) -> ( 1 + 0 ) = n ) |
| 159 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 160 |
158 159
|
eqtr3di |
|- ( ( n e. ( 1 ... N ) /\ ( n - 1 ) = 0 ) -> n = 1 ) |
| 161 |
|
1z |
|- 1 e. ZZ |
| 162 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 163 |
161 162
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
| 164 |
|
oveq2 |
|- ( n = 1 -> ( 1 ... n ) = ( 1 ... 1 ) ) |
| 165 |
|
sneq |
|- ( n = 1 -> { n } = { 1 } ) |
| 166 |
163 164 165
|
3eqtr4a |
|- ( n = 1 -> ( 1 ... n ) = { n } ) |
| 167 |
166
|
raleqdv |
|- ( n = 1 -> ( A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) <-> A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 168 |
167
|
notbid |
|- ( n = 1 -> ( -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) <-> -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 169 |
168
|
biimpd |
|- ( n = 1 -> ( -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) -> -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 170 |
160 169
|
syl |
|- ( ( n e. ( 1 ... N ) /\ ( n - 1 ) = 0 ) -> ( -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) -> -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 171 |
170
|
expimpd |
|- ( n e. ( 1 ... N ) -> ( ( ( n - 1 ) = 0 /\ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 172 |
|
ralun |
|- ( ( A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) /\ A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> A. b e. ( ( 1 ... ( n - 1 ) ) u. { n } ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) |
| 173 |
|
npcan1 |
|- ( n e. CC -> ( ( n - 1 ) + 1 ) = n ) |
| 174 |
152 173
|
syl |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) + 1 ) = n ) |
| 175 |
174 64
|
eqeltrd |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 176 |
|
peano2zm |
|- ( n e. ZZ -> ( n - 1 ) e. ZZ ) |
| 177 |
|
uzid |
|- ( ( n - 1 ) e. ZZ -> ( n - 1 ) e. ( ZZ>= ` ( n - 1 ) ) ) |
| 178 |
|
peano2uz |
|- ( ( n - 1 ) e. ( ZZ>= ` ( n - 1 ) ) -> ( ( n - 1 ) + 1 ) e. ( ZZ>= ` ( n - 1 ) ) ) |
| 179 |
24 176 177 178
|
4syl |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) + 1 ) e. ( ZZ>= ` ( n - 1 ) ) ) |
| 180 |
174 179
|
eqeltrrd |
|- ( n e. ( 1 ... N ) -> n e. ( ZZ>= ` ( n - 1 ) ) ) |
| 181 |
|
fzsplit2 |
|- ( ( ( ( n - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` ( n - 1 ) ) ) -> ( 1 ... n ) = ( ( 1 ... ( n - 1 ) ) u. ( ( ( n - 1 ) + 1 ) ... n ) ) ) |
| 182 |
175 180 181
|
syl2anc |
|- ( n e. ( 1 ... N ) -> ( 1 ... n ) = ( ( 1 ... ( n - 1 ) ) u. ( ( ( n - 1 ) + 1 ) ... n ) ) ) |
| 183 |
174
|
oveq1d |
|- ( n e. ( 1 ... N ) -> ( ( ( n - 1 ) + 1 ) ... n ) = ( n ... n ) ) |
| 184 |
|
fzsn |
|- ( n e. ZZ -> ( n ... n ) = { n } ) |
| 185 |
24 184
|
syl |
|- ( n e. ( 1 ... N ) -> ( n ... n ) = { n } ) |
| 186 |
183 185
|
eqtrd |
|- ( n e. ( 1 ... N ) -> ( ( ( n - 1 ) + 1 ) ... n ) = { n } ) |
| 187 |
186
|
uneq2d |
|- ( n e. ( 1 ... N ) -> ( ( 1 ... ( n - 1 ) ) u. ( ( ( n - 1 ) + 1 ) ... n ) ) = ( ( 1 ... ( n - 1 ) ) u. { n } ) ) |
| 188 |
182 187
|
eqtrd |
|- ( n e. ( 1 ... N ) -> ( 1 ... n ) = ( ( 1 ... ( n - 1 ) ) u. { n } ) ) |
| 189 |
188
|
raleqdv |
|- ( n e. ( 1 ... N ) -> ( A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) <-> A. b e. ( ( 1 ... ( n - 1 ) ) u. { n } ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 190 |
172 189
|
imbitrrid |
|- ( n e. ( 1 ... N ) -> ( ( A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) /\ A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 191 |
190
|
expdimp |
|- ( ( n e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> ( A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) -> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 192 |
191
|
con3d |
|- ( ( n e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> ( -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) -> -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 193 |
192
|
adantrl |
|- ( ( n e. ( 1 ... N ) /\ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) -> ( -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) -> -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 194 |
193
|
expimpd |
|- ( n e. ( 1 ... N ) -> ( ( ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) /\ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 195 |
171 194
|
jaod |
|- ( n e. ( 1 ... N ) -> ( ( ( ( n - 1 ) = 0 /\ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) \/ ( ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) /\ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) -> -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 196 |
151 195
|
biimtrid |
|- ( n e. ( 1 ... N ) -> ( ( ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) /\ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) |
| 197 |
|
fveq2 |
|- ( b = n -> ( P ` b ) = ( P ` n ) ) |
| 198 |
197
|
neeq1d |
|- ( b = n -> ( ( P ` b ) =/= 0 <-> ( P ` n ) =/= 0 ) ) |
| 199 |
70 198
|
anbi12d |
|- ( b = n -> ( ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) <-> ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) /\ ( P ` n ) =/= 0 ) ) ) |
| 200 |
199
|
ralsng |
|- ( n e. ( 1 ... N ) -> ( A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) <-> ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) /\ ( P ` n ) =/= 0 ) ) ) |
| 201 |
200
|
notbid |
|- ( n e. ( 1 ... N ) -> ( -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) <-> -. ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) /\ ( P ` n ) =/= 0 ) ) ) |
| 202 |
|
ianor |
|- ( -. ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) /\ ( P ` n ) =/= 0 ) <-> ( -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) \/ -. ( P ` n ) =/= 0 ) ) |
| 203 |
|
nne |
|- ( -. ( P ` n ) =/= 0 <-> ( P ` n ) = 0 ) |
| 204 |
203
|
orbi2i |
|- ( ( -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) \/ -. ( P ` n ) =/= 0 ) <-> ( -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) \/ ( P ` n ) = 0 ) ) |
| 205 |
202 204
|
bitri |
|- ( -. ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) /\ ( P ` n ) =/= 0 ) <-> ( -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) \/ ( P ` n ) = 0 ) ) |
| 206 |
201 205
|
bitrdi |
|- ( n e. ( 1 ... N ) -> ( -. A. b e. { n } ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) <-> ( -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) \/ ( P ` n ) = 0 ) ) ) |
| 207 |
196 206
|
sylibd |
|- ( n e. ( 1 ... N ) -> ( ( ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) ) /\ -. A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) ) -> ( -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) \/ ( P ` n ) = 0 ) ) ) |
| 208 |
150 207
|
syld |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) \/ ( P ` n ) = 0 ) ) ) |
| 209 |
208
|
ad2antlr |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) \/ ( P ` n ) = 0 ) ) ) |
| 210 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 211 |
210
|
fconst6 |
|- ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top |
| 212 |
|
pttop |
|- ( ( ( 1 ... N ) e. Fin /\ ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top ) -> ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) e. Top ) |
| 213 |
35 211 212
|
mp2an |
|- ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) e. Top |
| 214 |
3 213
|
eqeltri |
|- R e. Top |
| 215 |
|
reex |
|- RR e. _V |
| 216 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 217 |
|
mapss |
|- ( ( RR e. _V /\ ( 0 [,] 1 ) C_ RR ) -> ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) C_ ( RR ^m ( 1 ... N ) ) ) |
| 218 |
215 216 217
|
mp2an |
|- ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) C_ ( RR ^m ( 1 ... N ) ) |
| 219 |
2 218
|
eqsstri |
|- I C_ ( RR ^m ( 1 ... N ) ) |
| 220 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 221 |
3 220
|
ptuniconst |
|- ( ( ( 1 ... N ) e. Fin /\ ( topGen ` ran (,) ) e. Top ) -> ( RR ^m ( 1 ... N ) ) = U. R ) |
| 222 |
35 210 221
|
mp2an |
|- ( RR ^m ( 1 ... N ) ) = U. R |
| 223 |
222
|
restuni |
|- ( ( R e. Top /\ I C_ ( RR ^m ( 1 ... N ) ) ) -> I = U. ( R |`t I ) ) |
| 224 |
214 219 223
|
mp2an |
|- I = U. ( R |`t I ) |
| 225 |
224 222
|
cnf |
|- ( F e. ( ( R |`t I ) Cn R ) -> F : I --> ( RR ^m ( 1 ... N ) ) ) |
| 226 |
4 225
|
syl |
|- ( ph -> F : I --> ( RR ^m ( 1 ... N ) ) ) |
| 227 |
226
|
ad2antrr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> F : I --> ( RR ^m ( 1 ... N ) ) ) |
| 228 |
|
simplr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> k e. NN ) |
| 229 |
|
elfzelz |
|- ( x e. ( 0 ... k ) -> x e. ZZ ) |
| 230 |
229
|
zred |
|- ( x e. ( 0 ... k ) -> x e. RR ) |
| 231 |
230
|
adantr |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> x e. RR ) |
| 232 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 233 |
232
|
adantl |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> k e. RR ) |
| 234 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
| 235 |
234
|
adantl |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> k =/= 0 ) |
| 236 |
231 233 235
|
redivcld |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> ( x / k ) e. RR ) |
| 237 |
|
elfzle1 |
|- ( x e. ( 0 ... k ) -> 0 <_ x ) |
| 238 |
230 237
|
jca |
|- ( x e. ( 0 ... k ) -> ( x e. RR /\ 0 <_ x ) ) |
| 239 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 240 |
239
|
rpregt0d |
|- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
| 241 |
|
divge0 |
|- ( ( ( x e. RR /\ 0 <_ x ) /\ ( k e. RR /\ 0 < k ) ) -> 0 <_ ( x / k ) ) |
| 242 |
238 240 241
|
syl2an |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> 0 <_ ( x / k ) ) |
| 243 |
|
elfzle2 |
|- ( x e. ( 0 ... k ) -> x <_ k ) |
| 244 |
243
|
adantr |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> x <_ k ) |
| 245 |
|
1red |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> 1 e. RR ) |
| 246 |
239
|
adantl |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> k e. RR+ ) |
| 247 |
231 245 246
|
ledivmuld |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> ( ( x / k ) <_ 1 <-> x <_ ( k x. 1 ) ) ) |
| 248 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 249 |
248
|
mulridd |
|- ( k e. NN -> ( k x. 1 ) = k ) |
| 250 |
249
|
breq2d |
|- ( k e. NN -> ( x <_ ( k x. 1 ) <-> x <_ k ) ) |
| 251 |
250
|
adantl |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> ( x <_ ( k x. 1 ) <-> x <_ k ) ) |
| 252 |
247 251
|
bitrd |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> ( ( x / k ) <_ 1 <-> x <_ k ) ) |
| 253 |
244 252
|
mpbird |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> ( x / k ) <_ 1 ) |
| 254 |
|
elicc01 |
|- ( ( x / k ) e. ( 0 [,] 1 ) <-> ( ( x / k ) e. RR /\ 0 <_ ( x / k ) /\ ( x / k ) <_ 1 ) ) |
| 255 |
236 242 253 254
|
syl3anbrc |
|- ( ( x e. ( 0 ... k ) /\ k e. NN ) -> ( x / k ) e. ( 0 [,] 1 ) ) |
| 256 |
255
|
ancoms |
|- ( ( k e. NN /\ x e. ( 0 ... k ) ) -> ( x / k ) e. ( 0 [,] 1 ) ) |
| 257 |
|
elsni |
|- ( y e. { k } -> y = k ) |
| 258 |
257
|
oveq2d |
|- ( y e. { k } -> ( x / y ) = ( x / k ) ) |
| 259 |
258
|
eleq1d |
|- ( y e. { k } -> ( ( x / y ) e. ( 0 [,] 1 ) <-> ( x / k ) e. ( 0 [,] 1 ) ) ) |
| 260 |
256 259
|
syl5ibrcom |
|- ( ( k e. NN /\ x e. ( 0 ... k ) ) -> ( y e. { k } -> ( x / y ) e. ( 0 [,] 1 ) ) ) |
| 261 |
260
|
impr |
|- ( ( k e. NN /\ ( x e. ( 0 ... k ) /\ y e. { k } ) ) -> ( x / y ) e. ( 0 [,] 1 ) ) |
| 262 |
228 261
|
sylan |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ ( x e. ( 0 ... k ) /\ y e. { k } ) ) -> ( x / y ) e. ( 0 [,] 1 ) ) |
| 263 |
|
elun |
|- ( y e. ( { 1 } u. { 0 } ) <-> ( y e. { 1 } \/ y e. { 0 } ) ) |
| 264 |
|
fzofzp1 |
|- ( x e. ( 0 ..^ k ) -> ( x + 1 ) e. ( 0 ... k ) ) |
| 265 |
|
elsni |
|- ( y e. { 1 } -> y = 1 ) |
| 266 |
265
|
oveq2d |
|- ( y e. { 1 } -> ( x + y ) = ( x + 1 ) ) |
| 267 |
266
|
eleq1d |
|- ( y e. { 1 } -> ( ( x + y ) e. ( 0 ... k ) <-> ( x + 1 ) e. ( 0 ... k ) ) ) |
| 268 |
264 267
|
syl5ibrcom |
|- ( x e. ( 0 ..^ k ) -> ( y e. { 1 } -> ( x + y ) e. ( 0 ... k ) ) ) |
| 269 |
|
elfzonn0 |
|- ( x e. ( 0 ..^ k ) -> x e. NN0 ) |
| 270 |
269
|
nn0cnd |
|- ( x e. ( 0 ..^ k ) -> x e. CC ) |
| 271 |
270
|
addridd |
|- ( x e. ( 0 ..^ k ) -> ( x + 0 ) = x ) |
| 272 |
|
elfzofz |
|- ( x e. ( 0 ..^ k ) -> x e. ( 0 ... k ) ) |
| 273 |
271 272
|
eqeltrd |
|- ( x e. ( 0 ..^ k ) -> ( x + 0 ) e. ( 0 ... k ) ) |
| 274 |
|
elsni |
|- ( y e. { 0 } -> y = 0 ) |
| 275 |
274
|
oveq2d |
|- ( y e. { 0 } -> ( x + y ) = ( x + 0 ) ) |
| 276 |
275
|
eleq1d |
|- ( y e. { 0 } -> ( ( x + y ) e. ( 0 ... k ) <-> ( x + 0 ) e. ( 0 ... k ) ) ) |
| 277 |
273 276
|
syl5ibrcom |
|- ( x e. ( 0 ..^ k ) -> ( y e. { 0 } -> ( x + y ) e. ( 0 ... k ) ) ) |
| 278 |
268 277
|
jaod |
|- ( x e. ( 0 ..^ k ) -> ( ( y e. { 1 } \/ y e. { 0 } ) -> ( x + y ) e. ( 0 ... k ) ) ) |
| 279 |
263 278
|
biimtrid |
|- ( x e. ( 0 ..^ k ) -> ( y e. ( { 1 } u. { 0 } ) -> ( x + y ) e. ( 0 ... k ) ) ) |
| 280 |
279
|
imp |
|- ( ( x e. ( 0 ..^ k ) /\ y e. ( { 1 } u. { 0 } ) ) -> ( x + y ) e. ( 0 ... k ) ) |
| 281 |
280
|
adantl |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ ( x e. ( 0 ..^ k ) /\ y e. ( { 1 } u. { 0 } ) ) ) -> ( x + y ) e. ( 0 ... k ) ) |
| 282 |
7
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 283 |
|
xp1st |
|- ( ( G ` k ) e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( G ` k ) ) e. ( NN0 ^m ( 1 ... N ) ) ) |
| 284 |
|
elmapfn |
|- ( ( 1st ` ( G ` k ) ) e. ( NN0 ^m ( 1 ... N ) ) -> ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) ) |
| 285 |
282 283 284
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) ) |
| 286 |
|
df-f |
|- ( ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ( 0 ..^ k ) <-> ( ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) /\ ran ( 1st ` ( G ` k ) ) C_ ( 0 ..^ k ) ) ) |
| 287 |
285 8 286
|
sylanbrc |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ( 0 ..^ k ) ) |
| 288 |
287
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ( 0 ..^ k ) ) |
| 289 |
|
1ex |
|- 1 e. _V |
| 290 |
289
|
fconst |
|- ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) --> { 1 } |
| 291 |
40
|
fconst |
|- ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) --> { 0 } |
| 292 |
290 291
|
pm3.2i |
|- ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) --> { 1 } /\ ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) --> { 0 } ) |
| 293 |
|
xp2nd |
|- ( ( G ` k ) e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( G ` k ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 294 |
282 293
|
syl |
|- ( ( ph /\ k e. NN ) -> ( 2nd ` ( G ` k ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 295 |
|
fvex |
|- ( 2nd ` ( G ` k ) ) e. _V |
| 296 |
|
f1oeq1 |
|- ( f = ( 2nd ` ( G ` k ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 297 |
295 296
|
elab |
|- ( ( 2nd ` ( G ` k ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 298 |
294 297
|
sylib |
|- ( ( ph /\ k e. NN ) -> ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 299 |
|
dff1o3 |
|- ( ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( G ` k ) ) ) ) |
| 300 |
299
|
simprbi |
|- ( ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( G ` k ) ) ) |
| 301 |
|
imain |
|- ( Fun `' ( 2nd ` ( G ` k ) ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) i^i ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) ) |
| 302 |
298 300 301
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) i^i ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) ) |
| 303 |
|
elfznn0 |
|- ( j e. ( 0 ... N ) -> j e. NN0 ) |
| 304 |
303
|
nn0red |
|- ( j e. ( 0 ... N ) -> j e. RR ) |
| 305 |
304
|
ltp1d |
|- ( j e. ( 0 ... N ) -> j < ( j + 1 ) ) |
| 306 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 307 |
305 306
|
syl |
|- ( j e. ( 0 ... N ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 308 |
307
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( 2nd ` ( G ` k ) ) " (/) ) ) |
| 309 |
|
ima0 |
|- ( ( 2nd ` ( G ` k ) ) " (/) ) = (/) |
| 310 |
308 309
|
eqtrdi |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 311 |
302 310
|
sylan9req |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) i^i ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 312 |
|
fun |
|- ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) --> { 1 } /\ ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) --> { 0 } ) /\ ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) i^i ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) u. ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
| 313 |
292 311 312
|
sylancr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) u. ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
| 314 |
|
imaundi |
|- ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) u. ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) |
| 315 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
| 316 |
303 315
|
syl |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. NN ) |
| 317 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 318 |
316 317
|
eleqtrdi |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
| 319 |
|
elfzuz3 |
|- ( j e. ( 0 ... N ) -> N e. ( ZZ>= ` j ) ) |
| 320 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` j ) ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
| 321 |
318 319 320
|
syl2anc |
|- ( j e. ( 0 ... N ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
| 322 |
321
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` ( G ` k ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) ) |
| 323 |
|
f1ofo |
|- ( ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
| 324 |
|
foima |
|- ( ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( G ` k ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 325 |
298 323 324
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( ( 2nd ` ( G ` k ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 326 |
322 325
|
sylan9req |
|- ( ( j e. ( 0 ... N ) /\ ( ph /\ k e. NN ) ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 327 |
326
|
ancoms |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 328 |
314 327
|
eqtr3id |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) u. ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 329 |
328
|
feq2d |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) u. ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) |
| 330 |
313 329
|
mpbid |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) |
| 331 |
|
fzfid |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( 1 ... N ) e. Fin ) |
| 332 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 333 |
281 288 330 331 331 332
|
off |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... k ) ) |
| 334 |
6
|
feq1i |
|- ( P : ( 1 ... N ) --> ( 0 ... k ) <-> ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... k ) ) |
| 335 |
333 334
|
sylibr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> P : ( 1 ... N ) --> ( 0 ... k ) ) |
| 336 |
|
vex |
|- k e. _V |
| 337 |
336
|
fconst |
|- ( ( 1 ... N ) X. { k } ) : ( 1 ... N ) --> { k } |
| 338 |
337
|
a1i |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( 1 ... N ) X. { k } ) : ( 1 ... N ) --> { k } ) |
| 339 |
262 335 338 331 331 332
|
off |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( P oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 340 |
2
|
eleq2i |
|- ( ( P oF / ( ( 1 ... N ) X. { k } ) ) e. I <-> ( P oF / ( ( 1 ... N ) X. { k } ) ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) ) |
| 341 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
| 342 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 343 |
341 342
|
elmap |
|- ( ( P oF / ( ( 1 ... N ) X. { k } ) ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) <-> ( P oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 344 |
340 343
|
bitri |
|- ( ( P oF / ( ( 1 ... N ) X. { k } ) ) e. I <-> ( P oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 345 |
339 344
|
sylibr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( P oF / ( ( 1 ... N ) X. { k } ) ) e. I ) |
| 346 |
227 345
|
ffvelcdmd |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) e. ( RR ^m ( 1 ... N ) ) ) |
| 347 |
|
elmapi |
|- ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) e. ( RR ^m ( 1 ... N ) ) -> ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) : ( 1 ... N ) --> RR ) |
| 348 |
346 347
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) : ( 1 ... N ) --> RR ) |
| 349 |
348
|
ffvelcdmda |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) e. RR ) |
| 350 |
349
|
an32s |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) e. RR ) |
| 351 |
|
0red |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> 0 e. RR ) |
| 352 |
350 351
|
ltnled |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) < 0 <-> -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 353 |
|
ltle |
|- ( ( ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) e. RR /\ 0 e. RR ) -> ( ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) < 0 -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 354 |
350 45 353
|
sylancl |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) < 0 -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 355 |
352 354
|
sylbird |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 356 |
248 234
|
div0d |
|- ( k e. NN -> ( 0 / k ) = 0 ) |
| 357 |
|
oveq1 |
|- ( ( P ` n ) = 0 -> ( ( P ` n ) / k ) = ( 0 / k ) ) |
| 358 |
357
|
eqeq1d |
|- ( ( P ` n ) = 0 -> ( ( ( P ` n ) / k ) = 0 <-> ( 0 / k ) = 0 ) ) |
| 359 |
356 358
|
syl5ibrcom |
|- ( k e. NN -> ( ( P ` n ) = 0 -> ( ( P ` n ) / k ) = 0 ) ) |
| 360 |
359
|
ad3antlr |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( P ` n ) = 0 -> ( ( P ` n ) / k ) = 0 ) ) |
| 361 |
335
|
ffnd |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> P Fn ( 1 ... N ) ) |
| 362 |
|
fnconstg |
|- ( k e. _V -> ( ( 1 ... N ) X. { k } ) Fn ( 1 ... N ) ) |
| 363 |
336 362
|
mp1i |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( 1 ... N ) X. { k } ) Fn ( 1 ... N ) ) |
| 364 |
|
eqidd |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> ( P ` n ) = ( P ` n ) ) |
| 365 |
336
|
fvconst2 |
|- ( n e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { k } ) ` n ) = k ) |
| 366 |
365
|
adantl |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1 ... N ) X. { k } ) ` n ) = k ) |
| 367 |
361 363 331 331 332 364 366
|
ofval |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = ( ( P ` n ) / k ) ) |
| 368 |
367
|
an32s |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = ( ( P ` n ) / k ) ) |
| 369 |
368
|
eqeq1d |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 0 <-> ( ( P ` n ) / k ) = 0 ) ) |
| 370 |
360 369
|
sylibrd |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( P ` n ) = 0 -> ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 0 ) ) |
| 371 |
|
simplll |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ph ) |
| 372 |
|
simplr |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> n e. ( 1 ... N ) ) |
| 373 |
345
|
adantlr |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( P oF / ( ( 1 ... N ) X. { k } ) ) e. I ) |
| 374 |
|
ovex |
|- ( P oF / ( ( 1 ... N ) X. { k } ) ) e. _V |
| 375 |
|
eleq1 |
|- ( z = ( P oF / ( ( 1 ... N ) X. { k } ) ) -> ( z e. I <-> ( P oF / ( ( 1 ... N ) X. { k } ) ) e. I ) ) |
| 376 |
|
fveq1 |
|- ( z = ( P oF / ( ( 1 ... N ) X. { k } ) ) -> ( z ` n ) = ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) ) |
| 377 |
376
|
eqeq1d |
|- ( z = ( P oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( z ` n ) = 0 <-> ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 0 ) ) |
| 378 |
|
fveq2 |
|- ( z = ( P oF / ( ( 1 ... N ) X. { k } ) ) -> ( F ` z ) = ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 379 |
378
|
fveq1d |
|- ( z = ( P oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( F ` z ) ` n ) = ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 380 |
379
|
breq1d |
|- ( z = ( P oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( ( F ` z ) ` n ) <_ 0 <-> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 381 |
377 380
|
imbi12d |
|- ( z = ( P oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( ( z ` n ) = 0 -> ( ( F ` z ) ` n ) <_ 0 ) <-> ( ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 0 -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) ) |
| 382 |
375 381
|
imbi12d |
|- ( z = ( P oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( z e. I -> ( ( z ` n ) = 0 -> ( ( F ` z ) ` n ) <_ 0 ) ) <-> ( ( P oF / ( ( 1 ... N ) X. { k } ) ) e. I -> ( ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 0 -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) ) ) |
| 383 |
382
|
imbi2d |
|- ( z = ( P oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( n e. ( 1 ... N ) -> ( z e. I -> ( ( z ` n ) = 0 -> ( ( F ` z ) ` n ) <_ 0 ) ) ) <-> ( n e. ( 1 ... N ) -> ( ( P oF / ( ( 1 ... N ) X. { k } ) ) e. I -> ( ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 0 -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) ) ) ) |
| 384 |
383
|
imbi2d |
|- ( z = ( P oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( ph -> ( n e. ( 1 ... N ) -> ( z e. I -> ( ( z ` n ) = 0 -> ( ( F ` z ) ` n ) <_ 0 ) ) ) ) <-> ( ph -> ( n e. ( 1 ... N ) -> ( ( P oF / ( ( 1 ... N ) X. { k } ) ) e. I -> ( ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 0 -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) ) ) ) ) |
| 385 |
5
|
3exp2 |
|- ( ph -> ( n e. ( 1 ... N ) -> ( z e. I -> ( ( z ` n ) = 0 -> ( ( F ` z ) ` n ) <_ 0 ) ) ) ) |
| 386 |
374 384 385
|
vtocl |
|- ( ph -> ( n e. ( 1 ... N ) -> ( ( P oF / ( ( 1 ... N ) X. { k } ) ) e. I -> ( ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 0 -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) ) ) |
| 387 |
371 372 373 386
|
syl3c |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( ( P oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 0 -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 388 |
370 387
|
syld |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( P ` n ) = 0 -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 389 |
355 388
|
jaod |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( -. 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) \/ ( P ` n ) = 0 ) -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 390 |
209 389
|
syld |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) /\ j e. ( 0 ... N ) ) -> ( ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 391 |
390
|
reximdva |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... N ) ) -> ( E. j e. ( 0 ... N ) ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> E. j e. ( 0 ... N ) ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 392 |
391
|
anasss |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> ( E. j e. ( 0 ... N ) ( n - 1 ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( P ` b ) =/= 0 ) } ) , RR , < ) -> E. j e. ( 0 ... N ) ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 393 |
115 392
|
mpd |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> E. j e. ( 0 ... N ) ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) |
| 394 |
|
breq |
|- ( r = `' <_ -> ( 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <-> 0 `' <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 395 |
|
fvex |
|- ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) e. _V |
| 396 |
40 395
|
brcnv |
|- ( 0 `' <_ ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <-> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) |
| 397 |
394 396
|
bitrdi |
|- ( r = `' <_ -> ( 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <-> ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 398 |
397
|
rexbidv |
|- ( r = `' <_ -> ( E. j e. ( 0 ... N ) 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <-> E. j e. ( 0 ... N ) ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) <_ 0 ) ) |
| 399 |
393 398
|
syl5ibrcom |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> ( r = `' <_ -> E. j e. ( 0 ... N ) 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 400 |
84 399
|
jaod |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> ( ( r = <_ \/ r = `' <_ ) -> E. j e. ( 0 ... N ) 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 401 |
10 400
|
syl5 |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) ) ) -> ( r e. { <_ , `' <_ } -> E. j e. ( 0 ... N ) 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 402 |
401
|
exp32 |
|- ( ph -> ( k e. NN -> ( n e. ( 1 ... N ) -> ( r e. { <_ , `' <_ } -> E. j e. ( 0 ... N ) 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) ) ) |
| 403 |
402
|
3imp2 |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) /\ r e. { <_ , `' <_ } ) ) -> E. j e. ( 0 ... N ) 0 r ( ( F ` ( P oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |