| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
poimir.i |
⊢ 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) |
| 3 |
|
poimir.r |
⊢ 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) |
| 4 |
|
poimir.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
| 5 |
|
poimirlem30.x |
⊢ 𝑋 = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) |
| 6 |
|
poimirlem30.2 |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
| 7 |
|
poimirlem30.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ran ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) |
| 8 |
|
poimirlem30.4 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ◡ ≤ } ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 0 𝑟 𝑋 ) |
| 9 |
|
elfzonn0 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑘 ) → 𝑖 ∈ ℕ0 ) |
| 10 |
9
|
nn0red |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑘 ) → 𝑖 ∈ ℝ ) |
| 11 |
|
nndivre |
⊢ ( ( 𝑖 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ℝ ) |
| 12 |
10 11
|
sylan |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ℝ ) |
| 13 |
|
elfzole1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑘 ) → 0 ≤ 𝑖 ) |
| 14 |
10 13
|
jca |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑘 ) → ( 𝑖 ∈ ℝ ∧ 0 ≤ 𝑖 ) ) |
| 15 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 16 |
15
|
rpregt0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 17 |
|
divge0 |
⊢ ( ( ( 𝑖 ∈ ℝ ∧ 0 ≤ 𝑖 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → 0 ≤ ( 𝑖 / 𝑘 ) ) |
| 18 |
14 16 17
|
syl2an |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝑖 / 𝑘 ) ) |
| 19 |
|
elfzo0le |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑘 ) → 𝑖 ≤ 𝑘 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑖 ≤ 𝑘 ) |
| 21 |
10
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑖 ∈ ℝ ) |
| 22 |
|
1red |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ ) |
| 23 |
15
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ ) |
| 24 |
21 22 23
|
ledivmuld |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑖 / 𝑘 ) ≤ 1 ↔ 𝑖 ≤ ( 𝑘 · 1 ) ) ) |
| 25 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 26 |
25
|
mulridd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · 1 ) = 𝑘 ) |
| 27 |
26
|
breq2d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ≤ ( 𝑘 · 1 ) ↔ 𝑖 ≤ 𝑘 ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 ≤ ( 𝑘 · 1 ) ↔ 𝑖 ≤ 𝑘 ) ) |
| 29 |
24 28
|
bitrd |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑖 / 𝑘 ) ≤ 1 ↔ 𝑖 ≤ 𝑘 ) ) |
| 30 |
20 29
|
mpbird |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ≤ 1 ) |
| 31 |
|
elicc01 |
⊢ ( ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑖 / 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝑖 / 𝑘 ) ∧ ( 𝑖 / 𝑘 ) ≤ 1 ) ) |
| 32 |
12 18 30 31
|
syl3anbrc |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ) |
| 33 |
32
|
ancoms |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ..^ 𝑘 ) ) → ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ) |
| 34 |
|
elsni |
⊢ ( 𝑗 ∈ { 𝑘 } → 𝑗 = 𝑘 ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝑗 ∈ { 𝑘 } → ( 𝑖 / 𝑗 ) = ( 𝑖 / 𝑘 ) ) |
| 36 |
35
|
eleq1d |
⊢ ( 𝑗 ∈ { 𝑘 } → ( ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ↔ ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ) ) |
| 37 |
33 36
|
syl5ibrcom |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ..^ 𝑘 ) ) → ( 𝑗 ∈ { 𝑘 } → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ) ) |
| 38 |
37
|
impr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑗 ∈ { 𝑘 } ) ) → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ) |
| 39 |
38
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑖 ∈ ( 0 ..^ 𝑘 ) ∧ 𝑗 ∈ { 𝑘 } ) ) → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ) |
| 40 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
| 41 |
|
xp1st |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
| 42 |
|
elmapfn |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) Fn ( 1 ... 𝑁 ) ) |
| 43 |
40 41 42
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) Fn ( 1 ... 𝑁 ) ) |
| 44 |
|
df-f |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) ↔ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) Fn ( 1 ... 𝑁 ) ∧ ran ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) ) |
| 45 |
43 7 44
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) ) |
| 46 |
|
vex |
⊢ 𝑘 ∈ V |
| 47 |
46
|
fconst |
⊢ ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } |
| 48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } ) |
| 49 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 50 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
| 51 |
39 45 48 49 49 50
|
off |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 52 |
2
|
eleq2i |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ) |
| 53 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
| 54 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
| 55 |
53 54
|
elmap |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ↔ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 56 |
52 55
|
bitri |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 57 |
51 56
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) |
| 58 |
57
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) : ℕ ⟶ 𝐼 ) |
| 59 |
58
|
frnd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ⊆ 𝐼 ) |
| 60 |
|
ominf |
⊢ ¬ ω ∈ Fin |
| 61 |
|
nnenom |
⊢ ℕ ≈ ω |
| 62 |
|
enfi |
⊢ ( ℕ ≈ ω → ( ℕ ∈ Fin ↔ ω ∈ Fin ) ) |
| 63 |
61 62
|
ax-mp |
⊢ ( ℕ ∈ Fin ↔ ω ∈ Fin ) |
| 64 |
|
iunid |
⊢ ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) { 𝑐 } = ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) |
| 65 |
64
|
imaeq2i |
⊢ ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) { 𝑐 } ) = ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 66 |
|
imaiun |
⊢ ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) { 𝑐 } ) = ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) |
| 67 |
|
ovex |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ V |
| 68 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) |
| 69 |
67 68
|
fnmpti |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) Fn ℕ |
| 70 |
|
dffn3 |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) Fn ℕ ↔ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) : ℕ ⟶ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 71 |
69 70
|
mpbi |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) : ℕ ⟶ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) |
| 72 |
|
fimacnv |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) : ℕ ⟶ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) → ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) = ℕ ) |
| 73 |
71 72
|
ax-mp |
⊢ ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) = ℕ |
| 74 |
65 66 73
|
3eqtr3ri |
⊢ ℕ = ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) |
| 75 |
74
|
eleq1i |
⊢ ( ℕ ∈ Fin ↔ ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) |
| 76 |
63 75
|
bitr3i |
⊢ ( ω ∈ Fin ↔ ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) |
| 77 |
60 76
|
mtbi |
⊢ ¬ ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin |
| 78 |
|
ralnex |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ↔ ¬ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) |
| 79 |
78
|
rexbii |
⊢ ( ∃ 𝑖 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ↔ ∃ 𝑖 ∈ ℕ ¬ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) |
| 80 |
|
rexnal |
⊢ ( ∃ 𝑖 ∈ ℕ ¬ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ↔ ¬ ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) |
| 81 |
79 80
|
bitri |
⊢ ( ∃ 𝑖 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ↔ ¬ ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) |
| 82 |
81
|
ralbii |
⊢ ( ∀ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∃ 𝑖 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ↔ ∀ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ¬ ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) |
| 83 |
|
ralnex |
⊢ ( ∀ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ¬ ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ↔ ¬ ∃ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) |
| 84 |
82 83
|
bitri |
⊢ ( ∀ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∃ 𝑖 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ↔ ¬ ∃ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) |
| 85 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 86 |
|
elnnuz |
⊢ ( 𝑖 ∈ ℕ ↔ 𝑖 ∈ ( ℤ≥ ‘ 1 ) ) |
| 87 |
|
fzouzsplit |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 1 ) = ( ( 1 ..^ 𝑖 ) ∪ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 88 |
86 87
|
sylbi |
⊢ ( 𝑖 ∈ ℕ → ( ℤ≥ ‘ 1 ) = ( ( 1 ..^ 𝑖 ) ∪ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 89 |
85 88
|
eqtrid |
⊢ ( 𝑖 ∈ ℕ → ℕ = ( ( 1 ..^ 𝑖 ) ∪ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 90 |
89
|
difeq1d |
⊢ ( 𝑖 ∈ ℕ → ( ℕ ∖ ( 1 ..^ 𝑖 ) ) = ( ( ( 1 ..^ 𝑖 ) ∪ ( ℤ≥ ‘ 𝑖 ) ) ∖ ( 1 ..^ 𝑖 ) ) ) |
| 91 |
|
uncom |
⊢ ( ( 1 ..^ 𝑖 ) ∪ ( ℤ≥ ‘ 𝑖 ) ) = ( ( ℤ≥ ‘ 𝑖 ) ∪ ( 1 ..^ 𝑖 ) ) |
| 92 |
91
|
difeq1i |
⊢ ( ( ( 1 ..^ 𝑖 ) ∪ ( ℤ≥ ‘ 𝑖 ) ) ∖ ( 1 ..^ 𝑖 ) ) = ( ( ( ℤ≥ ‘ 𝑖 ) ∪ ( 1 ..^ 𝑖 ) ) ∖ ( 1 ..^ 𝑖 ) ) |
| 93 |
|
difun2 |
⊢ ( ( ( ℤ≥ ‘ 𝑖 ) ∪ ( 1 ..^ 𝑖 ) ) ∖ ( 1 ..^ 𝑖 ) ) = ( ( ℤ≥ ‘ 𝑖 ) ∖ ( 1 ..^ 𝑖 ) ) |
| 94 |
92 93
|
eqtri |
⊢ ( ( ( 1 ..^ 𝑖 ) ∪ ( ℤ≥ ‘ 𝑖 ) ) ∖ ( 1 ..^ 𝑖 ) ) = ( ( ℤ≥ ‘ 𝑖 ) ∖ ( 1 ..^ 𝑖 ) ) |
| 95 |
90 94
|
eqtrdi |
⊢ ( 𝑖 ∈ ℕ → ( ℕ ∖ ( 1 ..^ 𝑖 ) ) = ( ( ℤ≥ ‘ 𝑖 ) ∖ ( 1 ..^ 𝑖 ) ) ) |
| 96 |
|
difss |
⊢ ( ( ℤ≥ ‘ 𝑖 ) ∖ ( 1 ..^ 𝑖 ) ) ⊆ ( ℤ≥ ‘ 𝑖 ) |
| 97 |
95 96
|
eqsstrdi |
⊢ ( 𝑖 ∈ ℕ → ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ⊆ ( ℤ≥ ‘ 𝑖 ) ) |
| 98 |
|
ssralv |
⊢ ( ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ⊆ ( ℤ≥ ‘ 𝑖 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ∀ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ) |
| 99 |
97 98
|
syl |
⊢ ( 𝑖 ∈ ℕ → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ∀ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ) |
| 100 |
|
impexp |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ¬ 𝑘 ∈ ( 1 ..^ 𝑖 ) ) → ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ↔ ( 𝑘 ∈ ℕ → ( ¬ 𝑘 ∈ ( 1 ..^ 𝑖 ) → ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ) ) |
| 101 |
|
eldif |
⊢ ( 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ↔ ( 𝑘 ∈ ℕ ∧ ¬ 𝑘 ∈ ( 1 ..^ 𝑖 ) ) ) |
| 102 |
101
|
imbi1i |
⊢ ( ( 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) → ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ↔ ( ( 𝑘 ∈ ℕ ∧ ¬ 𝑘 ∈ ( 1 ..^ 𝑖 ) ) → ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ) |
| 103 |
|
con34b |
⊢ ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → 𝑘 ∈ ( 1 ..^ 𝑖 ) ) ↔ ( ¬ 𝑘 ∈ ( 1 ..^ 𝑖 ) → ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ) |
| 104 |
103
|
imbi2i |
⊢ ( ( 𝑘 ∈ ℕ → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → 𝑘 ∈ ( 1 ..^ 𝑖 ) ) ) ↔ ( 𝑘 ∈ ℕ → ( ¬ 𝑘 ∈ ( 1 ..^ 𝑖 ) → ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ) ) |
| 105 |
100 102 104
|
3bitr4i |
⊢ ( ( 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) → ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ↔ ( 𝑘 ∈ ℕ → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → 𝑘 ∈ ( 1 ..^ 𝑖 ) ) ) ) |
| 106 |
105
|
albii |
⊢ ( ∀ 𝑘 ( 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) → ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ↔ ∀ 𝑘 ( 𝑘 ∈ ℕ → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → 𝑘 ∈ ( 1 ..^ 𝑖 ) ) ) ) |
| 107 |
|
df-ral |
⊢ ( ∀ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ↔ ∀ 𝑘 ( 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) → ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ) |
| 108 |
|
vex |
⊢ 𝑐 ∈ V |
| 109 |
68
|
mptiniseg |
⊢ ( 𝑐 ∈ V → ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) = { 𝑘 ∈ ℕ ∣ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 } ) |
| 110 |
108 109
|
ax-mp |
⊢ ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) = { 𝑘 ∈ ℕ ∣ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 } |
| 111 |
110
|
sseq1i |
⊢ ( ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ⊆ ( 1 ..^ 𝑖 ) ↔ { 𝑘 ∈ ℕ ∣ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 } ⊆ ( 1 ..^ 𝑖 ) ) |
| 112 |
|
rabss |
⊢ ( { 𝑘 ∈ ℕ ∣ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 } ⊆ ( 1 ..^ 𝑖 ) ↔ ∀ 𝑘 ∈ ℕ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → 𝑘 ∈ ( 1 ..^ 𝑖 ) ) ) |
| 113 |
|
df-ral |
⊢ ( ∀ 𝑘 ∈ ℕ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → 𝑘 ∈ ( 1 ..^ 𝑖 ) ) ↔ ∀ 𝑘 ( 𝑘 ∈ ℕ → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → 𝑘 ∈ ( 1 ..^ 𝑖 ) ) ) ) |
| 114 |
111 112 113
|
3bitri |
⊢ ( ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ⊆ ( 1 ..^ 𝑖 ) ↔ ∀ 𝑘 ( 𝑘 ∈ ℕ → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → 𝑘 ∈ ( 1 ..^ 𝑖 ) ) ) ) |
| 115 |
106 107 114
|
3bitr4i |
⊢ ( ∀ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ↔ ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ⊆ ( 1 ..^ 𝑖 ) ) |
| 116 |
|
fzofi |
⊢ ( 1 ..^ 𝑖 ) ∈ Fin |
| 117 |
|
ssfi |
⊢ ( ( ( 1 ..^ 𝑖 ) ∈ Fin ∧ ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ⊆ ( 1 ..^ 𝑖 ) ) → ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) |
| 118 |
116 117
|
mpan |
⊢ ( ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ⊆ ( 1 ..^ 𝑖 ) → ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) |
| 119 |
115 118
|
sylbi |
⊢ ( ∀ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) |
| 120 |
99 119
|
syl6 |
⊢ ( 𝑖 ∈ ℕ → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) ) |
| 121 |
120
|
rexlimiv |
⊢ ( ∃ 𝑖 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) |
| 122 |
121
|
ralimi |
⊢ ( ∀ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∃ 𝑖 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ¬ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ∀ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) |
| 123 |
84 122
|
sylbir |
⊢ ( ¬ ∃ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ∀ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) |
| 124 |
|
iunfi |
⊢ ( ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ Fin ∧ ∀ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) → ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) |
| 125 |
124
|
ex |
⊢ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ Fin → ( ∀ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin → ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) ) |
| 126 |
123 125
|
syl5 |
⊢ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ Fin → ( ¬ ∃ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ∪ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ( ◡ ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ { 𝑐 } ) ∈ Fin ) ) |
| 127 |
77 126
|
mt3i |
⊢ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ Fin → ∃ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) |
| 128 |
|
ssrexv |
⊢ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ⊆ 𝐼 → ( ∃ 𝑐 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ∃ 𝑐 ∈ 𝐼 ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ) |
| 129 |
59 127 128
|
syl2im |
⊢ ( 𝜑 → ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ Fin → ∃ 𝑐 ∈ 𝐼 ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 ) ) |
| 130 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 131 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑐 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 132 |
131 2
|
eleq2s |
⊢ ( 𝑐 ∈ 𝐼 → 𝑐 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 133 |
132
|
ffvelcdmda |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑚 ) ∈ ( 0 [,] 1 ) ) |
| 134 |
130 133
|
sselid |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑚 ) ∈ ℝ ) |
| 135 |
|
nnrp |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℝ+ ) |
| 136 |
135
|
rpreccld |
⊢ ( 𝑖 ∈ ℕ → ( 1 / 𝑖 ) ∈ ℝ+ ) |
| 137 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 138 |
137
|
rexmet |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
| 139 |
|
blcntr |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( 𝑐 ‘ 𝑚 ) ∈ ℝ ∧ ( 1 / 𝑖 ) ∈ ℝ+ ) → ( 𝑐 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) |
| 140 |
138 139
|
mp3an1 |
⊢ ( ( ( 𝑐 ‘ 𝑚 ) ∈ ℝ ∧ ( 1 / 𝑖 ) ∈ ℝ+ ) → ( 𝑐 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) |
| 141 |
134 136 140
|
syl2an |
⊢ ( ( ( 𝑐 ∈ 𝐼 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 ∈ ℕ ) → ( 𝑐 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) |
| 142 |
141
|
an32s |
⊢ ( ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) |
| 143 |
|
fveq1 |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) = ( 𝑐 ‘ 𝑚 ) ) |
| 144 |
143
|
eleq1d |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ( ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ( 𝑐 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 145 |
142 144
|
syl5ibrcom |
⊢ ( ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 146 |
145
|
ralrimdva |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 147 |
146
|
reximdv |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 148 |
147
|
ralimdva |
⊢ ( 𝑐 ∈ 𝐼 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 149 |
148
|
reximia |
⊢ ( ∃ 𝑐 ∈ 𝐼 ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = 𝑐 → ∃ 𝑐 ∈ 𝐼 ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) |
| 150 |
129 149
|
syl6 |
⊢ ( 𝜑 → ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ Fin → ∃ 𝑐 ∈ 𝐼 ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 151 |
54 53
|
ixpconst |
⊢ X 𝑛 ∈ ( 1 ... 𝑁 ) ( 0 [,] 1 ) = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) |
| 152 |
2 151
|
eqtr4i |
⊢ 𝐼 = X 𝑛 ∈ ( 1 ... 𝑁 ) ( 0 [,] 1 ) |
| 153 |
3 152
|
oveq12i |
⊢ ( 𝑅 ↾t 𝐼 ) = ( ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ↾t X 𝑛 ∈ ( 1 ... 𝑁 ) ( 0 [,] 1 ) ) |
| 154 |
|
fzfid |
⊢ ( ⊤ → ( 1 ... 𝑁 ) ∈ Fin ) |
| 155 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 156 |
155
|
fconst6 |
⊢ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top |
| 157 |
156
|
a1i |
⊢ ( ⊤ → ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top ) |
| 158 |
53
|
a1i |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 0 [,] 1 ) ∈ V ) |
| 159 |
154 157 158
|
ptrest |
⊢ ( ⊤ → ( ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ↾t X 𝑛 ∈ ( 1 ... 𝑁 ) ( 0 [,] 1 ) ) = ( ∏t ‘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ↾t ( 0 [,] 1 ) ) ) ) ) |
| 160 |
159
|
mptru |
⊢ ( ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ↾t X 𝑛 ∈ ( 1 ... 𝑁 ) ( 0 [,] 1 ) ) = ( ∏t ‘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ↾t ( 0 [,] 1 ) ) ) ) |
| 161 |
|
fvex |
⊢ ( topGen ‘ ran (,) ) ∈ V |
| 162 |
161
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) = ( topGen ‘ ran (,) ) ) |
| 163 |
162
|
oveq1d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ↾t ( 0 [,] 1 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) |
| 164 |
163
|
mpteq2ia |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ↾t ( 0 [,] 1 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) |
| 165 |
|
fconstmpt |
⊢ ( ( 1 ... 𝑁 ) × { ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) } ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) |
| 166 |
164 165
|
eqtr4i |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ↾t ( 0 [,] 1 ) ) ) = ( ( 1 ... 𝑁 ) × { ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) } ) |
| 167 |
166
|
fveq2i |
⊢ ( ∏t ‘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ↾t ( 0 [,] 1 ) ) ) ) = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) } ) ) |
| 168 |
153 160 167
|
3eqtri |
⊢ ( 𝑅 ↾t 𝐼 ) = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) } ) ) |
| 169 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
| 170 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
| 171 |
|
iicmp |
⊢ II ∈ Comp |
| 172 |
170 171
|
eqeltrri |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ∈ Comp |
| 173 |
172
|
fconst6 |
⊢ ( ( 1 ... 𝑁 ) × { ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) } ) : ( 1 ... 𝑁 ) ⟶ Comp |
| 174 |
|
ptcmpfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( ( 1 ... 𝑁 ) × { ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) } ) : ( 1 ... 𝑁 ) ⟶ Comp ) → ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) } ) ) ∈ Comp ) |
| 175 |
169 173 174
|
mp2an |
⊢ ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) } ) ) ∈ Comp |
| 176 |
168 175
|
eqeltri |
⊢ ( 𝑅 ↾t 𝐼 ) ∈ Comp |
| 177 |
|
rehaus |
⊢ ( topGen ‘ ran (,) ) ∈ Haus |
| 178 |
177
|
fconst6 |
⊢ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Haus |
| 179 |
|
pthaus |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Haus ) → ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ∈ Haus ) |
| 180 |
169 178 179
|
mp2an |
⊢ ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ∈ Haus |
| 181 |
3 180
|
eqeltri |
⊢ 𝑅 ∈ Haus |
| 182 |
|
haustop |
⊢ ( 𝑅 ∈ Haus → 𝑅 ∈ Top ) |
| 183 |
181 182
|
ax-mp |
⊢ 𝑅 ∈ Top |
| 184 |
|
reex |
⊢ ℝ ∈ V |
| 185 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ( 0 [,] 1 ) ⊆ ℝ ) → ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
| 186 |
184 130 185
|
mp2an |
⊢ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) |
| 187 |
2 186
|
eqsstri |
⊢ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) |
| 188 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 189 |
3 188
|
ptuniconst |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( topGen ‘ ran (,) ) ∈ Top ) → ( ℝ ↑m ( 1 ... 𝑁 ) ) = ∪ 𝑅 ) |
| 190 |
169 155 189
|
mp2an |
⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) = ∪ 𝑅 |
| 191 |
190
|
restuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → 𝐼 = ∪ ( 𝑅 ↾t 𝐼 ) ) |
| 192 |
183 187 191
|
mp2an |
⊢ 𝐼 = ∪ ( 𝑅 ↾t 𝐼 ) |
| 193 |
192
|
bwth |
⊢ ( ( ( 𝑅 ↾t 𝐼 ) ∈ Comp ∧ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ⊆ 𝐼 ∧ ¬ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ Fin ) → ∃ 𝑐 ∈ 𝐼 𝑐 ∈ ( ( limPt ‘ ( 𝑅 ↾t 𝐼 ) ) ‘ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ) |
| 194 |
193
|
3expia |
⊢ ( ( ( 𝑅 ↾t 𝐼 ) ∈ Comp ∧ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ⊆ 𝐼 ) → ( ¬ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ Fin → ∃ 𝑐 ∈ 𝐼 𝑐 ∈ ( ( limPt ‘ ( 𝑅 ↾t 𝐼 ) ) ‘ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ) ) |
| 195 |
176 59 194
|
sylancr |
⊢ ( 𝜑 → ( ¬ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ Fin → ∃ 𝑐 ∈ 𝐼 𝑐 ∈ ( ( limPt ‘ ( 𝑅 ↾t 𝐼 ) ) ‘ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ) ) |
| 196 |
|
cmptop |
⊢ ( ( 𝑅 ↾t 𝐼 ) ∈ Comp → ( 𝑅 ↾t 𝐼 ) ∈ Top ) |
| 197 |
176 196
|
ax-mp |
⊢ ( 𝑅 ↾t 𝐼 ) ∈ Top |
| 198 |
192
|
islp3 |
⊢ ( ( ( 𝑅 ↾t 𝐼 ) ∈ Top ∧ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ⊆ 𝐼 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑐 ∈ ( ( limPt ‘ ( 𝑅 ↾t 𝐼 ) ) ‘ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ↔ ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ( 𝑣 ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) ) ) |
| 199 |
197 198
|
mp3an1 |
⊢ ( ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ⊆ 𝐼 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑐 ∈ ( ( limPt ‘ ( 𝑅 ↾t 𝐼 ) ) ‘ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ↔ ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ( 𝑣 ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) ) ) |
| 200 |
59 199
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑐 ∈ ( ( limPt ‘ ( 𝑅 ↾t 𝐼 ) ) ‘ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ↔ ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ( 𝑣 ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) ) ) |
| 201 |
|
fzfid |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 202 |
156
|
a1i |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top ) |
| 203 |
|
nnrecre |
⊢ ( 𝑖 ∈ ℕ → ( 1 / 𝑖 ) ∈ ℝ ) |
| 204 |
203
|
rexrd |
⊢ ( 𝑖 ∈ ℕ → ( 1 / 𝑖 ) ∈ ℝ* ) |
| 205 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 206 |
137 205
|
tgioo |
⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 207 |
206
|
blopn |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( 𝑐 ‘ 𝑚 ) ∈ ℝ ∧ ( 1 / 𝑖 ) ∈ ℝ* ) → ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 208 |
138 207
|
mp3an1 |
⊢ ( ( ( 𝑐 ‘ 𝑚 ) ∈ ℝ ∧ ( 1 / 𝑖 ) ∈ ℝ* ) → ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 209 |
134 204 208
|
syl2an |
⊢ ( ( ( 𝑐 ∈ 𝐼 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 210 |
209
|
an32s |
⊢ ( ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 211 |
161
|
fvconst2 |
⊢ ( 𝑚 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑚 ) = ( topGen ‘ ran (,) ) ) |
| 212 |
211
|
adantl |
⊢ ( ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑚 ) = ( topGen ‘ ran (,) ) ) |
| 213 |
210 212
|
eleqtrrd |
⊢ ( ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∈ ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑚 ) ) |
| 214 |
|
noel |
⊢ ¬ 𝑚 ∈ ∅ |
| 215 |
|
difid |
⊢ ( ( 1 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) = ∅ |
| 216 |
215
|
eleq2i |
⊢ ( 𝑚 ∈ ( ( 1 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ↔ 𝑚 ∈ ∅ ) |
| 217 |
214 216
|
mtbir |
⊢ ¬ 𝑚 ∈ ( ( 1 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) |
| 218 |
217
|
pm2.21i |
⊢ ( 𝑚 ∈ ( ( 1 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) → ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) = ∪ ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑚 ) ) |
| 219 |
218
|
adantl |
⊢ ( ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) ∧ 𝑚 ∈ ( ( 1 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) = ∪ ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑚 ) ) |
| 220 |
201 202 201 213 219
|
ptopn |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∈ ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) ) |
| 221 |
220 3
|
eleqtrrdi |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∈ 𝑅 ) |
| 222 |
|
ovex |
⊢ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ∈ V |
| 223 |
2 222
|
eqeltri |
⊢ 𝐼 ∈ V |
| 224 |
|
elrestr |
⊢ ( ( 𝑅 ∈ Haus ∧ 𝐼 ∈ V ∧ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∈ 𝑅 ) → ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∈ ( 𝑅 ↾t 𝐼 ) ) |
| 225 |
181 223 224
|
mp3an12 |
⊢ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∈ 𝑅 → ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∈ ( 𝑅 ↾t 𝐼 ) ) |
| 226 |
221 225
|
syl |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∈ ( 𝑅 ↾t 𝐼 ) ) |
| 227 |
|
difss |
⊢ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ⊆ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) |
| 228 |
|
imassrn |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ⊆ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) |
| 229 |
227 228
|
sstri |
⊢ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ⊆ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) |
| 230 |
229 59
|
sstrid |
⊢ ( 𝜑 → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ⊆ 𝐼 ) |
| 231 |
|
haust1 |
⊢ ( 𝑅 ∈ Haus → 𝑅 ∈ Fre ) |
| 232 |
181 231
|
ax-mp |
⊢ 𝑅 ∈ Fre |
| 233 |
|
restt1 |
⊢ ( ( 𝑅 ∈ Fre ∧ 𝐼 ∈ V ) → ( 𝑅 ↾t 𝐼 ) ∈ Fre ) |
| 234 |
232 223 233
|
mp2an |
⊢ ( 𝑅 ↾t 𝐼 ) ∈ Fre |
| 235 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) |
| 236 |
|
imafi |
⊢ ( ( Fun ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ( 1 ..^ 𝑖 ) ∈ Fin ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∈ Fin ) |
| 237 |
235 116 236
|
mp2an |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∈ Fin |
| 238 |
|
diffi |
⊢ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∈ Fin → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ∈ Fin ) |
| 239 |
237 238
|
ax-mp |
⊢ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ∈ Fin |
| 240 |
192
|
t1ficld |
⊢ ( ( ( 𝑅 ↾t 𝐼 ) ∈ Fre ∧ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ⊆ 𝐼 ∧ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ∈ Fin ) → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ∈ ( Clsd ‘ ( 𝑅 ↾t 𝐼 ) ) ) |
| 241 |
234 239 240
|
mp3an13 |
⊢ ( ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ⊆ 𝐼 → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ∈ ( Clsd ‘ ( 𝑅 ↾t 𝐼 ) ) ) |
| 242 |
230 241
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ∈ ( Clsd ‘ ( 𝑅 ↾t 𝐼 ) ) ) |
| 243 |
192
|
difopn |
⊢ ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∈ ( 𝑅 ↾t 𝐼 ) ∧ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ∈ ( Clsd ‘ ( 𝑅 ↾t 𝐼 ) ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∈ ( 𝑅 ↾t 𝐼 ) ) |
| 244 |
226 242 243
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∈ ( 𝑅 ↾t 𝐼 ) ) |
| 245 |
244
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑖 ∈ ℕ ) → ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∈ ( 𝑅 ↾t 𝐼 ) ) |
| 246 |
|
eleq2 |
⊢ ( 𝑣 = ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) → ( 𝑐 ∈ 𝑣 ↔ 𝑐 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ) ) |
| 247 |
|
ineq1 |
⊢ ( 𝑣 = ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) → ( 𝑣 ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) = ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ) |
| 248 |
247
|
neeq1d |
⊢ ( 𝑣 = ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) → ( ( 𝑣 ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ↔ ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) ) |
| 249 |
246 248
|
imbi12d |
⊢ ( 𝑣 = ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) → ( ( 𝑐 ∈ 𝑣 → ( 𝑣 ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) ↔ ( 𝑐 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) → ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) ) ) |
| 250 |
249
|
rspcva |
⊢ ( ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∈ ( 𝑅 ↾t 𝐼 ) ∧ ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ( 𝑣 ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) ) → ( 𝑐 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) → ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) ) |
| 251 |
132
|
ffnd |
⊢ ( 𝑐 ∈ 𝐼 → 𝑐 Fn ( 1 ... 𝑁 ) ) |
| 252 |
251
|
adantr |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → 𝑐 Fn ( 1 ... 𝑁 ) ) |
| 253 |
142
|
ralrimiva |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑐 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) |
| 254 |
108
|
elixp |
⊢ ( 𝑐 ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ( 𝑐 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑐 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 255 |
252 253 254
|
sylanbrc |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → 𝑐 ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) |
| 256 |
|
simpl |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → 𝑐 ∈ 𝐼 ) |
| 257 |
255 256
|
elind |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → 𝑐 ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ) |
| 258 |
|
neldifsnd |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → ¬ 𝑐 ∈ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) |
| 259 |
257 258
|
eldifd |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ ) → 𝑐 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ) |
| 260 |
259
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑖 ∈ ℕ ) → 𝑐 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ) |
| 261 |
|
simplr |
⊢ ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) → ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) |
| 262 |
261
|
anim1i |
⊢ ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ) |
| 263 |
|
simpl |
⊢ ( ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) → 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 264 |
262 263
|
anim12i |
⊢ ( ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) → ( ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ) |
| 265 |
|
elin |
⊢ ( 𝑗 ∈ ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ↔ ( 𝑗 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∧ 𝑗 ∈ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ) |
| 266 |
|
andir |
⊢ ( ( ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∨ ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) ↔ ( ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) ∨ ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) ) ) |
| 267 |
|
eldif |
⊢ ( 𝑗 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ↔ ( 𝑗 ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ) |
| 268 |
|
elin |
⊢ ( 𝑗 ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ↔ ( 𝑗 ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∧ 𝑗 ∈ 𝐼 ) ) |
| 269 |
|
vex |
⊢ 𝑗 ∈ V |
| 270 |
269
|
elixp |
⊢ ( 𝑗 ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 271 |
270
|
anbi1i |
⊢ ( ( 𝑗 ∈ X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∧ 𝑗 ∈ 𝐼 ) ↔ ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ) |
| 272 |
268 271
|
bitri |
⊢ ( 𝑗 ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ↔ ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ) |
| 273 |
|
ianor |
⊢ ( ¬ ( 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ↔ ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∨ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ) |
| 274 |
|
eldif |
⊢ ( 𝑗 ∈ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ↔ ( 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) |
| 275 |
273 274
|
xchnxbir |
⊢ ( ¬ 𝑗 ∈ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ↔ ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∨ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ) |
| 276 |
272 275
|
anbi12i |
⊢ ( ( 𝑗 ∈ ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ↔ ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∨ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ) ) |
| 277 |
|
andi |
⊢ ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∨ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ) ↔ ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∨ ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ) ) |
| 278 |
267 276 277
|
3bitri |
⊢ ( 𝑗 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ↔ ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∨ ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ) ) |
| 279 |
|
eldif |
⊢ ( 𝑗 ∈ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ↔ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) |
| 280 |
278 279
|
anbi12i |
⊢ ( ( 𝑗 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∧ 𝑗 ∈ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ↔ ( ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∨ ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) ) |
| 281 |
|
pm3.24 |
⊢ ¬ ( ¬ 𝑗 ∈ { 𝑐 } ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) |
| 282 |
|
simpr |
⊢ ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) → ¬ ¬ 𝑗 ∈ { 𝑐 } ) |
| 283 |
|
simpr |
⊢ ( ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) → ¬ 𝑗 ∈ { 𝑐 } ) |
| 284 |
282 283
|
anim12ci |
⊢ ( ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) → ( ¬ 𝑗 ∈ { 𝑐 } ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ) |
| 285 |
281 284
|
mto |
⊢ ¬ ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) |
| 286 |
285
|
biorfri |
⊢ ( ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) ↔ ( ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) ∨ ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ ¬ 𝑗 ∈ { 𝑐 } ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) ) ) |
| 287 |
266 280 286
|
3bitr4i |
⊢ ( ( 𝑗 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∧ 𝑗 ∈ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ↔ ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) ) |
| 288 |
265 287
|
bitri |
⊢ ( 𝑗 ∈ ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ↔ ( ( ( ( 𝑗 Fn ( 1 ... 𝑁 ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ∧ 𝑗 ∈ 𝐼 ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∧ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ { 𝑐 } ) ) ) |
| 289 |
|
ancom |
⊢ ( ( ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ↔ ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∧ ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ) ) |
| 290 |
|
anass |
⊢ ( ( ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ↔ ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∧ ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ) ) |
| 291 |
289 290
|
bitr4i |
⊢ ( ( ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ↔ ( ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ) |
| 292 |
264 288 291
|
3imtr4i |
⊢ ( 𝑗 ∈ ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) → ( ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 293 |
|
ancom |
⊢ ( ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ↔ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ) |
| 294 |
|
eldif |
⊢ ( 𝑗 ∈ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ↔ ( 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ) |
| 295 |
293 294
|
bitr4i |
⊢ ( ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ↔ 𝑗 ∈ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ) |
| 296 |
|
imadmrn |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ dom ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) = ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) |
| 297 |
67 68
|
dmmpti |
⊢ dom ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ℕ |
| 298 |
297
|
imaeq2i |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ dom ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) = ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ℕ ) |
| 299 |
296 298
|
eqtr3i |
⊢ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ℕ ) |
| 300 |
299
|
difeq1i |
⊢ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) = ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ℕ ) ∖ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) |
| 301 |
|
imadifss |
⊢ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ℕ ) ∖ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ⊆ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ) |
| 302 |
300 301
|
eqsstri |
⊢ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ⊆ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ) |
| 303 |
|
imass2 |
⊢ ( ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ⊆ ( ℤ≥ ‘ 𝑖 ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ) ⊆ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 304 |
97 303
|
syl |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ) ⊆ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 305 |
|
df-ima |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( ℤ≥ ‘ 𝑖 ) ) = ran ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ↾ ( ℤ≥ ‘ 𝑖 ) ) |
| 306 |
|
uznnssnn |
⊢ ( 𝑖 ∈ ℕ → ( ℤ≥ ‘ 𝑖 ) ⊆ ℕ ) |
| 307 |
306
|
resmptd |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ↾ ( ℤ≥ ‘ 𝑖 ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 308 |
307
|
rneqd |
⊢ ( 𝑖 ∈ ℕ → ran ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ↾ ( ℤ≥ ‘ 𝑖 ) ) = ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 309 |
305 308
|
eqtrid |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( ℤ≥ ‘ 𝑖 ) ) = ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 310 |
304 309
|
sseqtrd |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( ℕ ∖ ( 1 ..^ 𝑖 ) ) ) ⊆ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 311 |
302 310
|
sstrid |
⊢ ( 𝑖 ∈ ℕ → ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) ⊆ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 312 |
311
|
sseld |
⊢ ( 𝑖 ∈ ℕ → ( 𝑗 ∈ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ) → 𝑗 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ) |
| 313 |
295 312
|
biimtrid |
⊢ ( 𝑖 ∈ ℕ → ( ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) → 𝑗 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ) |
| 314 |
313
|
anim1d |
⊢ ( 𝑖 ∈ ℕ → ( ( ( ¬ 𝑗 ∈ ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∧ 𝑗 ∈ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) → ( 𝑗 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) ) |
| 315 |
292 314
|
syl5 |
⊢ ( 𝑖 ∈ ℕ → ( 𝑗 ∈ ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) → ( 𝑗 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) ) |
| 316 |
315
|
eximdv |
⊢ ( 𝑖 ∈ ℕ → ( ∃ 𝑗 𝑗 ∈ ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) → ∃ 𝑗 ( 𝑗 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) ) |
| 317 |
|
n0 |
⊢ ( ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ↔ ∃ 𝑗 𝑗 ∈ ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ) |
| 318 |
67
|
rgenw |
⊢ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ V |
| 319 |
|
eqid |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) |
| 320 |
|
fveq1 |
⊢ ( 𝑗 = ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝑗 ‘ 𝑚 ) = ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ) |
| 321 |
320
|
eleq1d |
⊢ ( 𝑗 = ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 322 |
321
|
ralbidv |
⊢ ( 𝑗 = ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 323 |
319 322
|
rexrnmptw |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ V → ( ∃ 𝑗 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 324 |
318 323
|
ax-mp |
⊢ ( ∃ 𝑗 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) |
| 325 |
|
df-rex |
⊢ ( ∃ 𝑗 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ∃ 𝑗 ( 𝑗 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 326 |
324 325
|
bitr3i |
⊢ ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ↔ ∃ 𝑗 ( 𝑗 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( 𝑗 ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 327 |
316 317 326
|
3imtr4g |
⊢ ( 𝑖 ∈ ℕ → ( ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 328 |
327
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑖 ∈ ℕ ) → ( ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 329 |
260 328
|
embantd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑖 ∈ ℕ ) → ( ( 𝑐 ∈ ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) → ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 330 |
250 329
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑖 ∈ ℕ ) → ( ( ( ( X 𝑚 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ∩ 𝐼 ) ∖ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) “ ( 1 ..^ 𝑖 ) ) ∖ { 𝑐 } ) ) ∈ ( 𝑅 ↾t 𝐼 ) ∧ ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ( 𝑣 ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 331 |
245 330
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑖 ∈ ℕ ) → ( ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ( 𝑣 ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 332 |
331
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ( 𝑣 ∩ ( ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∖ { 𝑐 } ) ) ≠ ∅ ) → ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 333 |
200 332
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑐 ∈ ( ( limPt ‘ ( 𝑅 ↾t 𝐼 ) ) ‘ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) → ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 334 |
333
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝐼 𝑐 ∈ ( ( limPt ‘ ( 𝑅 ↾t 𝐼 ) ) ‘ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) → ∃ 𝑐 ∈ 𝐼 ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 335 |
195 334
|
syld |
⊢ ( 𝜑 → ( ¬ ran ( 𝑘 ∈ ℕ ↦ ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ∈ Fin → ∃ 𝑐 ∈ 𝐼 ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) ) |
| 336 |
150 335
|
pm2.61d |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝐼 ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) ) |
| 337 |
1 2 3 4 5 6 7 8
|
poimirlem29 |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |
| 338 |
337
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝐼 ∀ 𝑖 ∈ ℕ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑚 ) ∈ ( ( 𝑐 ‘ 𝑚 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ( 1 / 𝑖 ) ) → ∃ 𝑐 ∈ 𝐼 ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) |
| 339 |
336 338
|
mpd |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝐼 ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |