Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimir.i |
|- I = ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) |
3 |
|
poimir.r |
|- R = ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |
4 |
|
poimir.1 |
|- ( ph -> F e. ( ( R |`t I ) Cn R ) ) |
5 |
|
poimirlem30.x |
|- X = ( ( F ` ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) |
6 |
|
poimirlem30.2 |
|- ( ph -> G : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
7 |
|
poimirlem30.3 |
|- ( ( ph /\ k e. NN ) -> ran ( 1st ` ( G ` k ) ) C_ ( 0 ..^ k ) ) |
8 |
|
poimirlem30.4 |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) /\ r e. { <_ , `' <_ } ) ) -> E. j e. ( 0 ... N ) 0 r X ) |
9 |
|
elfzonn0 |
|- ( i e. ( 0 ..^ k ) -> i e. NN0 ) |
10 |
9
|
nn0red |
|- ( i e. ( 0 ..^ k ) -> i e. RR ) |
11 |
|
nndivre |
|- ( ( i e. RR /\ k e. NN ) -> ( i / k ) e. RR ) |
12 |
10 11
|
sylan |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( i / k ) e. RR ) |
13 |
|
elfzole1 |
|- ( i e. ( 0 ..^ k ) -> 0 <_ i ) |
14 |
10 13
|
jca |
|- ( i e. ( 0 ..^ k ) -> ( i e. RR /\ 0 <_ i ) ) |
15 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
16 |
15
|
rpregt0d |
|- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
17 |
|
divge0 |
|- ( ( ( i e. RR /\ 0 <_ i ) /\ ( k e. RR /\ 0 < k ) ) -> 0 <_ ( i / k ) ) |
18 |
14 16 17
|
syl2an |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> 0 <_ ( i / k ) ) |
19 |
|
elfzo0le |
|- ( i e. ( 0 ..^ k ) -> i <_ k ) |
20 |
19
|
adantr |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> i <_ k ) |
21 |
10
|
adantr |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> i e. RR ) |
22 |
|
1red |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> 1 e. RR ) |
23 |
15
|
adantl |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> k e. RR+ ) |
24 |
21 22 23
|
ledivmuld |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( ( i / k ) <_ 1 <-> i <_ ( k x. 1 ) ) ) |
25 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
26 |
25
|
mulid1d |
|- ( k e. NN -> ( k x. 1 ) = k ) |
27 |
26
|
breq2d |
|- ( k e. NN -> ( i <_ ( k x. 1 ) <-> i <_ k ) ) |
28 |
27
|
adantl |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( i <_ ( k x. 1 ) <-> i <_ k ) ) |
29 |
24 28
|
bitrd |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( ( i / k ) <_ 1 <-> i <_ k ) ) |
30 |
20 29
|
mpbird |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( i / k ) <_ 1 ) |
31 |
|
elicc01 |
|- ( ( i / k ) e. ( 0 [,] 1 ) <-> ( ( i / k ) e. RR /\ 0 <_ ( i / k ) /\ ( i / k ) <_ 1 ) ) |
32 |
12 18 30 31
|
syl3anbrc |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( i / k ) e. ( 0 [,] 1 ) ) |
33 |
32
|
ancoms |
|- ( ( k e. NN /\ i e. ( 0 ..^ k ) ) -> ( i / k ) e. ( 0 [,] 1 ) ) |
34 |
|
elsni |
|- ( j e. { k } -> j = k ) |
35 |
34
|
oveq2d |
|- ( j e. { k } -> ( i / j ) = ( i / k ) ) |
36 |
35
|
eleq1d |
|- ( j e. { k } -> ( ( i / j ) e. ( 0 [,] 1 ) <-> ( i / k ) e. ( 0 [,] 1 ) ) ) |
37 |
33 36
|
syl5ibrcom |
|- ( ( k e. NN /\ i e. ( 0 ..^ k ) ) -> ( j e. { k } -> ( i / j ) e. ( 0 [,] 1 ) ) ) |
38 |
37
|
impr |
|- ( ( k e. NN /\ ( i e. ( 0 ..^ k ) /\ j e. { k } ) ) -> ( i / j ) e. ( 0 [,] 1 ) ) |
39 |
38
|
adantll |
|- ( ( ( ph /\ k e. NN ) /\ ( i e. ( 0 ..^ k ) /\ j e. { k } ) ) -> ( i / j ) e. ( 0 [,] 1 ) ) |
40 |
6
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
41 |
|
xp1st |
|- ( ( G ` k ) e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( G ` k ) ) e. ( NN0 ^m ( 1 ... N ) ) ) |
42 |
|
elmapfn |
|- ( ( 1st ` ( G ` k ) ) e. ( NN0 ^m ( 1 ... N ) ) -> ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) ) |
43 |
40 41 42
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) ) |
44 |
|
df-f |
|- ( ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ( 0 ..^ k ) <-> ( ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) /\ ran ( 1st ` ( G ` k ) ) C_ ( 0 ..^ k ) ) ) |
45 |
43 7 44
|
sylanbrc |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ( 0 ..^ k ) ) |
46 |
|
vex |
|- k e. _V |
47 |
46
|
fconst |
|- ( ( 1 ... N ) X. { k } ) : ( 1 ... N ) --> { k } |
48 |
47
|
a1i |
|- ( ( ph /\ k e. NN ) -> ( ( 1 ... N ) X. { k } ) : ( 1 ... N ) --> { k } ) |
49 |
|
fzfid |
|- ( ( ph /\ k e. NN ) -> ( 1 ... N ) e. Fin ) |
50 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
51 |
39 45 48 49 49 50
|
off |
|- ( ( ph /\ k e. NN ) -> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
52 |
2
|
eleq2i |
|- ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I <-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) ) |
53 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
54 |
|
ovex |
|- ( 1 ... N ) e. _V |
55 |
53 54
|
elmap |
|- ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) <-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
56 |
52 55
|
bitri |
|- ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I <-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
57 |
51 56
|
sylibr |
|- ( ( ph /\ k e. NN ) -> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I ) |
58 |
57
|
fmpttd |
|- ( ph -> ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) : NN --> I ) |
59 |
58
|
frnd |
|- ( ph -> ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I ) |
60 |
|
ominf |
|- -. _om e. Fin |
61 |
|
nnenom |
|- NN ~~ _om |
62 |
|
enfi |
|- ( NN ~~ _om -> ( NN e. Fin <-> _om e. Fin ) ) |
63 |
61 62
|
ax-mp |
|- ( NN e. Fin <-> _om e. Fin ) |
64 |
|
iunid |
|- U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) { c } = ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
65 |
64
|
imaeq2i |
|- ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) { c } ) = ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
66 |
|
imaiun |
|- ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) { c } ) = U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) |
67 |
|
ovex |
|- ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. _V |
68 |
|
eqid |
|- ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) = ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
69 |
67 68
|
fnmpti |
|- ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) Fn NN |
70 |
|
dffn3 |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) Fn NN <-> ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) : NN --> ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
71 |
69 70
|
mpbi |
|- ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) : NN --> ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
72 |
|
fimacnv |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) : NN --> ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) = NN ) |
73 |
71 72
|
ax-mp |
|- ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) = NN |
74 |
65 66 73
|
3eqtr3ri |
|- NN = U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) |
75 |
74
|
eleq1i |
|- ( NN e. Fin <-> U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
76 |
63 75
|
bitr3i |
|- ( _om e. Fin <-> U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
77 |
60 76
|
mtbi |
|- -. U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin |
78 |
|
ralnex |
|- ( A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> -. E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
79 |
78
|
rexbii |
|- ( E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> E. i e. NN -. E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
80 |
|
rexnal |
|- ( E. i e. NN -. E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> -. A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
81 |
79 80
|
bitri |
|- ( E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> -. A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
82 |
81
|
ralbii |
|- ( A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) -. A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
83 |
|
ralnex |
|- ( A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) -. A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> -. E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
84 |
82 83
|
bitri |
|- ( A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> -. E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
85 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
86 |
|
elnnuz |
|- ( i e. NN <-> i e. ( ZZ>= ` 1 ) ) |
87 |
|
fzouzsplit |
|- ( i e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 1 ) = ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) ) |
88 |
86 87
|
sylbi |
|- ( i e. NN -> ( ZZ>= ` 1 ) = ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) ) |
89 |
85 88
|
syl5eq |
|- ( i e. NN -> NN = ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) ) |
90 |
89
|
difeq1d |
|- ( i e. NN -> ( NN \ ( 1 ..^ i ) ) = ( ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) \ ( 1 ..^ i ) ) ) |
91 |
|
uncom |
|- ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) = ( ( ZZ>= ` i ) u. ( 1 ..^ i ) ) |
92 |
91
|
difeq1i |
|- ( ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) \ ( 1 ..^ i ) ) = ( ( ( ZZ>= ` i ) u. ( 1 ..^ i ) ) \ ( 1 ..^ i ) ) |
93 |
|
difun2 |
|- ( ( ( ZZ>= ` i ) u. ( 1 ..^ i ) ) \ ( 1 ..^ i ) ) = ( ( ZZ>= ` i ) \ ( 1 ..^ i ) ) |
94 |
92 93
|
eqtri |
|- ( ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) \ ( 1 ..^ i ) ) = ( ( ZZ>= ` i ) \ ( 1 ..^ i ) ) |
95 |
90 94
|
eqtrdi |
|- ( i e. NN -> ( NN \ ( 1 ..^ i ) ) = ( ( ZZ>= ` i ) \ ( 1 ..^ i ) ) ) |
96 |
|
difss |
|- ( ( ZZ>= ` i ) \ ( 1 ..^ i ) ) C_ ( ZZ>= ` i ) |
97 |
95 96
|
eqsstrdi |
|- ( i e. NN -> ( NN \ ( 1 ..^ i ) ) C_ ( ZZ>= ` i ) ) |
98 |
|
ssralv |
|- ( ( NN \ ( 1 ..^ i ) ) C_ ( ZZ>= ` i ) -> ( A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. k e. ( NN \ ( 1 ..^ i ) ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
99 |
97 98
|
syl |
|- ( i e. NN -> ( A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. k e. ( NN \ ( 1 ..^ i ) ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
100 |
|
impexp |
|- ( ( ( k e. NN /\ -. k e. ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) <-> ( k e. NN -> ( -. k e. ( 1 ..^ i ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) ) |
101 |
|
eldif |
|- ( k e. ( NN \ ( 1 ..^ i ) ) <-> ( k e. NN /\ -. k e. ( 1 ..^ i ) ) ) |
102 |
101
|
imbi1i |
|- ( ( k e. ( NN \ ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) <-> ( ( k e. NN /\ -. k e. ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
103 |
|
con34b |
|- ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) <-> ( -. k e. ( 1 ..^ i ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
104 |
103
|
imbi2i |
|- ( ( k e. NN -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) <-> ( k e. NN -> ( -. k e. ( 1 ..^ i ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) ) |
105 |
100 102 104
|
3bitr4i |
|- ( ( k e. ( NN \ ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) <-> ( k e. NN -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) ) |
106 |
105
|
albii |
|- ( A. k ( k e. ( NN \ ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) <-> A. k ( k e. NN -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) ) |
107 |
|
df-ral |
|- ( A. k e. ( NN \ ( 1 ..^ i ) ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> A. k ( k e. ( NN \ ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
108 |
|
vex |
|- c e. _V |
109 |
68
|
mptiniseg |
|- ( c e. _V -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) = { k e. NN | ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c } ) |
110 |
108 109
|
ax-mp |
|- ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) = { k e. NN | ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c } |
111 |
110
|
sseq1i |
|- ( ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) C_ ( 1 ..^ i ) <-> { k e. NN | ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c } C_ ( 1 ..^ i ) ) |
112 |
|
rabss |
|- ( { k e. NN | ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c } C_ ( 1 ..^ i ) <-> A. k e. NN ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) |
113 |
|
df-ral |
|- ( A. k e. NN ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) <-> A. k ( k e. NN -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) ) |
114 |
111 112 113
|
3bitri |
|- ( ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) C_ ( 1 ..^ i ) <-> A. k ( k e. NN -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) ) |
115 |
106 107 114
|
3bitr4i |
|- ( A. k e. ( NN \ ( 1 ..^ i ) ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) C_ ( 1 ..^ i ) ) |
116 |
|
fzofi |
|- ( 1 ..^ i ) e. Fin |
117 |
|
ssfi |
|- ( ( ( 1 ..^ i ) e. Fin /\ ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) C_ ( 1 ..^ i ) ) -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
118 |
116 117
|
mpan |
|- ( ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) C_ ( 1 ..^ i ) -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
119 |
115 118
|
sylbi |
|- ( A. k e. ( NN \ ( 1 ..^ i ) ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
120 |
99 119
|
syl6 |
|- ( i e. NN -> ( A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) ) |
121 |
120
|
rexlimiv |
|- ( E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
122 |
121
|
ralimi |
|- ( A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
123 |
84 122
|
sylbir |
|- ( -. E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
124 |
|
iunfi |
|- ( ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin /\ A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) -> U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
125 |
124
|
ex |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> ( A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin -> U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) ) |
126 |
123 125
|
syl5 |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> ( -. E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) ) |
127 |
77 126
|
mt3i |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
128 |
|
ssrexv |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I -> ( E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
129 |
59 127 128
|
syl2im |
|- ( ph -> ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
130 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
131 |
|
elmapi |
|- ( c e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> c : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
132 |
131 2
|
eleq2s |
|- ( c e. I -> c : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
133 |
132
|
ffvelrnda |
|- ( ( c e. I /\ m e. ( 1 ... N ) ) -> ( c ` m ) e. ( 0 [,] 1 ) ) |
134 |
130 133
|
sselid |
|- ( ( c e. I /\ m e. ( 1 ... N ) ) -> ( c ` m ) e. RR ) |
135 |
|
nnrp |
|- ( i e. NN -> i e. RR+ ) |
136 |
135
|
rpreccld |
|- ( i e. NN -> ( 1 / i ) e. RR+ ) |
137 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
138 |
137
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
139 |
|
blcntr |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( c ` m ) e. RR /\ ( 1 / i ) e. RR+ ) -> ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
140 |
138 139
|
mp3an1 |
|- ( ( ( c ` m ) e. RR /\ ( 1 / i ) e. RR+ ) -> ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
141 |
134 136 140
|
syl2an |
|- ( ( ( c e. I /\ m e. ( 1 ... N ) ) /\ i e. NN ) -> ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
142 |
141
|
an32s |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( 1 ... N ) ) -> ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
143 |
|
fveq1 |
|- ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) = ( c ` m ) ) |
144 |
143
|
eleq1d |
|- ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
145 |
142 144
|
syl5ibrcom |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
146 |
145
|
ralrimdva |
|- ( ( c e. I /\ i e. NN ) -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
147 |
146
|
reximdv |
|- ( ( c e. I /\ i e. NN ) -> ( E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
148 |
147
|
ralimdva |
|- ( c e. I -> ( A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
149 |
148
|
reximia |
|- ( E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
150 |
129 149
|
syl6 |
|- ( ph -> ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
151 |
54 53
|
ixpconst |
|- X_ n e. ( 1 ... N ) ( 0 [,] 1 ) = ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) |
152 |
2 151
|
eqtr4i |
|- I = X_ n e. ( 1 ... N ) ( 0 [,] 1 ) |
153 |
3 152
|
oveq12i |
|- ( R |`t I ) = ( ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |`t X_ n e. ( 1 ... N ) ( 0 [,] 1 ) ) |
154 |
|
fzfid |
|- ( T. -> ( 1 ... N ) e. Fin ) |
155 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
156 |
155
|
fconst6 |
|- ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top |
157 |
156
|
a1i |
|- ( T. -> ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top ) |
158 |
53
|
a1i |
|- ( ( T. /\ n e. ( 1 ... N ) ) -> ( 0 [,] 1 ) e. _V ) |
159 |
154 157 158
|
ptrest |
|- ( T. -> ( ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |`t X_ n e. ( 1 ... N ) ( 0 [,] 1 ) ) = ( Xt_ ` ( n e. ( 1 ... N ) |-> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) ) ) ) |
160 |
159
|
mptru |
|- ( ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |`t X_ n e. ( 1 ... N ) ( 0 [,] 1 ) ) = ( Xt_ ` ( n e. ( 1 ... N ) |-> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) ) ) |
161 |
|
fvex |
|- ( topGen ` ran (,) ) e. _V |
162 |
161
|
fvconst2 |
|- ( n e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) = ( topGen ` ran (,) ) ) |
163 |
162
|
oveq1d |
|- ( n e. ( 1 ... N ) -> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) |
164 |
163
|
mpteq2ia |
|- ( n e. ( 1 ... N ) |-> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) ) = ( n e. ( 1 ... N ) |-> ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) |
165 |
|
fconstmpt |
|- ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) = ( n e. ( 1 ... N ) |-> ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) |
166 |
164 165
|
eqtr4i |
|- ( n e. ( 1 ... N ) |-> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) ) = ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) |
167 |
166
|
fveq2i |
|- ( Xt_ ` ( n e. ( 1 ... N ) |-> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) ) ) = ( Xt_ ` ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) ) |
168 |
153 160 167
|
3eqtri |
|- ( R |`t I ) = ( Xt_ ` ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) ) |
169 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
170 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
171 |
|
iicmp |
|- II e. Comp |
172 |
170 171
|
eqeltrri |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) e. Comp |
173 |
172
|
fconst6 |
|- ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) : ( 1 ... N ) --> Comp |
174 |
|
ptcmpfi |
|- ( ( ( 1 ... N ) e. Fin /\ ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) : ( 1 ... N ) --> Comp ) -> ( Xt_ ` ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) ) e. Comp ) |
175 |
169 173 174
|
mp2an |
|- ( Xt_ ` ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) ) e. Comp |
176 |
168 175
|
eqeltri |
|- ( R |`t I ) e. Comp |
177 |
|
rehaus |
|- ( topGen ` ran (,) ) e. Haus |
178 |
177
|
fconst6 |
|- ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Haus |
179 |
|
pthaus |
|- ( ( ( 1 ... N ) e. Fin /\ ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Haus ) -> ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) e. Haus ) |
180 |
169 178 179
|
mp2an |
|- ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) e. Haus |
181 |
3 180
|
eqeltri |
|- R e. Haus |
182 |
|
haustop |
|- ( R e. Haus -> R e. Top ) |
183 |
181 182
|
ax-mp |
|- R e. Top |
184 |
|
reex |
|- RR e. _V |
185 |
|
mapss |
|- ( ( RR e. _V /\ ( 0 [,] 1 ) C_ RR ) -> ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) C_ ( RR ^m ( 1 ... N ) ) ) |
186 |
184 130 185
|
mp2an |
|- ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) C_ ( RR ^m ( 1 ... N ) ) |
187 |
2 186
|
eqsstri |
|- I C_ ( RR ^m ( 1 ... N ) ) |
188 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
189 |
3 188
|
ptuniconst |
|- ( ( ( 1 ... N ) e. Fin /\ ( topGen ` ran (,) ) e. Top ) -> ( RR ^m ( 1 ... N ) ) = U. R ) |
190 |
169 155 189
|
mp2an |
|- ( RR ^m ( 1 ... N ) ) = U. R |
191 |
190
|
restuni |
|- ( ( R e. Top /\ I C_ ( RR ^m ( 1 ... N ) ) ) -> I = U. ( R |`t I ) ) |
192 |
183 187 191
|
mp2an |
|- I = U. ( R |`t I ) |
193 |
192
|
bwth |
|- ( ( ( R |`t I ) e. Comp /\ ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I /\ -. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin ) -> E. c e. I c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) |
194 |
193
|
3expia |
|- ( ( ( R |`t I ) e. Comp /\ ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I ) -> ( -. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. I c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) ) |
195 |
176 59 194
|
sylancr |
|- ( ph -> ( -. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. I c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) ) |
196 |
|
cmptop |
|- ( ( R |`t I ) e. Comp -> ( R |`t I ) e. Top ) |
197 |
176 196
|
ax-mp |
|- ( R |`t I ) e. Top |
198 |
192
|
islp3 |
|- ( ( ( R |`t I ) e. Top /\ ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I /\ c e. I ) -> ( c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) ) |
199 |
197 198
|
mp3an1 |
|- ( ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I /\ c e. I ) -> ( c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) ) |
200 |
59 199
|
sylan |
|- ( ( ph /\ c e. I ) -> ( c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) ) |
201 |
|
fzfid |
|- ( ( c e. I /\ i e. NN ) -> ( 1 ... N ) e. Fin ) |
202 |
156
|
a1i |
|- ( ( c e. I /\ i e. NN ) -> ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top ) |
203 |
|
nnrecre |
|- ( i e. NN -> ( 1 / i ) e. RR ) |
204 |
203
|
rexrd |
|- ( i e. NN -> ( 1 / i ) e. RR* ) |
205 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
206 |
137 205
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
207 |
206
|
blopn |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( c ` m ) e. RR /\ ( 1 / i ) e. RR* ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( topGen ` ran (,) ) ) |
208 |
138 207
|
mp3an1 |
|- ( ( ( c ` m ) e. RR /\ ( 1 / i ) e. RR* ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( topGen ` ran (,) ) ) |
209 |
134 204 208
|
syl2an |
|- ( ( ( c e. I /\ m e. ( 1 ... N ) ) /\ i e. NN ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( topGen ` ran (,) ) ) |
210 |
209
|
an32s |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( topGen ` ran (,) ) ) |
211 |
161
|
fvconst2 |
|- ( m e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` m ) = ( topGen ` ran (,) ) ) |
212 |
211
|
adantl |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` m ) = ( topGen ` ran (,) ) ) |
213 |
210 212
|
eleqtrrd |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` m ) ) |
214 |
|
noel |
|- -. m e. (/) |
215 |
|
difid |
|- ( ( 1 ... N ) \ ( 1 ... N ) ) = (/) |
216 |
215
|
eleq2i |
|- ( m e. ( ( 1 ... N ) \ ( 1 ... N ) ) <-> m e. (/) ) |
217 |
214 216
|
mtbir |
|- -. m e. ( ( 1 ... N ) \ ( 1 ... N ) ) |
218 |
217
|
pm2.21i |
|- ( m e. ( ( 1 ... N ) \ ( 1 ... N ) ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` m ) ) |
219 |
218
|
adantl |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( ( 1 ... N ) \ ( 1 ... N ) ) ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` m ) ) |
220 |
201 202 201 213 219
|
ptopn |
|- ( ( c e. I /\ i e. NN ) -> X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) ) |
221 |
220 3
|
eleqtrrdi |
|- ( ( c e. I /\ i e. NN ) -> X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. R ) |
222 |
|
ovex |
|- ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) e. _V |
223 |
2 222
|
eqeltri |
|- I e. _V |
224 |
|
elrestr |
|- ( ( R e. Haus /\ I e. _V /\ X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. R ) -> ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) e. ( R |`t I ) ) |
225 |
181 223 224
|
mp3an12 |
|- ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. R -> ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) e. ( R |`t I ) ) |
226 |
221 225
|
syl |
|- ( ( c e. I /\ i e. NN ) -> ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) e. ( R |`t I ) ) |
227 |
|
difss |
|- ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) C_ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) |
228 |
|
imassrn |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) C_ ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
229 |
227 228
|
sstri |
|- ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) C_ ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
230 |
229 59
|
sstrid |
|- ( ph -> ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) C_ I ) |
231 |
|
haust1 |
|- ( R e. Haus -> R e. Fre ) |
232 |
181 231
|
ax-mp |
|- R e. Fre |
233 |
|
restt1 |
|- ( ( R e. Fre /\ I e. _V ) -> ( R |`t I ) e. Fre ) |
234 |
232 223 233
|
mp2an |
|- ( R |`t I ) e. Fre |
235 |
|
funmpt |
|- Fun ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
236 |
|
imafi |
|- ( ( Fun ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ ( 1 ..^ i ) e. Fin ) -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) e. Fin ) |
237 |
235 116 236
|
mp2an |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) e. Fin |
238 |
|
diffi |
|- ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) e. Fin -> ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. Fin ) |
239 |
237 238
|
ax-mp |
|- ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. Fin |
240 |
192
|
t1ficld |
|- ( ( ( R |`t I ) e. Fre /\ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) C_ I /\ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. Fin ) -> ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. ( Clsd ` ( R |`t I ) ) ) |
241 |
234 239 240
|
mp3an13 |
|- ( ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) C_ I -> ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. ( Clsd ` ( R |`t I ) ) ) |
242 |
230 241
|
syl |
|- ( ph -> ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. ( Clsd ` ( R |`t I ) ) ) |
243 |
192
|
difopn |
|- ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) e. ( R |`t I ) /\ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. ( Clsd ` ( R |`t I ) ) ) -> ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) e. ( R |`t I ) ) |
244 |
226 242 243
|
syl2anr |
|- ( ( ph /\ ( c e. I /\ i e. NN ) ) -> ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) e. ( R |`t I ) ) |
245 |
244
|
anassrs |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) e. ( R |`t I ) ) |
246 |
|
eleq2 |
|- ( v = ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( c e. v <-> c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) ) ) |
247 |
|
ineq1 |
|- ( v = ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) = ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) ) |
248 |
247
|
neeq1d |
|- ( v = ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) <-> ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) |
249 |
246 248
|
imbi12d |
|- ( v = ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) <-> ( c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) ) |
250 |
249
|
rspcva |
|- ( ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) e. ( R |`t I ) /\ A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) -> ( c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) |
251 |
132
|
ffnd |
|- ( c e. I -> c Fn ( 1 ... N ) ) |
252 |
251
|
adantr |
|- ( ( c e. I /\ i e. NN ) -> c Fn ( 1 ... N ) ) |
253 |
142
|
ralrimiva |
|- ( ( c e. I /\ i e. NN ) -> A. m e. ( 1 ... N ) ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
254 |
108
|
elixp |
|- ( c e. X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> ( c Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
255 |
252 253 254
|
sylanbrc |
|- ( ( c e. I /\ i e. NN ) -> c e. X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
256 |
|
simpl |
|- ( ( c e. I /\ i e. NN ) -> c e. I ) |
257 |
255 256
|
elind |
|- ( ( c e. I /\ i e. NN ) -> c e. ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) ) |
258 |
|
neldifsnd |
|- ( ( c e. I /\ i e. NN ) -> -. c e. ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) |
259 |
257 258
|
eldifd |
|- ( ( c e. I /\ i e. NN ) -> c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) ) |
260 |
259
|
adantll |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) ) |
261 |
|
simplr |
|- ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) -> A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
262 |
261
|
anim1i |
|- ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) -> ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) ) |
263 |
|
simpl |
|- ( ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) -> j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
264 |
262 263
|
anim12i |
|- ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) -> ( ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) |
265 |
|
elin |
|- ( j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) <-> ( j e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) /\ j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) ) |
266 |
|
andir |
|- ( ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) \/ ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) <-> ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) \/ ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) ) ) |
267 |
|
eldif |
|- ( j e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) <-> ( j e. ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) /\ -. j e. ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) ) |
268 |
|
elin |
|- ( j e. ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) <-> ( j e. X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ j e. I ) ) |
269 |
|
vex |
|- j e. _V |
270 |
269
|
elixp |
|- ( j e. X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
271 |
270
|
anbi1i |
|- ( ( j e. X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ j e. I ) <-> ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) ) |
272 |
268 271
|
bitri |
|- ( j e. ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) <-> ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) ) |
273 |
|
ianor |
|- ( -. ( j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ -. j e. { c } ) <-> ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \/ -. -. j e. { c } ) ) |
274 |
|
eldif |
|- ( j e. ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) <-> ( j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ -. j e. { c } ) ) |
275 |
273 274
|
xchnxbir |
|- ( -. j e. ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) <-> ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \/ -. -. j e. { c } ) ) |
276 |
272 275
|
anbi12i |
|- ( ( j e. ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) /\ -. j e. ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) <-> ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \/ -. -. j e. { c } ) ) ) |
277 |
|
andi |
|- ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \/ -. -. j e. { c } ) ) <-> ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) \/ ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) ) ) |
278 |
267 276 277
|
3bitri |
|- ( j e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) <-> ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) \/ ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) ) ) |
279 |
|
eldif |
|- ( j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) <-> ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) |
280 |
278 279
|
anbi12i |
|- ( ( j e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) /\ j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) <-> ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) \/ ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) ) |
281 |
|
pm3.24 |
|- -. ( -. j e. { c } /\ -. -. j e. { c } ) |
282 |
|
simpr |
|- ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) -> -. -. j e. { c } ) |
283 |
|
simpr |
|- ( ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) -> -. j e. { c } ) |
284 |
282 283
|
anim12ci |
|- ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) -> ( -. j e. { c } /\ -. -. j e. { c } ) ) |
285 |
281 284
|
mto |
|- -. ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) |
286 |
285
|
biorfi |
|- ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) <-> ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) \/ ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) ) ) |
287 |
266 280 286
|
3bitr4i |
|- ( ( j e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) /\ j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) <-> ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) ) |
288 |
265 287
|
bitri |
|- ( j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) <-> ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) ) |
289 |
|
ancom |
|- ( ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) <-> ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) ) |
290 |
|
anass |
|- ( ( ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) ) |
291 |
289 290
|
bitr4i |
|- ( ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) <-> ( ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) |
292 |
264 288 291
|
3imtr4i |
|- ( j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) -> ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
293 |
|
ancom |
|- ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) ) |
294 |
|
eldif |
|- ( j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) <-> ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) ) |
295 |
293 294
|
bitr4i |
|- ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) ) |
296 |
|
imadmrn |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " dom ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) = ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
297 |
67 68
|
dmmpti |
|- dom ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) = NN |
298 |
297
|
imaeq2i |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " dom ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) = ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " NN ) |
299 |
296 298
|
eqtr3i |
|- ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) = ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " NN ) |
300 |
299
|
difeq1i |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) = ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " NN ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) |
301 |
|
imadifss |
|- ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " NN ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) C_ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( NN \ ( 1 ..^ i ) ) ) |
302 |
300 301
|
eqsstri |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) C_ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( NN \ ( 1 ..^ i ) ) ) |
303 |
|
imass2 |
|- ( ( NN \ ( 1 ..^ i ) ) C_ ( ZZ>= ` i ) -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( NN \ ( 1 ..^ i ) ) ) C_ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( ZZ>= ` i ) ) ) |
304 |
97 303
|
syl |
|- ( i e. NN -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( NN \ ( 1 ..^ i ) ) ) C_ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( ZZ>= ` i ) ) ) |
305 |
|
df-ima |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( ZZ>= ` i ) ) = ran ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |` ( ZZ>= ` i ) ) |
306 |
|
uznnssnn |
|- ( i e. NN -> ( ZZ>= ` i ) C_ NN ) |
307 |
306
|
resmptd |
|- ( i e. NN -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |` ( ZZ>= ` i ) ) = ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
308 |
307
|
rneqd |
|- ( i e. NN -> ran ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |` ( ZZ>= ` i ) ) = ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
309 |
305 308
|
syl5eq |
|- ( i e. NN -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( ZZ>= ` i ) ) = ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
310 |
304 309
|
sseqtrd |
|- ( i e. NN -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( NN \ ( 1 ..^ i ) ) ) C_ ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
311 |
302 310
|
sstrid |
|- ( i e. NN -> ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) C_ ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
312 |
311
|
sseld |
|- ( i e. NN -> ( j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) -> j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) |
313 |
295 312
|
syl5bi |
|- ( i e. NN -> ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) -> j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) |
314 |
313
|
anim1d |
|- ( i e. NN -> ( ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) -> ( j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) ) |
315 |
292 314
|
syl5 |
|- ( i e. NN -> ( j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) -> ( j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) ) |
316 |
315
|
eximdv |
|- ( i e. NN -> ( E. j j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) -> E. j ( j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) ) |
317 |
|
n0 |
|- ( ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) <-> E. j j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) ) |
318 |
67
|
rgenw |
|- A. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. _V |
319 |
|
eqid |
|- ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) = ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
320 |
|
fveq1 |
|- ( j = ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) -> ( j ` m ) = ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) |
321 |
320
|
eleq1d |
|- ( j = ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
322 |
321
|
ralbidv |
|- ( j = ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) -> ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
323 |
319 322
|
rexrnmptw |
|- ( A. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. _V -> ( E. j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
324 |
318 323
|
ax-mp |
|- ( E. j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
325 |
|
df-rex |
|- ( E. j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> E. j ( j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
326 |
324 325
|
bitr3i |
|- ( E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> E. j ( j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
327 |
316 317 326
|
3imtr4g |
|- ( i e. NN -> ( ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
328 |
327
|
adantl |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> ( ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
329 |
260 328
|
embantd |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> ( ( c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
330 |
250 329
|
syl5 |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> ( ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) e. ( R |`t I ) /\ A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
331 |
245 330
|
mpand |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> ( A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
332 |
331
|
ralrimdva |
|- ( ( ph /\ c e. I ) -> ( A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) -> A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
333 |
200 332
|
sylbid |
|- ( ( ph /\ c e. I ) -> ( c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) -> A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
334 |
333
|
reximdva |
|- ( ph -> ( E. c e. I c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
335 |
195 334
|
syld |
|- ( ph -> ( -. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
336 |
150 335
|
pm2.61d |
|- ( ph -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
337 |
1 2 3 4 5 6 7 8
|
poimirlem29 |
|- ( ph -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( c e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
338 |
337
|
reximdv |
|- ( ph -> ( E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> E. c e. I A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( c e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
339 |
336 338
|
mpd |
|- ( ph -> E. c e. I A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( c e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |