Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimir.i |
⊢ 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) |
3 |
|
poimir.r |
⊢ 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) |
4 |
|
poimir.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
5 |
|
poimir.2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
6 |
|
poimirlem31.p |
⊢ 𝑃 = ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
7 |
|
poimirlem31.3 |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
8 |
|
poimirlem31.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ran ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) |
9 |
|
poimirlem31.5 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
10 |
|
elpri |
⊢ ( 𝑟 ∈ { ≤ , ◡ ≤ } → ( 𝑟 = ≤ ∨ 𝑟 = ◡ ≤ ) ) |
11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
12 |
|
fz1ssfz0 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
13 |
12
|
sseli |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( 0 ... 𝑁 ) ) |
14 |
13
|
anim2i |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ) |
15 |
|
eleq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 ∈ ( 0 ... 𝑁 ) ↔ 𝑛 ∈ ( 0 ... 𝑁 ) ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ) ↔ ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ) ) ) |
18 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑛 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝑖 = 𝑛 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑛 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
20 |
17 19
|
imbi12d |
⊢ ( 𝑖 = 𝑛 → ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ↔ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑛 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
21 |
20 9
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑛 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
22 |
|
elfzle1 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 1 ≤ 𝑛 ) |
23 |
|
1re |
⊢ 1 ∈ ℝ |
24 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ ) |
25 |
24
|
zred |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℝ ) |
26 |
|
lenlt |
⊢ ( ( 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 1 ≤ 𝑛 ↔ ¬ 𝑛 < 1 ) ) |
27 |
23 25 26
|
sylancr |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 ≤ 𝑛 ↔ ¬ 𝑛 < 1 ) ) |
28 |
22 27
|
mpbid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ¬ 𝑛 < 1 ) |
29 |
|
elsni |
⊢ ( 𝑛 ∈ { 0 } → 𝑛 = 0 ) |
30 |
|
0lt1 |
⊢ 0 < 1 |
31 |
29 30
|
eqbrtrdi |
⊢ ( 𝑛 ∈ { 0 } → 𝑛 < 1 ) |
32 |
28 31
|
nsyl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ¬ 𝑛 ∈ { 0 } ) |
33 |
|
ltso |
⊢ < Or ℝ |
34 |
|
snfi |
⊢ { 0 } ∈ Fin |
35 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
36 |
|
rabfi |
⊢ ( ( 1 ... 𝑁 ) ∈ Fin → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ∈ Fin ) |
37 |
35 36
|
ax-mp |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ∈ Fin |
38 |
|
unfi |
⊢ ( ( { 0 } ∈ Fin ∧ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ∈ Fin ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ) |
39 |
34 37 38
|
mp2an |
⊢ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin |
40 |
|
c0ex |
⊢ 0 ∈ V |
41 |
40
|
snid |
⊢ 0 ∈ { 0 } |
42 |
|
elun1 |
⊢ ( 0 ∈ { 0 } → 0 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ) |
43 |
|
ne0i |
⊢ ( 0 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ) |
44 |
41 42 43
|
mp2b |
⊢ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ |
45 |
|
0re |
⊢ 0 ∈ ℝ |
46 |
|
snssi |
⊢ ( 0 ∈ ℝ → { 0 } ⊆ ℝ ) |
47 |
45 46
|
ax-mp |
⊢ { 0 } ⊆ ℝ |
48 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ⊆ ( 1 ... 𝑁 ) |
49 |
24
|
ssriv |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
50 |
|
zssre |
⊢ ℤ ⊆ ℝ |
51 |
49 50
|
sstri |
⊢ ( 1 ... 𝑁 ) ⊆ ℝ |
52 |
48 51
|
sstri |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ⊆ ℝ |
53 |
47 52
|
unssi |
⊢ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ |
54 |
39 44 53
|
3pm3.2i |
⊢ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ) |
55 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ) |
56 |
33 54 55
|
mp2an |
⊢ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) |
57 |
|
eleq1 |
⊢ ( 𝑛 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ↔ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ) ) |
58 |
56 57
|
mpbiri |
⊢ ( 𝑛 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ) |
59 |
|
elun |
⊢ ( 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( 𝑛 ∈ { 0 } ∨ 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ) |
60 |
58 59
|
sylib |
⊢ ( 𝑛 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑛 ∈ { 0 } ∨ 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ) |
61 |
|
oveq2 |
⊢ ( 𝑎 = 𝑛 → ( 1 ... 𝑎 ) = ( 1 ... 𝑛 ) ) |
62 |
61
|
raleqdv |
⊢ ( 𝑎 = 𝑛 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
63 |
62
|
elrab |
⊢ ( 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
64 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
65 |
|
eluzfz2 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → 𝑛 ∈ ( 1 ... 𝑛 ) ) |
66 |
64 65
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( 1 ... 𝑛 ) ) |
67 |
|
simpl |
⊢ ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) |
68 |
67
|
ralimi |
⊢ ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) |
69 |
|
fveq2 |
⊢ ( 𝑏 = 𝑛 → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
70 |
69
|
breq2d |
⊢ ( 𝑏 = 𝑛 → ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
71 |
70
|
rspcva |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑛 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
72 |
66 68 71
|
syl2an |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
73 |
63 72
|
sylbi |
⊢ ( 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } → 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
74 |
73
|
orim2i |
⊢ ( ( 𝑛 ∈ { 0 } ∨ 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) → ( 𝑛 ∈ { 0 } ∨ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
75 |
60 74
|
syl |
⊢ ( 𝑛 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑛 ∈ { 0 } ∨ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
76 |
|
orel1 |
⊢ ( ¬ 𝑛 ∈ { 0 } → ( ( 𝑛 ∈ { 0 } ∨ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
77 |
32 75 76
|
syl2im |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
78 |
77
|
reximdv |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑛 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
79 |
21 78
|
syl5 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
80 |
14 79
|
sylan2i |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
81 |
11 80
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
82 |
|
breq |
⊢ ( 𝑟 = ≤ → ( 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
83 |
82
|
rexbidv |
⊢ ( 𝑟 = ≤ → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
84 |
81 83
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝑟 = ≤ → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
85 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
86 |
|
elfzm1b |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
87 |
24 85 86
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
88 |
87
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
89 |
88
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) ) |
90 |
89
|
pm2.43d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
91 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
92 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
93 |
91 92
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
94 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
95 |
1 94
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
96 |
95
|
nn0zd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
97 |
|
uzid |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
98 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
99 |
96 97 98
|
3syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
100 |
93 99
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
101 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
102 |
100 101
|
syl |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
103 |
102
|
sseld |
⊢ ( 𝜑 → ( ( 𝑛 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑛 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
104 |
90 103
|
syld |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
105 |
104
|
anim2d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 ∈ ℕ ∧ ( 𝑛 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
106 |
105
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝑘 ∈ ℕ ∧ ( 𝑛 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
107 |
|
ovex |
⊢ ( 𝑛 − 1 ) ∈ V |
108 |
|
eleq1 |
⊢ ( 𝑖 = ( 𝑛 − 1 ) → ( 𝑖 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑛 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
109 |
108
|
anbi2d |
⊢ ( 𝑖 = ( 𝑛 − 1 ) → ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑛 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
110 |
109
|
anbi2d |
⊢ ( 𝑖 = ( 𝑛 − 1 ) → ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ) ↔ ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑛 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) ) |
111 |
|
eqeq1 |
⊢ ( 𝑖 = ( 𝑛 − 1 ) → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
112 |
111
|
rexbidv |
⊢ ( 𝑖 = ( 𝑛 − 1 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
113 |
110 112
|
imbi12d |
⊢ ( 𝑖 = ( 𝑛 − 1 ) → ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ↔ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑛 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
114 |
107 113 9
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑛 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
115 |
106 114
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
116 |
|
eleq1 |
⊢ ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ↔ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ) ) |
117 |
56 116
|
mpbiri |
⊢ ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ) |
118 |
|
elun |
⊢ ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) ∈ { 0 } ∨ ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ) |
119 |
107
|
elsn |
⊢ ( ( 𝑛 − 1 ) ∈ { 0 } ↔ ( 𝑛 − 1 ) = 0 ) |
120 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑛 − 1 ) → ( 1 ... 𝑎 ) = ( 1 ... ( 𝑛 − 1 ) ) ) |
121 |
120
|
raleqdv |
⊢ ( 𝑎 = ( 𝑛 − 1 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
122 |
121
|
elrab |
⊢ ( ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ↔ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
123 |
119 122
|
orbi12i |
⊢ ( ( ( 𝑛 − 1 ) ∈ { 0 } ∨ ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
124 |
118 123
|
bitri |
⊢ ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
125 |
117 124
|
sylib |
⊢ ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
126 |
125
|
a1i |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ) ) |
127 |
|
ltm1 |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) < 𝑛 ) |
128 |
|
peano2rem |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) ∈ ℝ ) |
129 |
|
ltnle |
⊢ ( ( ( 𝑛 − 1 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 𝑛 − 1 ) < 𝑛 ↔ ¬ 𝑛 ≤ ( 𝑛 − 1 ) ) ) |
130 |
128 129
|
mpancom |
⊢ ( 𝑛 ∈ ℝ → ( ( 𝑛 − 1 ) < 𝑛 ↔ ¬ 𝑛 ≤ ( 𝑛 − 1 ) ) ) |
131 |
127 130
|
mpbid |
⊢ ( 𝑛 ∈ ℝ → ¬ 𝑛 ≤ ( 𝑛 − 1 ) ) |
132 |
25 131
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ¬ 𝑛 ≤ ( 𝑛 − 1 ) ) |
133 |
|
breq2 |
⊢ ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑛 ≤ ( 𝑛 − 1 ) ↔ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
134 |
133
|
notbid |
⊢ ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( ¬ 𝑛 ≤ ( 𝑛 − 1 ) ↔ ¬ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
135 |
132 134
|
syl5ibcom |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ¬ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
136 |
|
elun2 |
⊢ ( 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ) |
137 |
|
fimaxre2 |
⊢ ( ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) 𝑦 ≤ 𝑥 ) |
138 |
53 39 137
|
mp2an |
⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) 𝑦 ≤ 𝑥 |
139 |
53 44 138
|
3pm3.2i |
⊢ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) 𝑦 ≤ 𝑥 ) |
140 |
139
|
suprubii |
⊢ ( 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
141 |
136 140
|
syl |
⊢ ( 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } → 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
142 |
141
|
con3i |
⊢ ( ¬ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ¬ 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) |
143 |
|
ianor |
⊢ ( ¬ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ↔ ( ¬ 𝑛 ∈ ( 1 ... 𝑁 ) ∨ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
144 |
143 63
|
xchnxbir |
⊢ ( ¬ 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ↔ ( ¬ 𝑛 ∈ ( 1 ... 𝑁 ) ∨ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
145 |
142 144
|
sylib |
⊢ ( ¬ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( ¬ 𝑛 ∈ ( 1 ... 𝑁 ) ∨ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
146 |
135 145
|
syl6 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( ¬ 𝑛 ∈ ( 1 ... 𝑁 ) ∨ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
147 |
|
pm2.63 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∨ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ( ( ¬ 𝑛 ∈ ( 1 ... 𝑁 ) ∨ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
148 |
147
|
orcs |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ¬ 𝑛 ∈ ( 1 ... 𝑁 ) ∨ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
149 |
146 148
|
syld |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
150 |
126 149
|
jcad |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ∧ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
151 |
|
andir |
⊢ ( ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ∧ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ↔ ( ( ( 𝑛 − 1 ) = 0 ∧ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ∨ ( ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ∧ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
152 |
24
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℂ ) |
153 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
154 |
|
0cn |
⊢ 0 ∈ ℂ |
155 |
|
subadd |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( 𝑛 − 1 ) = 0 ↔ ( 1 + 0 ) = 𝑛 ) ) |
156 |
153 154 155
|
mp3an23 |
⊢ ( 𝑛 ∈ ℂ → ( ( 𝑛 − 1 ) = 0 ↔ ( 1 + 0 ) = 𝑛 ) ) |
157 |
152 156
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) = 0 ↔ ( 1 + 0 ) = 𝑛 ) ) |
158 |
157
|
biimpa |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑛 − 1 ) = 0 ) → ( 1 + 0 ) = 𝑛 ) |
159 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
160 |
158 159
|
eqtr3di |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑛 − 1 ) = 0 ) → 𝑛 = 1 ) |
161 |
|
1z |
⊢ 1 ∈ ℤ |
162 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
163 |
161 162
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
164 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) |
165 |
|
sneq |
⊢ ( 𝑛 = 1 → { 𝑛 } = { 1 } ) |
166 |
163 164 165
|
3eqtr4a |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = { 𝑛 } ) |
167 |
166
|
raleqdv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
168 |
167
|
notbid |
⊢ ( 𝑛 = 1 → ( ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ↔ ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
169 |
168
|
biimpd |
⊢ ( 𝑛 = 1 → ( ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) → ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
170 |
160 169
|
syl |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑛 − 1 ) = 0 ) → ( ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) → ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
171 |
170
|
expimpd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑛 − 1 ) = 0 ∧ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
172 |
|
ralun |
⊢ ( ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ∀ 𝑏 ∈ ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) |
173 |
|
npcan1 |
⊢ ( 𝑛 ∈ ℂ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
174 |
152 173
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
175 |
174 64
|
eqeltrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
176 |
|
peano2zm |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 − 1 ) ∈ ℤ ) |
177 |
|
uzid |
⊢ ( ( 𝑛 − 1 ) ∈ ℤ → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
178 |
|
peano2uz |
⊢ ( ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
179 |
24 176 177 178
|
4syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
180 |
174 179
|
eqeltrrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
181 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) ) |
182 |
175 180 181
|
syl2anc |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) ) |
183 |
174
|
oveq1d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) = ( 𝑛 ... 𝑛 ) ) |
184 |
|
fzsn |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ... 𝑛 ) = { 𝑛 } ) |
185 |
24 184
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 ... 𝑛 ) = { 𝑛 } ) |
186 |
183 185
|
eqtrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) = { 𝑛 } ) |
187 |
186
|
uneq2d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ) |
188 |
182 187
|
eqtrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ) |
189 |
188
|
raleqdv |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
190 |
172 189
|
imbitrrid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
191 |
190
|
expdimp |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
192 |
191
|
con3d |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ( ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) → ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
193 |
192
|
adantrl |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) → ( ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) → ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
194 |
193
|
expimpd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ∧ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
195 |
171 194
|
jaod |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( ( 𝑛 − 1 ) = 0 ∧ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ∨ ( ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ∧ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) → ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
196 |
151 195
|
biimtrid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ∧ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) |
197 |
|
fveq2 |
⊢ ( 𝑏 = 𝑛 → ( 𝑃 ‘ 𝑏 ) = ( 𝑃 ‘ 𝑛 ) ) |
198 |
197
|
neeq1d |
⊢ ( 𝑏 = 𝑛 → ( ( 𝑃 ‘ 𝑏 ) ≠ 0 ↔ ( 𝑃 ‘ 𝑛 ) ≠ 0 ) ) |
199 |
70 198
|
anbi12d |
⊢ ( 𝑏 = 𝑛 → ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ≠ 0 ) ) ) |
200 |
199
|
ralsng |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ≠ 0 ) ) ) |
201 |
200
|
notbid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ↔ ¬ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ≠ 0 ) ) ) |
202 |
|
ianor |
⊢ ( ¬ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ≠ 0 ) ↔ ( ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∨ ¬ ( 𝑃 ‘ 𝑛 ) ≠ 0 ) ) |
203 |
|
nne |
⊢ ( ¬ ( 𝑃 ‘ 𝑛 ) ≠ 0 ↔ ( 𝑃 ‘ 𝑛 ) = 0 ) |
204 |
203
|
orbi2i |
⊢ ( ( ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∨ ¬ ( 𝑃 ‘ 𝑛 ) ≠ 0 ) ↔ ( ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∨ ( 𝑃 ‘ 𝑛 ) = 0 ) ) |
205 |
202 204
|
bitri |
⊢ ( ¬ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ≠ 0 ) ↔ ( ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∨ ( 𝑃 ‘ 𝑛 ) = 0 ) ) |
206 |
201 205
|
bitrdi |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ¬ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ↔ ( ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∨ ( 𝑃 ‘ 𝑛 ) = 0 ) ) ) |
207 |
196 206
|
sylibd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) ) ∧ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) ) → ( ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∨ ( 𝑃 ‘ 𝑛 ) = 0 ) ) ) |
208 |
150 207
|
syld |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∨ ( 𝑃 ‘ 𝑛 ) = 0 ) ) ) |
209 |
208
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∨ ( 𝑃 ‘ 𝑛 ) = 0 ) ) ) |
210 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
211 |
210
|
fconst6 |
⊢ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top |
212 |
|
pttop |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top ) → ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ∈ Top ) |
213 |
35 211 212
|
mp2an |
⊢ ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ∈ Top |
214 |
3 213
|
eqeltri |
⊢ 𝑅 ∈ Top |
215 |
|
reex |
⊢ ℝ ∈ V |
216 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
217 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ( 0 [,] 1 ) ⊆ ℝ ) → ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
218 |
215 216 217
|
mp2an |
⊢ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) |
219 |
2 218
|
eqsstri |
⊢ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) |
220 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
221 |
3 220
|
ptuniconst |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( topGen ‘ ran (,) ) ∈ Top ) → ( ℝ ↑m ( 1 ... 𝑁 ) ) = ∪ 𝑅 ) |
222 |
35 210 221
|
mp2an |
⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) = ∪ 𝑅 |
223 |
222
|
restuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → 𝐼 = ∪ ( 𝑅 ↾t 𝐼 ) ) |
224 |
214 219 223
|
mp2an |
⊢ 𝐼 = ∪ ( 𝑅 ↾t 𝐼 ) |
225 |
224 222
|
cnf |
⊢ ( 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) → 𝐹 : 𝐼 ⟶ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
226 |
4 225
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
227 |
226
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝐹 : 𝐼 ⟶ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
228 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
229 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) → 𝑥 ∈ ℤ ) |
230 |
229
|
zred |
⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) → 𝑥 ∈ ℝ ) |
231 |
230
|
adantr |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
232 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
233 |
232
|
adantl |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
234 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
235 |
234
|
adantl |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
236 |
231 233 235
|
redivcld |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 / 𝑘 ) ∈ ℝ ) |
237 |
|
elfzle1 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) → 0 ≤ 𝑥 ) |
238 |
230 237
|
jca |
⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
239 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
240 |
239
|
rpregt0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
241 |
|
divge0 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → 0 ≤ ( 𝑥 / 𝑘 ) ) |
242 |
238 240 241
|
syl2an |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝑥 / 𝑘 ) ) |
243 |
|
elfzle2 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) → 𝑥 ≤ 𝑘 ) |
244 |
243
|
adantr |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ≤ 𝑘 ) |
245 |
|
1red |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ ) |
246 |
239
|
adantl |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ ) |
247 |
231 245 246
|
ledivmuld |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 / 𝑘 ) ≤ 1 ↔ 𝑥 ≤ ( 𝑘 · 1 ) ) ) |
248 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
249 |
248
|
mulridd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · 1 ) = 𝑘 ) |
250 |
249
|
breq2d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ≤ ( 𝑘 · 1 ) ↔ 𝑥 ≤ 𝑘 ) ) |
251 |
250
|
adantl |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ≤ ( 𝑘 · 1 ) ↔ 𝑥 ≤ 𝑘 ) ) |
252 |
247 251
|
bitrd |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 / 𝑘 ) ≤ 1 ↔ 𝑥 ≤ 𝑘 ) ) |
253 |
244 252
|
mpbird |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 / 𝑘 ) ≤ 1 ) |
254 |
|
elicc01 |
⊢ ( ( 𝑥 / 𝑘 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑥 / 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 / 𝑘 ) ∧ ( 𝑥 / 𝑘 ) ≤ 1 ) ) |
255 |
236 242 253 254
|
syl3anbrc |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 / 𝑘 ) ∈ ( 0 [,] 1 ) ) |
256 |
255
|
ancoms |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( 𝑥 / 𝑘 ) ∈ ( 0 [,] 1 ) ) |
257 |
|
elsni |
⊢ ( 𝑦 ∈ { 𝑘 } → 𝑦 = 𝑘 ) |
258 |
257
|
oveq2d |
⊢ ( 𝑦 ∈ { 𝑘 } → ( 𝑥 / 𝑦 ) = ( 𝑥 / 𝑘 ) ) |
259 |
258
|
eleq1d |
⊢ ( 𝑦 ∈ { 𝑘 } → ( ( 𝑥 / 𝑦 ) ∈ ( 0 [,] 1 ) ↔ ( 𝑥 / 𝑘 ) ∈ ( 0 [,] 1 ) ) ) |
260 |
256 259
|
syl5ibrcom |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( 𝑦 ∈ { 𝑘 } → ( 𝑥 / 𝑦 ) ∈ ( 0 [,] 1 ) ) ) |
261 |
260
|
impr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑦 ∈ { 𝑘 } ) ) → ( 𝑥 / 𝑦 ) ∈ ( 0 [,] 1 ) ) |
262 |
228 261
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑥 ∈ ( 0 ... 𝑘 ) ∧ 𝑦 ∈ { 𝑘 } ) ) → ( 𝑥 / 𝑦 ) ∈ ( 0 [,] 1 ) ) |
263 |
|
elun |
⊢ ( 𝑦 ∈ ( { 1 } ∪ { 0 } ) ↔ ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ { 0 } ) ) |
264 |
|
fzofzp1 |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝑘 ) ) |
265 |
|
elsni |
⊢ ( 𝑦 ∈ { 1 } → 𝑦 = 1 ) |
266 |
265
|
oveq2d |
⊢ ( 𝑦 ∈ { 1 } → ( 𝑥 + 𝑦 ) = ( 𝑥 + 1 ) ) |
267 |
266
|
eleq1d |
⊢ ( 𝑦 ∈ { 1 } → ( ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝑘 ) ↔ ( 𝑥 + 1 ) ∈ ( 0 ... 𝑘 ) ) ) |
268 |
264 267
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) → ( 𝑦 ∈ { 1 } → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝑘 ) ) ) |
269 |
|
elfzonn0 |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) → 𝑥 ∈ ℕ0 ) |
270 |
269
|
nn0cnd |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) → 𝑥 ∈ ℂ ) |
271 |
270
|
addridd |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) → ( 𝑥 + 0 ) = 𝑥 ) |
272 |
|
elfzofz |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) → 𝑥 ∈ ( 0 ... 𝑘 ) ) |
273 |
271 272
|
eqeltrd |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) → ( 𝑥 + 0 ) ∈ ( 0 ... 𝑘 ) ) |
274 |
|
elsni |
⊢ ( 𝑦 ∈ { 0 } → 𝑦 = 0 ) |
275 |
274
|
oveq2d |
⊢ ( 𝑦 ∈ { 0 } → ( 𝑥 + 𝑦 ) = ( 𝑥 + 0 ) ) |
276 |
275
|
eleq1d |
⊢ ( 𝑦 ∈ { 0 } → ( ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝑘 ) ↔ ( 𝑥 + 0 ) ∈ ( 0 ... 𝑘 ) ) ) |
277 |
273 276
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) → ( 𝑦 ∈ { 0 } → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝑘 ) ) ) |
278 |
268 277
|
jaod |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) → ( ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ { 0 } ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝑘 ) ) ) |
279 |
263 278
|
biimtrid |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) → ( 𝑦 ∈ ( { 1 } ∪ { 0 } ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝑘 ) ) ) |
280 |
279
|
imp |
⊢ ( ( 𝑥 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑦 ∈ ( { 1 } ∪ { 0 } ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝑘 ) ) |
281 |
280
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑥 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑦 ∈ ( { 1 } ∪ { 0 } ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝑘 ) ) |
282 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
283 |
|
xp1st |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
284 |
|
elmapfn |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) Fn ( 1 ... 𝑁 ) ) |
285 |
282 283 284
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) Fn ( 1 ... 𝑁 ) ) |
286 |
|
df-f |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) ↔ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) Fn ( 1 ... 𝑁 ) ∧ ran ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) ) |
287 |
285 8 286
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) ) |
288 |
287
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) ) |
289 |
|
1ex |
⊢ 1 ∈ V |
290 |
289
|
fconst |
⊢ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } |
291 |
40
|
fconst |
⊢ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } |
292 |
290 291
|
pm3.2i |
⊢ ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) |
293 |
|
xp2nd |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
294 |
282 293
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
295 |
|
fvex |
⊢ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ V |
296 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
297 |
295 296
|
elab |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
298 |
294 297
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
299 |
|
dff1o3 |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
300 |
299
|
simprbi |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
301 |
|
imain |
⊢ ( Fun ◡ ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
302 |
298 300 301
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
303 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℕ0 ) |
304 |
303
|
nn0red |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℝ ) |
305 |
304
|
ltp1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 < ( 𝑗 + 1 ) ) |
306 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
307 |
305 306
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
308 |
307
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ∅ ) ) |
309 |
|
ima0 |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ∅ ) = ∅ |
310 |
308 309
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
311 |
302 310
|
sylan9req |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
312 |
|
fun |
⊢ ( ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) ∧ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
313 |
292 311 312
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
314 |
|
imaundi |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
315 |
|
nn0p1nn |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) |
316 |
303 315
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
317 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
318 |
316 317
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
319 |
|
elfzuz3 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
320 |
|
fzsplit2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
321 |
318 319 320
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
322 |
321
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
323 |
|
f1ofo |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
324 |
|
foima |
⊢ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
325 |
298 323 324
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
326 |
322 325
|
sylan9req |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
327 |
326
|
ancoms |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
328 |
314 327
|
eqtr3id |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
329 |
328
|
feq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) ) |
330 |
313 329
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) |
331 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
332 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
333 |
281 288 330 331 331 332
|
off |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) |
334 |
6
|
feq1i |
⊢ ( 𝑃 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ↔ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) |
335 |
333 334
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑃 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) |
336 |
|
vex |
⊢ 𝑘 ∈ V |
337 |
336
|
fconst |
⊢ ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } |
338 |
337
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } ) |
339 |
262 335 338 331 331 332
|
off |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
340 |
2
|
eleq2i |
⊢ ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ) |
341 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
342 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
343 |
341 342
|
elmap |
⊢ ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ↔ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
344 |
340 343
|
bitri |
⊢ ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
345 |
339 344
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) |
346 |
227 345
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
347 |
|
elmapi |
⊢ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) |
348 |
346 347
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) |
349 |
348
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
350 |
349
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
351 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 0 ∈ ℝ ) |
352 |
350 351
|
ltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) < 0 ↔ ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
353 |
|
ltle |
⊢ ( ( ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) < 0 → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
354 |
350 45 353
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) < 0 → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
355 |
352 354
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
356 |
248 234
|
div0d |
⊢ ( 𝑘 ∈ ℕ → ( 0 / 𝑘 ) = 0 ) |
357 |
|
oveq1 |
⊢ ( ( 𝑃 ‘ 𝑛 ) = 0 → ( ( 𝑃 ‘ 𝑛 ) / 𝑘 ) = ( 0 / 𝑘 ) ) |
358 |
357
|
eqeq1d |
⊢ ( ( 𝑃 ‘ 𝑛 ) = 0 → ( ( ( 𝑃 ‘ 𝑛 ) / 𝑘 ) = 0 ↔ ( 0 / 𝑘 ) = 0 ) ) |
359 |
356 358
|
syl5ibrcom |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑃 ‘ 𝑛 ) = 0 → ( ( 𝑃 ‘ 𝑛 ) / 𝑘 ) = 0 ) ) |
360 |
359
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑃 ‘ 𝑛 ) = 0 → ( ( 𝑃 ‘ 𝑛 ) / 𝑘 ) = 0 ) ) |
361 |
335
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑃 Fn ( 1 ... 𝑁 ) ) |
362 |
|
fnconstg |
⊢ ( 𝑘 ∈ V → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) ) |
363 |
336 362
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) ) |
364 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑛 ) ) |
365 |
336
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑛 ) = 𝑘 ) |
366 |
365
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑛 ) = 𝑘 ) |
367 |
361 363 331 331 332 364 366
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( ( 𝑃 ‘ 𝑛 ) / 𝑘 ) ) |
368 |
367
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( ( 𝑃 ‘ 𝑛 ) / 𝑘 ) ) |
369 |
368
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 0 ↔ ( ( 𝑃 ‘ 𝑛 ) / 𝑘 ) = 0 ) ) |
370 |
360 369
|
sylibrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑃 ‘ 𝑛 ) = 0 → ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 0 ) ) |
371 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝜑 ) |
372 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
373 |
345
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) |
374 |
|
ovex |
⊢ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ V |
375 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝑧 ∈ 𝐼 ↔ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) ) |
376 |
|
fveq1 |
⊢ ( 𝑧 = ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝑧 ‘ 𝑛 ) = ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) ) |
377 |
376
|
eqeq1d |
⊢ ( 𝑧 = ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝑧 ‘ 𝑛 ) = 0 ↔ ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 0 ) ) |
378 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
379 |
378
|
fveq1d |
⊢ ( 𝑧 = ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
380 |
379
|
breq1d |
⊢ ( 𝑧 = ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ↔ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
381 |
377 380
|
imbi12d |
⊢ ( 𝑧 = ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( ( 𝑧 ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) ↔ ( ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) ) |
382 |
375 381
|
imbi12d |
⊢ ( 𝑧 = ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝑧 ∈ 𝐼 → ( ( 𝑧 ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) ) ↔ ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 → ( ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) ) ) |
383 |
382
|
imbi2d |
⊢ ( 𝑧 = ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑧 ∈ 𝐼 → ( ( 𝑧 ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) ) ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 → ( ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) ) ) ) |
384 |
383
|
imbi2d |
⊢ ( 𝑧 = ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑧 ∈ 𝐼 → ( ( 𝑧 ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 → ( ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) ) ) ) ) |
385 |
5
|
3exp2 |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑧 ∈ 𝐼 → ( ( 𝑧 ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) ) ) ) |
386 |
374 384 385
|
vtocl |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 → ( ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) ) ) |
387 |
371 372 373 386
|
syl3c |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
388 |
370 387
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑃 ‘ 𝑛 ) = 0 → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
389 |
355 388
|
jaod |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ¬ 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∨ ( 𝑃 ‘ 𝑛 ) = 0 ) → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
390 |
209 389
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
391 |
390
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
392 |
391
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑛 − 1 ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑃 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
393 |
115 392
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) |
394 |
|
breq |
⊢ ( 𝑟 = ◡ ≤ → ( 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ↔ 0 ◡ ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
395 |
|
fvex |
⊢ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∈ V |
396 |
40 395
|
brcnv |
⊢ ( 0 ◡ ≤ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ↔ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) |
397 |
394 396
|
bitrdi |
⊢ ( 𝑟 = ◡ ≤ → ( 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ↔ ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
398 |
397
|
rexbidv |
⊢ ( 𝑟 = ◡ ≤ → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ≤ 0 ) ) |
399 |
393 398
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝑟 = ◡ ≤ → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
400 |
84 399
|
jaod |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( ( 𝑟 = ≤ ∨ 𝑟 = ◡ ≤ ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
401 |
10 400
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝑟 ∈ { ≤ , ◡ ≤ } → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
402 |
401
|
exp32 |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑟 ∈ { ≤ , ◡ ≤ } → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) ) ) |
403 |
402
|
3imp2 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ◡ ≤ } ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( 𝑃 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |