| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimir.i |
|- I = ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) |
| 3 |
|
poimir.r |
|- R = ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |
| 4 |
|
poimir.1 |
|- ( ph -> F e. ( ( R |`t I ) Cn R ) ) |
| 5 |
|
poimirlem30.x |
|- X = ( ( F ` ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) |
| 6 |
|
poimirlem30.2 |
|- ( ph -> G : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 7 |
|
poimirlem30.3 |
|- ( ( ph /\ k e. NN ) -> ran ( 1st ` ( G ` k ) ) C_ ( 0 ..^ k ) ) |
| 8 |
|
poimirlem30.4 |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) /\ r e. { <_ , `' <_ } ) ) -> E. j e. ( 0 ... N ) 0 r X ) |
| 9 |
|
elfzonn0 |
|- ( i e. ( 0 ..^ k ) -> i e. NN0 ) |
| 10 |
9
|
nn0red |
|- ( i e. ( 0 ..^ k ) -> i e. RR ) |
| 11 |
|
nndivre |
|- ( ( i e. RR /\ k e. NN ) -> ( i / k ) e. RR ) |
| 12 |
10 11
|
sylan |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( i / k ) e. RR ) |
| 13 |
|
elfzole1 |
|- ( i e. ( 0 ..^ k ) -> 0 <_ i ) |
| 14 |
10 13
|
jca |
|- ( i e. ( 0 ..^ k ) -> ( i e. RR /\ 0 <_ i ) ) |
| 15 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 16 |
15
|
rpregt0d |
|- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
| 17 |
|
divge0 |
|- ( ( ( i e. RR /\ 0 <_ i ) /\ ( k e. RR /\ 0 < k ) ) -> 0 <_ ( i / k ) ) |
| 18 |
14 16 17
|
syl2an |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> 0 <_ ( i / k ) ) |
| 19 |
|
elfzo0le |
|- ( i e. ( 0 ..^ k ) -> i <_ k ) |
| 20 |
19
|
adantr |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> i <_ k ) |
| 21 |
10
|
adantr |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> i e. RR ) |
| 22 |
|
1red |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> 1 e. RR ) |
| 23 |
15
|
adantl |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> k e. RR+ ) |
| 24 |
21 22 23
|
ledivmuld |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( ( i / k ) <_ 1 <-> i <_ ( k x. 1 ) ) ) |
| 25 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 26 |
25
|
mulridd |
|- ( k e. NN -> ( k x. 1 ) = k ) |
| 27 |
26
|
breq2d |
|- ( k e. NN -> ( i <_ ( k x. 1 ) <-> i <_ k ) ) |
| 28 |
27
|
adantl |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( i <_ ( k x. 1 ) <-> i <_ k ) ) |
| 29 |
24 28
|
bitrd |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( ( i / k ) <_ 1 <-> i <_ k ) ) |
| 30 |
20 29
|
mpbird |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( i / k ) <_ 1 ) |
| 31 |
|
elicc01 |
|- ( ( i / k ) e. ( 0 [,] 1 ) <-> ( ( i / k ) e. RR /\ 0 <_ ( i / k ) /\ ( i / k ) <_ 1 ) ) |
| 32 |
12 18 30 31
|
syl3anbrc |
|- ( ( i e. ( 0 ..^ k ) /\ k e. NN ) -> ( i / k ) e. ( 0 [,] 1 ) ) |
| 33 |
32
|
ancoms |
|- ( ( k e. NN /\ i e. ( 0 ..^ k ) ) -> ( i / k ) e. ( 0 [,] 1 ) ) |
| 34 |
|
elsni |
|- ( j e. { k } -> j = k ) |
| 35 |
34
|
oveq2d |
|- ( j e. { k } -> ( i / j ) = ( i / k ) ) |
| 36 |
35
|
eleq1d |
|- ( j e. { k } -> ( ( i / j ) e. ( 0 [,] 1 ) <-> ( i / k ) e. ( 0 [,] 1 ) ) ) |
| 37 |
33 36
|
syl5ibrcom |
|- ( ( k e. NN /\ i e. ( 0 ..^ k ) ) -> ( j e. { k } -> ( i / j ) e. ( 0 [,] 1 ) ) ) |
| 38 |
37
|
impr |
|- ( ( k e. NN /\ ( i e. ( 0 ..^ k ) /\ j e. { k } ) ) -> ( i / j ) e. ( 0 [,] 1 ) ) |
| 39 |
38
|
adantll |
|- ( ( ( ph /\ k e. NN ) /\ ( i e. ( 0 ..^ k ) /\ j e. { k } ) ) -> ( i / j ) e. ( 0 [,] 1 ) ) |
| 40 |
6
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 41 |
|
xp1st |
|- ( ( G ` k ) e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( G ` k ) ) e. ( NN0 ^m ( 1 ... N ) ) ) |
| 42 |
|
elmapfn |
|- ( ( 1st ` ( G ` k ) ) e. ( NN0 ^m ( 1 ... N ) ) -> ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) ) |
| 43 |
40 41 42
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) ) |
| 44 |
|
df-f |
|- ( ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ( 0 ..^ k ) <-> ( ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) /\ ran ( 1st ` ( G ` k ) ) C_ ( 0 ..^ k ) ) ) |
| 45 |
43 7 44
|
sylanbrc |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ( 0 ..^ k ) ) |
| 46 |
|
vex |
|- k e. _V |
| 47 |
46
|
fconst |
|- ( ( 1 ... N ) X. { k } ) : ( 1 ... N ) --> { k } |
| 48 |
47
|
a1i |
|- ( ( ph /\ k e. NN ) -> ( ( 1 ... N ) X. { k } ) : ( 1 ... N ) --> { k } ) |
| 49 |
|
fzfid |
|- ( ( ph /\ k e. NN ) -> ( 1 ... N ) e. Fin ) |
| 50 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 51 |
39 45 48 49 49 50
|
off |
|- ( ( ph /\ k e. NN ) -> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 52 |
2
|
eleq2i |
|- ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I <-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) ) |
| 53 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
| 54 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 55 |
53 54
|
elmap |
|- ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) <-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 56 |
52 55
|
bitri |
|- ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I <-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 57 |
51 56
|
sylibr |
|- ( ( ph /\ k e. NN ) -> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I ) |
| 58 |
57
|
fmpttd |
|- ( ph -> ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) : NN --> I ) |
| 59 |
58
|
frnd |
|- ( ph -> ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I ) |
| 60 |
|
ominf |
|- -. _om e. Fin |
| 61 |
|
nnenom |
|- NN ~~ _om |
| 62 |
|
enfi |
|- ( NN ~~ _om -> ( NN e. Fin <-> _om e. Fin ) ) |
| 63 |
61 62
|
ax-mp |
|- ( NN e. Fin <-> _om e. Fin ) |
| 64 |
|
iunid |
|- U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) { c } = ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
| 65 |
64
|
imaeq2i |
|- ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) { c } ) = ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 66 |
|
imaiun |
|- ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) { c } ) = U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) |
| 67 |
|
ovex |
|- ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. _V |
| 68 |
|
eqid |
|- ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) = ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
| 69 |
67 68
|
fnmpti |
|- ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) Fn NN |
| 70 |
|
dffn3 |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) Fn NN <-> ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) : NN --> ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 71 |
69 70
|
mpbi |
|- ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) : NN --> ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
| 72 |
|
fimacnv |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) : NN --> ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) = NN ) |
| 73 |
71 72
|
ax-mp |
|- ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) = NN |
| 74 |
65 66 73
|
3eqtr3ri |
|- NN = U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) |
| 75 |
74
|
eleq1i |
|- ( NN e. Fin <-> U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
| 76 |
63 75
|
bitr3i |
|- ( _om e. Fin <-> U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
| 77 |
60 76
|
mtbi |
|- -. U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin |
| 78 |
|
ralnex |
|- ( A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> -. E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
| 79 |
78
|
rexbii |
|- ( E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> E. i e. NN -. E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
| 80 |
|
rexnal |
|- ( E. i e. NN -. E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> -. A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
| 81 |
79 80
|
bitri |
|- ( E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> -. A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
| 82 |
81
|
ralbii |
|- ( A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) -. A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
| 83 |
|
ralnex |
|- ( A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) -. A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> -. E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
| 84 |
82 83
|
bitri |
|- ( A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> -. E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
| 85 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 86 |
|
elnnuz |
|- ( i e. NN <-> i e. ( ZZ>= ` 1 ) ) |
| 87 |
|
fzouzsplit |
|- ( i e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 1 ) = ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) ) |
| 88 |
86 87
|
sylbi |
|- ( i e. NN -> ( ZZ>= ` 1 ) = ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) ) |
| 89 |
85 88
|
eqtrid |
|- ( i e. NN -> NN = ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) ) |
| 90 |
89
|
difeq1d |
|- ( i e. NN -> ( NN \ ( 1 ..^ i ) ) = ( ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) \ ( 1 ..^ i ) ) ) |
| 91 |
|
uncom |
|- ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) = ( ( ZZ>= ` i ) u. ( 1 ..^ i ) ) |
| 92 |
91
|
difeq1i |
|- ( ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) \ ( 1 ..^ i ) ) = ( ( ( ZZ>= ` i ) u. ( 1 ..^ i ) ) \ ( 1 ..^ i ) ) |
| 93 |
|
difun2 |
|- ( ( ( ZZ>= ` i ) u. ( 1 ..^ i ) ) \ ( 1 ..^ i ) ) = ( ( ZZ>= ` i ) \ ( 1 ..^ i ) ) |
| 94 |
92 93
|
eqtri |
|- ( ( ( 1 ..^ i ) u. ( ZZ>= ` i ) ) \ ( 1 ..^ i ) ) = ( ( ZZ>= ` i ) \ ( 1 ..^ i ) ) |
| 95 |
90 94
|
eqtrdi |
|- ( i e. NN -> ( NN \ ( 1 ..^ i ) ) = ( ( ZZ>= ` i ) \ ( 1 ..^ i ) ) ) |
| 96 |
|
difss |
|- ( ( ZZ>= ` i ) \ ( 1 ..^ i ) ) C_ ( ZZ>= ` i ) |
| 97 |
95 96
|
eqsstrdi |
|- ( i e. NN -> ( NN \ ( 1 ..^ i ) ) C_ ( ZZ>= ` i ) ) |
| 98 |
|
ssralv |
|- ( ( NN \ ( 1 ..^ i ) ) C_ ( ZZ>= ` i ) -> ( A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. k e. ( NN \ ( 1 ..^ i ) ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
| 99 |
97 98
|
syl |
|- ( i e. NN -> ( A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. k e. ( NN \ ( 1 ..^ i ) ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
| 100 |
|
impexp |
|- ( ( ( k e. NN /\ -. k e. ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) <-> ( k e. NN -> ( -. k e. ( 1 ..^ i ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) ) |
| 101 |
|
eldif |
|- ( k e. ( NN \ ( 1 ..^ i ) ) <-> ( k e. NN /\ -. k e. ( 1 ..^ i ) ) ) |
| 102 |
101
|
imbi1i |
|- ( ( k e. ( NN \ ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) <-> ( ( k e. NN /\ -. k e. ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
| 103 |
|
con34b |
|- ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) <-> ( -. k e. ( 1 ..^ i ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
| 104 |
103
|
imbi2i |
|- ( ( k e. NN -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) <-> ( k e. NN -> ( -. k e. ( 1 ..^ i ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) ) |
| 105 |
100 102 104
|
3bitr4i |
|- ( ( k e. ( NN \ ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) <-> ( k e. NN -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) ) |
| 106 |
105
|
albii |
|- ( A. k ( k e. ( NN \ ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) <-> A. k ( k e. NN -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) ) |
| 107 |
|
df-ral |
|- ( A. k e. ( NN \ ( 1 ..^ i ) ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> A. k ( k e. ( NN \ ( 1 ..^ i ) ) -> -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
| 108 |
|
vex |
|- c e. _V |
| 109 |
68
|
mptiniseg |
|- ( c e. _V -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) = { k e. NN | ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c } ) |
| 110 |
108 109
|
ax-mp |
|- ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) = { k e. NN | ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c } |
| 111 |
110
|
sseq1i |
|- ( ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) C_ ( 1 ..^ i ) <-> { k e. NN | ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c } C_ ( 1 ..^ i ) ) |
| 112 |
|
rabss |
|- ( { k e. NN | ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c } C_ ( 1 ..^ i ) <-> A. k e. NN ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) |
| 113 |
|
df-ral |
|- ( A. k e. NN ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) <-> A. k ( k e. NN -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) ) |
| 114 |
111 112 113
|
3bitri |
|- ( ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) C_ ( 1 ..^ i ) <-> A. k ( k e. NN -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> k e. ( 1 ..^ i ) ) ) ) |
| 115 |
106 107 114
|
3bitr4i |
|- ( A. k e. ( NN \ ( 1 ..^ i ) ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c <-> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) C_ ( 1 ..^ i ) ) |
| 116 |
|
fzofi |
|- ( 1 ..^ i ) e. Fin |
| 117 |
|
ssfi |
|- ( ( ( 1 ..^ i ) e. Fin /\ ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) C_ ( 1 ..^ i ) ) -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
| 118 |
116 117
|
mpan |
|- ( ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) C_ ( 1 ..^ i ) -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
| 119 |
115 118
|
sylbi |
|- ( A. k e. ( NN \ ( 1 ..^ i ) ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
| 120 |
99 119
|
syl6 |
|- ( i e. NN -> ( A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) ) |
| 121 |
120
|
rexlimiv |
|- ( E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
| 122 |
121
|
ralimi |
|- ( A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) E. i e. NN A. k e. ( ZZ>= ` i ) -. ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
| 123 |
84 122
|
sylbir |
|- ( -. E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
| 124 |
|
iunfi |
|- ( ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin /\ A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) -> U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) |
| 125 |
124
|
ex |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> ( A. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin -> U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) ) |
| 126 |
123 125
|
syl5 |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> ( -. E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> U_ c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ( `' ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " { c } ) e. Fin ) ) |
| 127 |
77 126
|
mt3i |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) |
| 128 |
|
ssrexv |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I -> ( E. c e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
| 129 |
59 127 128
|
syl2im |
|- ( ph -> ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c ) ) |
| 130 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 131 |
|
elmapi |
|- ( c e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> c : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 132 |
131 2
|
eleq2s |
|- ( c e. I -> c : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 133 |
132
|
ffvelcdmda |
|- ( ( c e. I /\ m e. ( 1 ... N ) ) -> ( c ` m ) e. ( 0 [,] 1 ) ) |
| 134 |
130 133
|
sselid |
|- ( ( c e. I /\ m e. ( 1 ... N ) ) -> ( c ` m ) e. RR ) |
| 135 |
|
nnrp |
|- ( i e. NN -> i e. RR+ ) |
| 136 |
135
|
rpreccld |
|- ( i e. NN -> ( 1 / i ) e. RR+ ) |
| 137 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 138 |
137
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 139 |
|
blcntr |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( c ` m ) e. RR /\ ( 1 / i ) e. RR+ ) -> ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
| 140 |
138 139
|
mp3an1 |
|- ( ( ( c ` m ) e. RR /\ ( 1 / i ) e. RR+ ) -> ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
| 141 |
134 136 140
|
syl2an |
|- ( ( ( c e. I /\ m e. ( 1 ... N ) ) /\ i e. NN ) -> ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
| 142 |
141
|
an32s |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( 1 ... N ) ) -> ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
| 143 |
|
fveq1 |
|- ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) = ( c ` m ) ) |
| 144 |
143
|
eleq1d |
|- ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 145 |
142 144
|
syl5ibrcom |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 146 |
145
|
ralrimdva |
|- ( ( c e. I /\ i e. NN ) -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 147 |
146
|
reximdv |
|- ( ( c e. I /\ i e. NN ) -> ( E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 148 |
147
|
ralimdva |
|- ( c e. I -> ( A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 149 |
148
|
reximia |
|- ( E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) = c -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
| 150 |
129 149
|
syl6 |
|- ( ph -> ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 151 |
54 53
|
ixpconst |
|- X_ n e. ( 1 ... N ) ( 0 [,] 1 ) = ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) |
| 152 |
2 151
|
eqtr4i |
|- I = X_ n e. ( 1 ... N ) ( 0 [,] 1 ) |
| 153 |
3 152
|
oveq12i |
|- ( R |`t I ) = ( ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |`t X_ n e. ( 1 ... N ) ( 0 [,] 1 ) ) |
| 154 |
|
fzfid |
|- ( T. -> ( 1 ... N ) e. Fin ) |
| 155 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 156 |
155
|
fconst6 |
|- ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top |
| 157 |
156
|
a1i |
|- ( T. -> ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top ) |
| 158 |
53
|
a1i |
|- ( ( T. /\ n e. ( 1 ... N ) ) -> ( 0 [,] 1 ) e. _V ) |
| 159 |
154 157 158
|
ptrest |
|- ( T. -> ( ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |`t X_ n e. ( 1 ... N ) ( 0 [,] 1 ) ) = ( Xt_ ` ( n e. ( 1 ... N ) |-> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) ) ) ) |
| 160 |
159
|
mptru |
|- ( ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |`t X_ n e. ( 1 ... N ) ( 0 [,] 1 ) ) = ( Xt_ ` ( n e. ( 1 ... N ) |-> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) ) ) |
| 161 |
|
fvex |
|- ( topGen ` ran (,) ) e. _V |
| 162 |
161
|
fvconst2 |
|- ( n e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) = ( topGen ` ran (,) ) ) |
| 163 |
162
|
oveq1d |
|- ( n e. ( 1 ... N ) -> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) |
| 164 |
163
|
mpteq2ia |
|- ( n e. ( 1 ... N ) |-> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) ) = ( n e. ( 1 ... N ) |-> ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) |
| 165 |
|
fconstmpt |
|- ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) = ( n e. ( 1 ... N ) |-> ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) |
| 166 |
164 165
|
eqtr4i |
|- ( n e. ( 1 ... N ) |-> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) ) = ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) |
| 167 |
166
|
fveq2i |
|- ( Xt_ ` ( n e. ( 1 ... N ) |-> ( ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) |`t ( 0 [,] 1 ) ) ) ) = ( Xt_ ` ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) ) |
| 168 |
153 160 167
|
3eqtri |
|- ( R |`t I ) = ( Xt_ ` ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) ) |
| 169 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 170 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
| 171 |
|
iicmp |
|- II e. Comp |
| 172 |
170 171
|
eqeltrri |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) e. Comp |
| 173 |
172
|
fconst6 |
|- ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) : ( 1 ... N ) --> Comp |
| 174 |
|
ptcmpfi |
|- ( ( ( 1 ... N ) e. Fin /\ ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) : ( 1 ... N ) --> Comp ) -> ( Xt_ ` ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) ) e. Comp ) |
| 175 |
169 173 174
|
mp2an |
|- ( Xt_ ` ( ( 1 ... N ) X. { ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) } ) ) e. Comp |
| 176 |
168 175
|
eqeltri |
|- ( R |`t I ) e. Comp |
| 177 |
|
rehaus |
|- ( topGen ` ran (,) ) e. Haus |
| 178 |
177
|
fconst6 |
|- ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Haus |
| 179 |
|
pthaus |
|- ( ( ( 1 ... N ) e. Fin /\ ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Haus ) -> ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) e. Haus ) |
| 180 |
169 178 179
|
mp2an |
|- ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) e. Haus |
| 181 |
3 180
|
eqeltri |
|- R e. Haus |
| 182 |
|
haustop |
|- ( R e. Haus -> R e. Top ) |
| 183 |
181 182
|
ax-mp |
|- R e. Top |
| 184 |
|
reex |
|- RR e. _V |
| 185 |
|
mapss |
|- ( ( RR e. _V /\ ( 0 [,] 1 ) C_ RR ) -> ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) C_ ( RR ^m ( 1 ... N ) ) ) |
| 186 |
184 130 185
|
mp2an |
|- ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) C_ ( RR ^m ( 1 ... N ) ) |
| 187 |
2 186
|
eqsstri |
|- I C_ ( RR ^m ( 1 ... N ) ) |
| 188 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 189 |
3 188
|
ptuniconst |
|- ( ( ( 1 ... N ) e. Fin /\ ( topGen ` ran (,) ) e. Top ) -> ( RR ^m ( 1 ... N ) ) = U. R ) |
| 190 |
169 155 189
|
mp2an |
|- ( RR ^m ( 1 ... N ) ) = U. R |
| 191 |
190
|
restuni |
|- ( ( R e. Top /\ I C_ ( RR ^m ( 1 ... N ) ) ) -> I = U. ( R |`t I ) ) |
| 192 |
183 187 191
|
mp2an |
|- I = U. ( R |`t I ) |
| 193 |
192
|
bwth |
|- ( ( ( R |`t I ) e. Comp /\ ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I /\ -. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin ) -> E. c e. I c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) |
| 194 |
193
|
3expia |
|- ( ( ( R |`t I ) e. Comp /\ ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I ) -> ( -. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. I c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) ) |
| 195 |
176 59 194
|
sylancr |
|- ( ph -> ( -. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. I c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) ) |
| 196 |
|
cmptop |
|- ( ( R |`t I ) e. Comp -> ( R |`t I ) e. Top ) |
| 197 |
176 196
|
ax-mp |
|- ( R |`t I ) e. Top |
| 198 |
192
|
islp3 |
|- ( ( ( R |`t I ) e. Top /\ ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I /\ c e. I ) -> ( c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) ) |
| 199 |
197 198
|
mp3an1 |
|- ( ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) C_ I /\ c e. I ) -> ( c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) ) |
| 200 |
59 199
|
sylan |
|- ( ( ph /\ c e. I ) -> ( c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) ) |
| 201 |
|
fzfid |
|- ( ( c e. I /\ i e. NN ) -> ( 1 ... N ) e. Fin ) |
| 202 |
156
|
a1i |
|- ( ( c e. I /\ i e. NN ) -> ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top ) |
| 203 |
|
nnrecre |
|- ( i e. NN -> ( 1 / i ) e. RR ) |
| 204 |
203
|
rexrd |
|- ( i e. NN -> ( 1 / i ) e. RR* ) |
| 205 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 206 |
137 205
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 207 |
206
|
blopn |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( c ` m ) e. RR /\ ( 1 / i ) e. RR* ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( topGen ` ran (,) ) ) |
| 208 |
138 207
|
mp3an1 |
|- ( ( ( c ` m ) e. RR /\ ( 1 / i ) e. RR* ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( topGen ` ran (,) ) ) |
| 209 |
134 204 208
|
syl2an |
|- ( ( ( c e. I /\ m e. ( 1 ... N ) ) /\ i e. NN ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( topGen ` ran (,) ) ) |
| 210 |
209
|
an32s |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( topGen ` ran (,) ) ) |
| 211 |
161
|
fvconst2 |
|- ( m e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` m ) = ( topGen ` ran (,) ) ) |
| 212 |
211
|
adantl |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` m ) = ( topGen ` ran (,) ) ) |
| 213 |
210 212
|
eleqtrrd |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` m ) ) |
| 214 |
|
noel |
|- -. m e. (/) |
| 215 |
|
difid |
|- ( ( 1 ... N ) \ ( 1 ... N ) ) = (/) |
| 216 |
215
|
eleq2i |
|- ( m e. ( ( 1 ... N ) \ ( 1 ... N ) ) <-> m e. (/) ) |
| 217 |
214 216
|
mtbir |
|- -. m e. ( ( 1 ... N ) \ ( 1 ... N ) ) |
| 218 |
217
|
pm2.21i |
|- ( m e. ( ( 1 ... N ) \ ( 1 ... N ) ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` m ) ) |
| 219 |
218
|
adantl |
|- ( ( ( c e. I /\ i e. NN ) /\ m e. ( ( 1 ... N ) \ ( 1 ... N ) ) ) -> ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` m ) ) |
| 220 |
201 202 201 213 219
|
ptopn |
|- ( ( c e. I /\ i e. NN ) -> X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) ) |
| 221 |
220 3
|
eleqtrrdi |
|- ( ( c e. I /\ i e. NN ) -> X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. R ) |
| 222 |
|
ovex |
|- ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) e. _V |
| 223 |
2 222
|
eqeltri |
|- I e. _V |
| 224 |
|
elrestr |
|- ( ( R e. Haus /\ I e. _V /\ X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. R ) -> ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) e. ( R |`t I ) ) |
| 225 |
181 223 224
|
mp3an12 |
|- ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) e. R -> ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) e. ( R |`t I ) ) |
| 226 |
221 225
|
syl |
|- ( ( c e. I /\ i e. NN ) -> ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) e. ( R |`t I ) ) |
| 227 |
|
difss |
|- ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) C_ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) |
| 228 |
|
imassrn |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) C_ ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
| 229 |
227 228
|
sstri |
|- ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) C_ ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
| 230 |
229 59
|
sstrid |
|- ( ph -> ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) C_ I ) |
| 231 |
|
haust1 |
|- ( R e. Haus -> R e. Fre ) |
| 232 |
181 231
|
ax-mp |
|- R e. Fre |
| 233 |
|
restt1 |
|- ( ( R e. Fre /\ I e. _V ) -> ( R |`t I ) e. Fre ) |
| 234 |
232 223 233
|
mp2an |
|- ( R |`t I ) e. Fre |
| 235 |
|
funmpt |
|- Fun ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
| 236 |
|
imafi |
|- ( ( Fun ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ ( 1 ..^ i ) e. Fin ) -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) e. Fin ) |
| 237 |
235 116 236
|
mp2an |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) e. Fin |
| 238 |
|
diffi |
|- ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) e. Fin -> ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. Fin ) |
| 239 |
237 238
|
ax-mp |
|- ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. Fin |
| 240 |
192
|
t1ficld |
|- ( ( ( R |`t I ) e. Fre /\ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) C_ I /\ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. Fin ) -> ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. ( Clsd ` ( R |`t I ) ) ) |
| 241 |
234 239 240
|
mp3an13 |
|- ( ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) C_ I -> ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. ( Clsd ` ( R |`t I ) ) ) |
| 242 |
230 241
|
syl |
|- ( ph -> ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. ( Clsd ` ( R |`t I ) ) ) |
| 243 |
192
|
difopn |
|- ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) e. ( R |`t I ) /\ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) e. ( Clsd ` ( R |`t I ) ) ) -> ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) e. ( R |`t I ) ) |
| 244 |
226 242 243
|
syl2anr |
|- ( ( ph /\ ( c e. I /\ i e. NN ) ) -> ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) e. ( R |`t I ) ) |
| 245 |
244
|
anassrs |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) e. ( R |`t I ) ) |
| 246 |
|
eleq2 |
|- ( v = ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( c e. v <-> c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) ) ) |
| 247 |
|
ineq1 |
|- ( v = ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) = ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) ) |
| 248 |
247
|
neeq1d |
|- ( v = ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) <-> ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) |
| 249 |
246 248
|
imbi12d |
|- ( v = ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) <-> ( c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) ) |
| 250 |
249
|
rspcva |
|- ( ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) e. ( R |`t I ) /\ A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) -> ( c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) |
| 251 |
132
|
ffnd |
|- ( c e. I -> c Fn ( 1 ... N ) ) |
| 252 |
251
|
adantr |
|- ( ( c e. I /\ i e. NN ) -> c Fn ( 1 ... N ) ) |
| 253 |
142
|
ralrimiva |
|- ( ( c e. I /\ i e. NN ) -> A. m e. ( 1 ... N ) ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
| 254 |
108
|
elixp |
|- ( c e. X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> ( c Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( c ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 255 |
252 253 254
|
sylanbrc |
|- ( ( c e. I /\ i e. NN ) -> c e. X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
| 256 |
|
simpl |
|- ( ( c e. I /\ i e. NN ) -> c e. I ) |
| 257 |
255 256
|
elind |
|- ( ( c e. I /\ i e. NN ) -> c e. ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) ) |
| 258 |
|
neldifsnd |
|- ( ( c e. I /\ i e. NN ) -> -. c e. ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) |
| 259 |
257 258
|
eldifd |
|- ( ( c e. I /\ i e. NN ) -> c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) ) |
| 260 |
259
|
adantll |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) ) |
| 261 |
|
simplr |
|- ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) -> A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
| 262 |
261
|
anim1i |
|- ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) -> ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) ) |
| 263 |
|
simpl |
|- ( ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) -> j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 264 |
262 263
|
anim12i |
|- ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) -> ( ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) |
| 265 |
|
elin |
|- ( j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) <-> ( j e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) /\ j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) ) |
| 266 |
|
andir |
|- ( ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) \/ ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) <-> ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) \/ ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) ) ) |
| 267 |
|
eldif |
|- ( j e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) <-> ( j e. ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) /\ -. j e. ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) ) |
| 268 |
|
elin |
|- ( j e. ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) <-> ( j e. X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ j e. I ) ) |
| 269 |
|
vex |
|- j e. _V |
| 270 |
269
|
elixp |
|- ( j e. X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 271 |
270
|
anbi1i |
|- ( ( j e. X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ j e. I ) <-> ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) ) |
| 272 |
268 271
|
bitri |
|- ( j e. ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) <-> ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) ) |
| 273 |
|
ianor |
|- ( -. ( j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ -. j e. { c } ) <-> ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \/ -. -. j e. { c } ) ) |
| 274 |
|
eldif |
|- ( j e. ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) <-> ( j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ -. j e. { c } ) ) |
| 275 |
273 274
|
xchnxbir |
|- ( -. j e. ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) <-> ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \/ -. -. j e. { c } ) ) |
| 276 |
272 275
|
anbi12i |
|- ( ( j e. ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) /\ -. j e. ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) <-> ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \/ -. -. j e. { c } ) ) ) |
| 277 |
|
andi |
|- ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \/ -. -. j e. { c } ) ) <-> ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) \/ ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) ) ) |
| 278 |
267 276 277
|
3bitri |
|- ( j e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) <-> ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) \/ ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) ) ) |
| 279 |
|
eldif |
|- ( j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) <-> ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) |
| 280 |
278 279
|
anbi12i |
|- ( ( j e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) /\ j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) <-> ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) \/ ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) ) |
| 281 |
|
pm3.24 |
|- -. ( -. j e. { c } /\ -. -. j e. { c } ) |
| 282 |
|
simpr |
|- ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) -> -. -. j e. { c } ) |
| 283 |
|
simpr |
|- ( ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) -> -. j e. { c } ) |
| 284 |
282 283
|
anim12ci |
|- ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) -> ( -. j e. { c } /\ -. -. j e. { c } ) ) |
| 285 |
281 284
|
mto |
|- -. ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) |
| 286 |
285
|
biorfri |
|- ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) <-> ( ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) \/ ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. -. j e. { c } ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) ) ) |
| 287 |
266 280 286
|
3bitr4i |
|- ( ( j e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) /\ j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) <-> ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) ) |
| 288 |
265 287
|
bitri |
|- ( j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) <-> ( ( ( ( j Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) /\ j e. I ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. { c } ) ) ) |
| 289 |
|
ancom |
|- ( ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) <-> ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) ) |
| 290 |
|
anass |
|- ( ( ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) ) |
| 291 |
289 290
|
bitr4i |
|- ( ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) <-> ( ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) |
| 292 |
264 288 291
|
3imtr4i |
|- ( j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) -> ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 293 |
|
ancom |
|- ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) ) |
| 294 |
|
eldif |
|- ( j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) <-> ( j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) ) |
| 295 |
293 294
|
bitr4i |
|- ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) <-> j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) ) |
| 296 |
|
imadmrn |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " dom ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) = ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
| 297 |
67 68
|
dmmpti |
|- dom ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) = NN |
| 298 |
297
|
imaeq2i |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " dom ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) = ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " NN ) |
| 299 |
296 298
|
eqtr3i |
|- ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) = ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " NN ) |
| 300 |
299
|
difeq1i |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) = ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " NN ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) |
| 301 |
|
imadifss |
|- ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " NN ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) C_ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( NN \ ( 1 ..^ i ) ) ) |
| 302 |
300 301
|
eqsstri |
|- ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) C_ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( NN \ ( 1 ..^ i ) ) ) |
| 303 |
|
imass2 |
|- ( ( NN \ ( 1 ..^ i ) ) C_ ( ZZ>= ` i ) -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( NN \ ( 1 ..^ i ) ) ) C_ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( ZZ>= ` i ) ) ) |
| 304 |
97 303
|
syl |
|- ( i e. NN -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( NN \ ( 1 ..^ i ) ) ) C_ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( ZZ>= ` i ) ) ) |
| 305 |
|
df-ima |
|- ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( ZZ>= ` i ) ) = ran ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |` ( ZZ>= ` i ) ) |
| 306 |
|
uznnssnn |
|- ( i e. NN -> ( ZZ>= ` i ) C_ NN ) |
| 307 |
306
|
resmptd |
|- ( i e. NN -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |` ( ZZ>= ` i ) ) = ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 308 |
307
|
rneqd |
|- ( i e. NN -> ran ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |` ( ZZ>= ` i ) ) = ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 309 |
305 308
|
eqtrid |
|- ( i e. NN -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( ZZ>= ` i ) ) = ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 310 |
304 309
|
sseqtrd |
|- ( i e. NN -> ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( NN \ ( 1 ..^ i ) ) ) C_ ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 311 |
302 310
|
sstrid |
|- ( i e. NN -> ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) C_ ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 312 |
311
|
sseld |
|- ( i e. NN -> ( j e. ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) ) -> j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) |
| 313 |
295 312
|
biimtrid |
|- ( i e. NN -> ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) -> j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) ) |
| 314 |
313
|
anim1d |
|- ( i e. NN -> ( ( ( -. j e. ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) /\ j e. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) -> ( j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) ) |
| 315 |
292 314
|
syl5 |
|- ( i e. NN -> ( j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) -> ( j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) ) |
| 316 |
315
|
eximdv |
|- ( i e. NN -> ( E. j j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) -> E. j ( j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) ) |
| 317 |
|
n0 |
|- ( ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) <-> E. j j e. ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) ) |
| 318 |
67
|
rgenw |
|- A. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. _V |
| 319 |
|
eqid |
|- ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) = ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) |
| 320 |
|
fveq1 |
|- ( j = ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) -> ( j ` m ) = ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) |
| 321 |
320
|
eleq1d |
|- ( j = ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 322 |
321
|
ralbidv |
|- ( j = ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) -> ( A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 323 |
319 322
|
rexrnmptw |
|- ( A. k e. ( ZZ>= ` i ) ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. _V -> ( E. j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 324 |
318 323
|
ax-mp |
|- ( E. j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
| 325 |
|
df-rex |
|- ( E. j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> E. j ( j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 326 |
324 325
|
bitr3i |
|- ( E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> E. j ( j e. ran ( k e. ( ZZ>= ` i ) |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) /\ A. m e. ( 1 ... N ) ( j ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 327 |
316 317 326
|
3imtr4g |
|- ( i e. NN -> ( ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 328 |
327
|
adantl |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> ( ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 329 |
260 328
|
embantd |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> ( ( c e. ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) -> ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 330 |
250 329
|
syl5 |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> ( ( ( ( X_ m e. ( 1 ... N ) ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) i^i I ) \ ( ( ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) " ( 1 ..^ i ) ) \ { c } ) ) e. ( R |`t I ) /\ A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) ) -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 331 |
245 330
|
mpand |
|- ( ( ( ph /\ c e. I ) /\ i e. NN ) -> ( A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) -> E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 332 |
331
|
ralrimdva |
|- ( ( ph /\ c e. I ) -> ( A. v e. ( R |`t I ) ( c e. v -> ( v i^i ( ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) \ { c } ) ) =/= (/) ) -> A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 333 |
200 332
|
sylbid |
|- ( ( ph /\ c e. I ) -> ( c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) -> A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 334 |
333
|
reximdva |
|- ( ph -> ( E. c e. I c e. ( ( limPt ` ( R |`t I ) ) ` ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 335 |
195 334
|
syld |
|- ( ph -> ( -. ran ( k e. NN |-> ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) e. Fin -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) ) |
| 336 |
150 335
|
pm2.61d |
|- ( ph -> E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) ) |
| 337 |
1 2 3 4 5 6 7 8
|
poimirlem29 |
|- ( ph -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( c e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
| 338 |
337
|
reximdv |
|- ( ph -> ( E. c e. I A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( c ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> E. c e. I A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( c e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
| 339 |
336 338
|
mpd |
|- ( ph -> E. c e. I A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( c e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |