| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimir.i |
|- I = ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) |
| 3 |
|
poimir.r |
|- R = ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |
| 4 |
|
poimir.1 |
|- ( ph -> F e. ( ( R |`t I ) Cn R ) ) |
| 5 |
|
poimirlem30.x |
|- X = ( ( F ` ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) |
| 6 |
|
poimirlem30.2 |
|- ( ph -> G : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 7 |
|
poimirlem30.3 |
|- ( ( ph /\ k e. NN ) -> ran ( 1st ` ( G ` k ) ) C_ ( 0 ..^ k ) ) |
| 8 |
|
poimirlem30.4 |
|- ( ( ph /\ ( k e. NN /\ n e. ( 1 ... N ) /\ r e. { <_ , `' <_ } ) ) -> E. j e. ( 0 ... N ) 0 r X ) |
| 9 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 10 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 11 |
10
|
fconst6 |
|- ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top |
| 12 |
|
pttop |
|- ( ( ( 1 ... N ) e. Fin /\ ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top ) -> ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) e. Top ) |
| 13 |
9 11 12
|
mp2an |
|- ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) e. Top |
| 14 |
3 13
|
eqeltri |
|- R e. Top |
| 15 |
|
ovex |
|- ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) e. _V |
| 16 |
2 15
|
eqeltri |
|- I e. _V |
| 17 |
|
elrest |
|- ( ( R e. Top /\ I e. _V ) -> ( v e. ( R |`t I ) <-> E. z e. R v = ( z i^i I ) ) ) |
| 18 |
14 16 17
|
mp2an |
|- ( v e. ( R |`t I ) <-> E. z e. R v = ( z i^i I ) ) |
| 19 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 20 |
3 19
|
ptrecube |
|- ( ( z e. R /\ C e. z ) -> E. c e. RR+ X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) C_ z ) |
| 21 |
20
|
ex |
|- ( z e. R -> ( C e. z -> E. c e. RR+ X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) C_ z ) ) |
| 22 |
|
inss1 |
|- ( z i^i I ) C_ z |
| 23 |
|
sseq1 |
|- ( v = ( z i^i I ) -> ( v C_ z <-> ( z i^i I ) C_ z ) ) |
| 24 |
22 23
|
mpbiri |
|- ( v = ( z i^i I ) -> v C_ z ) |
| 25 |
24
|
sseld |
|- ( v = ( z i^i I ) -> ( C e. v -> C e. z ) ) |
| 26 |
|
ssrin |
|- ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) C_ z -> ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ ( z i^i I ) ) |
| 27 |
|
sseq2 |
|- ( v = ( z i^i I ) -> ( ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v <-> ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ ( z i^i I ) ) ) |
| 28 |
26 27
|
imbitrrid |
|- ( v = ( z i^i I ) -> ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) C_ z -> ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) ) |
| 29 |
28
|
reximdv |
|- ( v = ( z i^i I ) -> ( E. c e. RR+ X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) C_ z -> E. c e. RR+ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) ) |
| 30 |
25 29
|
imim12d |
|- ( v = ( z i^i I ) -> ( ( C e. z -> E. c e. RR+ X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) C_ z ) -> ( C e. v -> E. c e. RR+ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) ) ) |
| 31 |
21 30
|
syl5com |
|- ( z e. R -> ( v = ( z i^i I ) -> ( C e. v -> E. c e. RR+ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) ) ) |
| 32 |
31
|
rexlimiv |
|- ( E. z e. R v = ( z i^i I ) -> ( C e. v -> E. c e. RR+ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) ) |
| 33 |
18 32
|
sylbi |
|- ( v e. ( R |`t I ) -> ( C e. v -> E. c e. RR+ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) ) |
| 34 |
33
|
imp |
|- ( ( v e. ( R |`t I ) /\ C e. v ) -> E. c e. RR+ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) |
| 35 |
34
|
adantl |
|- ( ( ph /\ ( v e. ( R |`t I ) /\ C e. v ) ) -> E. c e. RR+ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) |
| 36 |
|
resttop |
|- ( ( R e. Top /\ I e. _V ) -> ( R |`t I ) e. Top ) |
| 37 |
14 16 36
|
mp2an |
|- ( R |`t I ) e. Top |
| 38 |
|
reex |
|- RR e. _V |
| 39 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 40 |
|
mapss |
|- ( ( RR e. _V /\ ( 0 [,] 1 ) C_ RR ) -> ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) C_ ( RR ^m ( 1 ... N ) ) ) |
| 41 |
38 39 40
|
mp2an |
|- ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) C_ ( RR ^m ( 1 ... N ) ) |
| 42 |
2 41
|
eqsstri |
|- I C_ ( RR ^m ( 1 ... N ) ) |
| 43 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 44 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 45 |
3 44
|
ptuniconst |
|- ( ( ( 1 ... N ) e. _V /\ ( topGen ` ran (,) ) e. Top ) -> ( RR ^m ( 1 ... N ) ) = U. R ) |
| 46 |
43 10 45
|
mp2an |
|- ( RR ^m ( 1 ... N ) ) = U. R |
| 47 |
46
|
restuni |
|- ( ( R e. Top /\ I C_ ( RR ^m ( 1 ... N ) ) ) -> I = U. ( R |`t I ) ) |
| 48 |
14 42 47
|
mp2an |
|- I = U. ( R |`t I ) |
| 49 |
48
|
eltopss |
|- ( ( ( R |`t I ) e. Top /\ v e. ( R |`t I ) ) -> v C_ I ) |
| 50 |
37 49
|
mpan |
|- ( v e. ( R |`t I ) -> v C_ I ) |
| 51 |
50
|
sselda |
|- ( ( v e. ( R |`t I ) /\ C e. v ) -> C e. I ) |
| 52 |
|
2rp |
|- 2 e. RR+ |
| 53 |
|
rpdivcl |
|- ( ( 2 e. RR+ /\ c e. RR+ ) -> ( 2 / c ) e. RR+ ) |
| 54 |
52 53
|
mpan |
|- ( c e. RR+ -> ( 2 / c ) e. RR+ ) |
| 55 |
54
|
rpred |
|- ( c e. RR+ -> ( 2 / c ) e. RR ) |
| 56 |
|
ceicl |
|- ( ( 2 / c ) e. RR -> -u ( |_ ` -u ( 2 / c ) ) e. ZZ ) |
| 57 |
55 56
|
syl |
|- ( c e. RR+ -> -u ( |_ ` -u ( 2 / c ) ) e. ZZ ) |
| 58 |
|
0red |
|- ( c e. RR+ -> 0 e. RR ) |
| 59 |
57
|
zred |
|- ( c e. RR+ -> -u ( |_ ` -u ( 2 / c ) ) e. RR ) |
| 60 |
54
|
rpgt0d |
|- ( c e. RR+ -> 0 < ( 2 / c ) ) |
| 61 |
|
ceige |
|- ( ( 2 / c ) e. RR -> ( 2 / c ) <_ -u ( |_ ` -u ( 2 / c ) ) ) |
| 62 |
55 61
|
syl |
|- ( c e. RR+ -> ( 2 / c ) <_ -u ( |_ ` -u ( 2 / c ) ) ) |
| 63 |
58 55 59 60 62
|
ltletrd |
|- ( c e. RR+ -> 0 < -u ( |_ ` -u ( 2 / c ) ) ) |
| 64 |
|
elnnz |
|- ( -u ( |_ ` -u ( 2 / c ) ) e. NN <-> ( -u ( |_ ` -u ( 2 / c ) ) e. ZZ /\ 0 < -u ( |_ ` -u ( 2 / c ) ) ) ) |
| 65 |
57 63 64
|
sylanbrc |
|- ( c e. RR+ -> -u ( |_ ` -u ( 2 / c ) ) e. NN ) |
| 66 |
|
fveq2 |
|- ( i = -u ( |_ ` -u ( 2 / c ) ) -> ( ZZ>= ` i ) = ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) |
| 67 |
|
oveq2 |
|- ( i = -u ( |_ ` -u ( 2 / c ) ) -> ( 1 / i ) = ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) |
| 68 |
67
|
oveq2d |
|- ( i = -u ( |_ ` -u ( 2 / c ) ) -> ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) = ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) |
| 69 |
68
|
eleq2d |
|- ( i = -u ( |_ ` -u ( 2 / c ) ) -> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 70 |
69
|
ralbidv |
|- ( i = -u ( |_ ` -u ( 2 / c ) ) -> ( A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 71 |
66 70
|
rexeqbidv |
|- ( i = -u ( |_ ` -u ( 2 / c ) ) -> ( E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) <-> E. k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 72 |
71
|
rspcv |
|- ( -u ( |_ ` -u ( 2 / c ) ) e. NN -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> E. k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 73 |
65 72
|
syl |
|- ( c e. RR+ -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> E. k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 74 |
73
|
adantl |
|- ( ( ( ph /\ C e. I ) /\ c e. RR+ ) -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> E. k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 75 |
|
uznnssnn |
|- ( -u ( |_ ` -u ( 2 / c ) ) e. NN -> ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) C_ NN ) |
| 76 |
65 75
|
syl |
|- ( c e. RR+ -> ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) C_ NN ) |
| 77 |
76
|
sseld |
|- ( c e. RR+ -> ( k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) -> k e. NN ) ) |
| 78 |
77
|
adantl |
|- ( ( ( ph /\ C e. I ) /\ c e. RR+ ) -> ( k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) -> k e. NN ) ) |
| 79 |
78
|
imdistani |
|- ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) ) |
| 80 |
65
|
nnrpd |
|- ( c e. RR+ -> -u ( |_ ` -u ( 2 / c ) ) e. RR+ ) |
| 81 |
54 80
|
lerecd |
|- ( c e. RR+ -> ( ( 2 / c ) <_ -u ( |_ ` -u ( 2 / c ) ) <-> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) <_ ( 1 / ( 2 / c ) ) ) ) |
| 82 |
62 81
|
mpbid |
|- ( c e. RR+ -> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) <_ ( 1 / ( 2 / c ) ) ) |
| 83 |
|
rpcn |
|- ( c e. RR+ -> c e. CC ) |
| 84 |
|
rpne0 |
|- ( c e. RR+ -> c =/= 0 ) |
| 85 |
|
2cn |
|- 2 e. CC |
| 86 |
|
2ne0 |
|- 2 =/= 0 |
| 87 |
|
recdiv |
|- ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( c e. CC /\ c =/= 0 ) ) -> ( 1 / ( 2 / c ) ) = ( c / 2 ) ) |
| 88 |
85 86 87
|
mpanl12 |
|- ( ( c e. CC /\ c =/= 0 ) -> ( 1 / ( 2 / c ) ) = ( c / 2 ) ) |
| 89 |
83 84 88
|
syl2anc |
|- ( c e. RR+ -> ( 1 / ( 2 / c ) ) = ( c / 2 ) ) |
| 90 |
82 89
|
breqtrd |
|- ( c e. RR+ -> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) <_ ( c / 2 ) ) |
| 91 |
90
|
ad4antlr |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) <_ ( c / 2 ) ) |
| 92 |
|
elmapi |
|- ( C e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> C : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 93 |
92 2
|
eleq2s |
|- ( C e. I -> C : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 94 |
93
|
ad4antlr |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> C : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 95 |
94
|
ffvelcdmda |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( C ` m ) e. ( 0 [,] 1 ) ) |
| 96 |
39 95
|
sselid |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( C ` m ) e. RR ) |
| 97 |
|
simp-4l |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ph ) |
| 98 |
|
simplr |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> k e. NN ) |
| 99 |
97 98
|
jca |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ph /\ k e. NN ) ) |
| 100 |
6
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 101 |
|
xp1st |
|- ( ( G ` k ) e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( G ` k ) ) e. ( NN0 ^m ( 1 ... N ) ) ) |
| 102 |
|
elmapi |
|- ( ( 1st ` ( G ` k ) ) e. ( NN0 ^m ( 1 ... N ) ) -> ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> NN0 ) |
| 103 |
100 101 102
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> NN0 ) |
| 104 |
103
|
ffvelcdmda |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( 1st ` ( G ` k ) ) ` m ) e. NN0 ) |
| 105 |
104
|
nn0red |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( 1st ` ( G ` k ) ) ` m ) e. RR ) |
| 106 |
|
simplr |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> k e. NN ) |
| 107 |
105 106
|
nndivred |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) e. RR ) |
| 108 |
99 107
|
sylan |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) e. RR ) |
| 109 |
96 108
|
resubcld |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) e. RR ) |
| 110 |
109
|
recnd |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) e. CC ) |
| 111 |
110
|
abscld |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) e. RR ) |
| 112 |
65
|
nnrecred |
|- ( c e. RR+ -> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) e. RR ) |
| 113 |
112
|
ad4antlr |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) e. RR ) |
| 114 |
|
rphalfcl |
|- ( c e. RR+ -> ( c / 2 ) e. RR+ ) |
| 115 |
114
|
rpred |
|- ( c e. RR+ -> ( c / 2 ) e. RR ) |
| 116 |
115
|
ad4antlr |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( c / 2 ) e. RR ) |
| 117 |
|
ltletr |
|- ( ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) e. RR /\ ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) e. RR /\ ( c / 2 ) e. RR ) -> ( ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) /\ ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) <_ ( c / 2 ) ) -> ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( c / 2 ) ) ) |
| 118 |
111 113 116 117
|
syl3anc |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) /\ ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) <_ ( c / 2 ) ) -> ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( c / 2 ) ) ) |
| 119 |
91 118
|
mpan2d |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) -> ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( c / 2 ) ) ) |
| 120 |
79 119
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) -> ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( c / 2 ) ) ) |
| 121 |
|
simpl |
|- ( ( ph /\ C e. I ) -> ph ) |
| 122 |
76
|
sselda |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> k e. NN ) |
| 123 |
121 122
|
anim12i |
|- ( ( ( ph /\ C e. I ) /\ ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) ) -> ( ph /\ k e. NN ) ) |
| 124 |
123
|
anassrs |
|- ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ph /\ k e. NN ) ) |
| 125 |
|
1re |
|- 1 e. RR |
| 126 |
|
snssi |
|- ( 1 e. RR -> { 1 } C_ RR ) |
| 127 |
125 126
|
ax-mp |
|- { 1 } C_ RR |
| 128 |
|
0re |
|- 0 e. RR |
| 129 |
|
snssi |
|- ( 0 e. RR -> { 0 } C_ RR ) |
| 130 |
128 129
|
ax-mp |
|- { 0 } C_ RR |
| 131 |
127 130
|
unssi |
|- ( { 1 } u. { 0 } ) C_ RR |
| 132 |
|
1ex |
|- 1 e. _V |
| 133 |
132
|
fconst |
|- ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) --> { 1 } |
| 134 |
|
c0ex |
|- 0 e. _V |
| 135 |
134
|
fconst |
|- ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) --> { 0 } |
| 136 |
133 135
|
pm3.2i |
|- ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) --> { 1 } /\ ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) --> { 0 } ) |
| 137 |
|
xp2nd |
|- ( ( G ` k ) e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( G ` k ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 138 |
100 137
|
syl |
|- ( ( ph /\ k e. NN ) -> ( 2nd ` ( G ` k ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 139 |
|
fvex |
|- ( 2nd ` ( G ` k ) ) e. _V |
| 140 |
|
f1oeq1 |
|- ( f = ( 2nd ` ( G ` k ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 141 |
139 140
|
elab |
|- ( ( 2nd ` ( G ` k ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 142 |
138 141
|
sylib |
|- ( ( ph /\ k e. NN ) -> ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 143 |
|
dff1o3 |
|- ( ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( G ` k ) ) ) ) |
| 144 |
143
|
simprbi |
|- ( ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( G ` k ) ) ) |
| 145 |
|
imain |
|- ( Fun `' ( 2nd ` ( G ` k ) ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) i^i ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) ) |
| 146 |
142 144 145
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) i^i ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) ) |
| 147 |
|
elfznn0 |
|- ( j e. ( 0 ... N ) -> j e. NN0 ) |
| 148 |
147
|
nn0red |
|- ( j e. ( 0 ... N ) -> j e. RR ) |
| 149 |
148
|
ltp1d |
|- ( j e. ( 0 ... N ) -> j < ( j + 1 ) ) |
| 150 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 151 |
149 150
|
syl |
|- ( j e. ( 0 ... N ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 152 |
151
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( 2nd ` ( G ` k ) ) " (/) ) ) |
| 153 |
|
ima0 |
|- ( ( 2nd ` ( G ` k ) ) " (/) ) = (/) |
| 154 |
152 153
|
eqtrdi |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 155 |
146 154
|
sylan9req |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) i^i ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 156 |
|
fun |
|- ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) --> { 1 } /\ ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) --> { 0 } ) /\ ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) i^i ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) u. ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
| 157 |
136 155 156
|
sylancr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) u. ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
| 158 |
|
imaundi |
|- ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) u. ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) |
| 159 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
| 160 |
147 159
|
syl |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. NN ) |
| 161 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 162 |
160 161
|
eleqtrdi |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
| 163 |
|
elfzuz3 |
|- ( j e. ( 0 ... N ) -> N e. ( ZZ>= ` j ) ) |
| 164 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` j ) ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
| 165 |
162 163 164
|
syl2anc |
|- ( j e. ( 0 ... N ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
| 166 |
165
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` ( G ` k ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) ) |
| 167 |
|
f1ofo |
|- ( ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
| 168 |
|
foima |
|- ( ( 2nd ` ( G ` k ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( G ` k ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 169 |
142 167 168
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( ( 2nd ` ( G ` k ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 170 |
166 169
|
sylan9req |
|- ( ( j e. ( 0 ... N ) /\ ( ph /\ k e. NN ) ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 171 |
170
|
ancoms |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( 2nd ` ( G ` k ) ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 172 |
158 171
|
eqtr3id |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) u. ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 173 |
172
|
feq2d |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) u. ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) |
| 174 |
157 173
|
mpbid |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) |
| 175 |
174
|
ffvelcdmda |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. ( { 1 } u. { 0 } ) ) |
| 176 |
131 175
|
sselid |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. RR ) |
| 177 |
|
simpllr |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> k e. NN ) |
| 178 |
176 177
|
nndivred |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) e. RR ) |
| 179 |
178
|
recnd |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) e. CC ) |
| 180 |
179
|
absnegd |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) = ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) |
| 181 |
124 180
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) = ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) |
| 182 |
124 175
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. ( { 1 } u. { 0 } ) ) |
| 183 |
|
elun |
|- ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. ( { 1 } u. { 0 } ) <-> ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 1 } \/ ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 0 } ) ) |
| 184 |
182 183
|
sylib |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 1 } \/ ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 0 } ) ) |
| 185 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
| 186 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 187 |
186
|
rpreccld |
|- ( k e. NN -> ( 1 / k ) e. RR+ ) |
| 188 |
187
|
rpge0d |
|- ( k e. NN -> 0 <_ ( 1 / k ) ) |
| 189 |
185 188
|
absidd |
|- ( k e. NN -> ( abs ` ( 1 / k ) ) = ( 1 / k ) ) |
| 190 |
122 189
|
syl |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( abs ` ( 1 / k ) ) = ( 1 / k ) ) |
| 191 |
122
|
nnrecred |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( 1 / k ) e. RR ) |
| 192 |
112
|
adantr |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) e. RR ) |
| 193 |
115
|
adantr |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( c / 2 ) e. RR ) |
| 194 |
|
eluzle |
|- ( k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) -> -u ( |_ ` -u ( 2 / c ) ) <_ k ) |
| 195 |
194
|
adantl |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> -u ( |_ ` -u ( 2 / c ) ) <_ k ) |
| 196 |
65
|
adantr |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> -u ( |_ ` -u ( 2 / c ) ) e. NN ) |
| 197 |
196
|
nnrpd |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> -u ( |_ ` -u ( 2 / c ) ) e. RR+ ) |
| 198 |
122
|
nnrpd |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> k e. RR+ ) |
| 199 |
197 198
|
lerecd |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( -u ( |_ ` -u ( 2 / c ) ) <_ k <-> ( 1 / k ) <_ ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) |
| 200 |
195 199
|
mpbid |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( 1 / k ) <_ ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) |
| 201 |
90
|
adantr |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) <_ ( c / 2 ) ) |
| 202 |
191 192 193 200 201
|
letrd |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( 1 / k ) <_ ( c / 2 ) ) |
| 203 |
190 202
|
eqbrtrd |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( abs ` ( 1 / k ) ) <_ ( c / 2 ) ) |
| 204 |
|
elsni |
|- ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 1 } -> ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) = 1 ) |
| 205 |
204
|
fvoveq1d |
|- ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 1 } -> ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) = ( abs ` ( 1 / k ) ) ) |
| 206 |
205
|
breq1d |
|- ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 1 } -> ( ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) <-> ( abs ` ( 1 / k ) ) <_ ( c / 2 ) ) ) |
| 207 |
203 206
|
syl5ibrcom |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 1 } -> ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) ) ) |
| 208 |
114
|
rpge0d |
|- ( c e. RR+ -> 0 <_ ( c / 2 ) ) |
| 209 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 210 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
| 211 |
209 210
|
div0d |
|- ( k e. NN -> ( 0 / k ) = 0 ) |
| 212 |
211
|
abs00bd |
|- ( k e. NN -> ( abs ` ( 0 / k ) ) = 0 ) |
| 213 |
212
|
breq1d |
|- ( k e. NN -> ( ( abs ` ( 0 / k ) ) <_ ( c / 2 ) <-> 0 <_ ( c / 2 ) ) ) |
| 214 |
213
|
biimparc |
|- ( ( 0 <_ ( c / 2 ) /\ k e. NN ) -> ( abs ` ( 0 / k ) ) <_ ( c / 2 ) ) |
| 215 |
208 214
|
sylan |
|- ( ( c e. RR+ /\ k e. NN ) -> ( abs ` ( 0 / k ) ) <_ ( c / 2 ) ) |
| 216 |
122 215
|
syldan |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( abs ` ( 0 / k ) ) <_ ( c / 2 ) ) |
| 217 |
|
elsni |
|- ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 0 } -> ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) = 0 ) |
| 218 |
217
|
fvoveq1d |
|- ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 0 } -> ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) = ( abs ` ( 0 / k ) ) ) |
| 219 |
218
|
breq1d |
|- ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 0 } -> ( ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) <-> ( abs ` ( 0 / k ) ) <_ ( c / 2 ) ) ) |
| 220 |
216 219
|
syl5ibrcom |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 0 } -> ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) ) ) |
| 221 |
207 220
|
jaod |
|- ( ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 1 } \/ ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 0 } ) -> ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) ) ) |
| 222 |
221
|
adantll |
|- ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 1 } \/ ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 0 } ) -> ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) ) ) |
| 223 |
222
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 1 } \/ ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. { 0 } ) -> ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) ) ) |
| 224 |
184 223
|
mpd |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) ) |
| 225 |
181 224
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) ) |
| 226 |
79 111
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) e. RR ) |
| 227 |
|
simpll |
|- ( ( ( ph /\ C e. I ) /\ c e. RR+ ) -> ph ) |
| 228 |
227
|
anim1i |
|- ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) -> ( ph /\ k e. NN ) ) |
| 229 |
178
|
renegcld |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) e. RR ) |
| 230 |
228 229
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) e. RR ) |
| 231 |
230
|
recnd |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) e. CC ) |
| 232 |
231
|
abscld |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) e. RR ) |
| 233 |
79 232
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) e. RR ) |
| 234 |
115 115
|
jca |
|- ( c e. RR+ -> ( ( c / 2 ) e. RR /\ ( c / 2 ) e. RR ) ) |
| 235 |
234
|
ad4antlr |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( c / 2 ) e. RR /\ ( c / 2 ) e. RR ) ) |
| 236 |
|
ltleadd |
|- ( ( ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) e. RR /\ ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) e. RR ) /\ ( ( c / 2 ) e. RR /\ ( c / 2 ) e. RR ) ) -> ( ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( c / 2 ) /\ ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) ) -> ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) |
| 237 |
226 233 235 236
|
syl21anc |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( c / 2 ) /\ ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) <_ ( c / 2 ) ) -> ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) |
| 238 |
225 237
|
mpan2d |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( c / 2 ) -> ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) |
| 239 |
110 231
|
abstrid |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) <_ ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) ) |
| 240 |
109 230
|
readdcld |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) e. RR ) |
| 241 |
240
|
recnd |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) e. CC ) |
| 242 |
241
|
abscld |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) e. RR ) |
| 243 |
111 232
|
readdcld |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) e. RR ) |
| 244 |
115 115
|
readdcld |
|- ( c e. RR+ -> ( ( c / 2 ) + ( c / 2 ) ) e. RR ) |
| 245 |
244
|
ad4antlr |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( c / 2 ) + ( c / 2 ) ) e. RR ) |
| 246 |
|
lelttr |
|- ( ( ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) e. RR /\ ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) e. RR /\ ( ( c / 2 ) + ( c / 2 ) ) e. RR ) -> ( ( ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) <_ ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) /\ ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) -> ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) |
| 247 |
242 243 245 246
|
syl3anc |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) <_ ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) /\ ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) -> ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) |
| 248 |
239 247
|
mpand |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) -> ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) |
| 249 |
79 248
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) + ( abs ` -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) -> ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) |
| 250 |
120 238 249
|
3syld |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) -> ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) |
| 251 |
105
|
adantlr |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( 1st ` ( G ` k ) ) ` m ) e. RR ) |
| 252 |
251 176
|
readdcld |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) e. RR ) |
| 253 |
252 177
|
nndivred |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR ) |
| 254 |
124 253
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR ) |
| 255 |
250 254
|
jctild |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) -> ( ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR /\ ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) ) |
| 256 |
255
|
adantld |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR /\ ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) ) |
| 257 |
79
|
adantr |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) -> ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) ) |
| 258 |
93
|
ad3antlr |
|- ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) -> C : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 259 |
258
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( C ` m ) e. ( 0 [,] 1 ) ) |
| 260 |
39 259
|
sselid |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( C ` m ) e. RR ) |
| 261 |
80
|
rpreccld |
|- ( c e. RR+ -> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) e. RR+ ) |
| 262 |
261
|
rpxrd |
|- ( c e. RR+ -> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) e. RR* ) |
| 263 |
262
|
ad3antlr |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) e. RR* ) |
| 264 |
19
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 265 |
|
elbl |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( C ` m ) e. RR /\ ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) e. RR* ) -> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) <-> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 266 |
264 265
|
mp3an1 |
|- ( ( ( C ` m ) e. RR /\ ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) e. RR* ) -> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) <-> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 267 |
260 263 266
|
syl2anc |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) <-> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 268 |
|
elmapfn |
|- ( ( 1st ` ( G ` k ) ) e. ( NN0 ^m ( 1 ... N ) ) -> ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) ) |
| 269 |
100 101 268
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) ) |
| 270 |
|
vex |
|- k e. _V |
| 271 |
|
fnconstg |
|- ( k e. _V -> ( ( 1 ... N ) X. { k } ) Fn ( 1 ... N ) ) |
| 272 |
270 271
|
mp1i |
|- ( ( ph /\ k e. NN ) -> ( ( 1 ... N ) X. { k } ) Fn ( 1 ... N ) ) |
| 273 |
|
fzfid |
|- ( ( ph /\ k e. NN ) -> ( 1 ... N ) e. Fin ) |
| 274 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 275 |
|
eqidd |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( 1st ` ( G ` k ) ) ` m ) = ( ( 1st ` ( G ` k ) ) ` m ) ) |
| 276 |
270
|
fvconst2 |
|- ( m e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { k } ) ` m ) = k ) |
| 277 |
276
|
adantl |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1 ... N ) X. { k } ) ` m ) = k ) |
| 278 |
269 272 273 273 274 275 277
|
ofval |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) = ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) |
| 279 |
278
|
oveq2d |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) = ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) |
| 280 |
227 279
|
sylanl1 |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) = ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) |
| 281 |
227 107
|
sylanl1 |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) e. RR ) |
| 282 |
19
|
remetdval |
|- ( ( ( C ` m ) e. RR /\ ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) e. RR ) -> ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) = ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) ) |
| 283 |
260 281 282
|
syl2anc |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) = ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) ) |
| 284 |
280 283
|
eqtrd |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) = ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) ) |
| 285 |
284
|
breq1d |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) <-> ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) |
| 286 |
285
|
anbi2d |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) <-> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 287 |
267 286
|
bitrd |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) <-> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 288 |
257 287
|
sylan |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) <-> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( abs ` ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) ) < ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) ) ) |
| 289 |
|
rpxr |
|- ( c e. RR+ -> c e. RR* ) |
| 290 |
289
|
ad4antlr |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> c e. RR* ) |
| 291 |
|
elbl |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( C ` m ) e. RR /\ c e. RR* ) -> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) <-> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) < c ) ) ) |
| 292 |
264 291
|
mp3an1 |
|- ( ( ( C ` m ) e. RR /\ c e. RR* ) -> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) <-> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) < c ) ) ) |
| 293 |
96 290 292
|
syl2anc |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) <-> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) < c ) ) ) |
| 294 |
|
elun |
|- ( z e. ( { 1 } u. { 0 } ) <-> ( z e. { 1 } \/ z e. { 0 } ) ) |
| 295 |
|
fzofzp1 |
|- ( v e. ( 0 ..^ k ) -> ( v + 1 ) e. ( 0 ... k ) ) |
| 296 |
|
elsni |
|- ( z e. { 1 } -> z = 1 ) |
| 297 |
296
|
oveq2d |
|- ( z e. { 1 } -> ( v + z ) = ( v + 1 ) ) |
| 298 |
297
|
eleq1d |
|- ( z e. { 1 } -> ( ( v + z ) e. ( 0 ... k ) <-> ( v + 1 ) e. ( 0 ... k ) ) ) |
| 299 |
295 298
|
syl5ibrcom |
|- ( v e. ( 0 ..^ k ) -> ( z e. { 1 } -> ( v + z ) e. ( 0 ... k ) ) ) |
| 300 |
|
elfzonn0 |
|- ( v e. ( 0 ..^ k ) -> v e. NN0 ) |
| 301 |
300
|
nn0cnd |
|- ( v e. ( 0 ..^ k ) -> v e. CC ) |
| 302 |
301
|
addridd |
|- ( v e. ( 0 ..^ k ) -> ( v + 0 ) = v ) |
| 303 |
|
elfzofz |
|- ( v e. ( 0 ..^ k ) -> v e. ( 0 ... k ) ) |
| 304 |
302 303
|
eqeltrd |
|- ( v e. ( 0 ..^ k ) -> ( v + 0 ) e. ( 0 ... k ) ) |
| 305 |
|
elsni |
|- ( z e. { 0 } -> z = 0 ) |
| 306 |
305
|
oveq2d |
|- ( z e. { 0 } -> ( v + z ) = ( v + 0 ) ) |
| 307 |
306
|
eleq1d |
|- ( z e. { 0 } -> ( ( v + z ) e. ( 0 ... k ) <-> ( v + 0 ) e. ( 0 ... k ) ) ) |
| 308 |
304 307
|
syl5ibrcom |
|- ( v e. ( 0 ..^ k ) -> ( z e. { 0 } -> ( v + z ) e. ( 0 ... k ) ) ) |
| 309 |
299 308
|
jaod |
|- ( v e. ( 0 ..^ k ) -> ( ( z e. { 1 } \/ z e. { 0 } ) -> ( v + z ) e. ( 0 ... k ) ) ) |
| 310 |
294 309
|
biimtrid |
|- ( v e. ( 0 ..^ k ) -> ( z e. ( { 1 } u. { 0 } ) -> ( v + z ) e. ( 0 ... k ) ) ) |
| 311 |
310
|
imp |
|- ( ( v e. ( 0 ..^ k ) /\ z e. ( { 1 } u. { 0 } ) ) -> ( v + z ) e. ( 0 ... k ) ) |
| 312 |
311
|
adantl |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ ( v e. ( 0 ..^ k ) /\ z e. ( { 1 } u. { 0 } ) ) ) -> ( v + z ) e. ( 0 ... k ) ) |
| 313 |
|
dffn3 |
|- ( ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) <-> ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ran ( 1st ` ( G ` k ) ) ) |
| 314 |
269 313
|
sylib |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ran ( 1st ` ( G ` k ) ) ) |
| 315 |
314 7
|
fssd |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ( 0 ..^ k ) ) |
| 316 |
315
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( 1st ` ( G ` k ) ) : ( 1 ... N ) --> ( 0 ..^ k ) ) |
| 317 |
|
fzfid |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( 1 ... N ) e. Fin ) |
| 318 |
312 316 174 317 317 274
|
off |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... k ) ) |
| 319 |
318
|
ffnd |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) Fn ( 1 ... N ) ) |
| 320 |
270 271
|
mp1i |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( 1 ... N ) X. { k } ) Fn ( 1 ... N ) ) |
| 321 |
269
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( 1st ` ( G ` k ) ) Fn ( 1 ... N ) ) |
| 322 |
174
|
ffnd |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 323 |
|
eqidd |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( 1st ` ( G ` k ) ) ` m ) = ( ( 1st ` ( G ` k ) ) ` m ) ) |
| 324 |
|
eqidd |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) = ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) |
| 325 |
321 322 317 317 274 323 324
|
ofval |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` m ) = ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) ) |
| 326 |
276
|
adantl |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1 ... N ) X. { k } ) ` m ) = k ) |
| 327 |
319 320 317 317 274 325 326
|
ofval |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) = ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) |
| 328 |
327
|
eleq1d |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR <-> ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR ) ) |
| 329 |
228 328
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR <-> ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR ) ) |
| 330 |
327
|
adantl3r |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) = ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) |
| 331 |
330
|
oveq2d |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) = ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) ) |
| 332 |
93
|
ad3antlr |
|- ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> C : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 333 |
332
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( C ` m ) e. ( 0 [,] 1 ) ) |
| 334 |
39 333
|
sselid |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( C ` m ) e. RR ) |
| 335 |
253
|
adantl3r |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR ) |
| 336 |
19
|
remetdval |
|- ( ( ( C ` m ) e. RR /\ ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR ) -> ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) = ( abs ` ( ( C ` m ) - ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) ) ) |
| 337 |
334 335 336
|
syl2anc |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) = ( abs ` ( ( C ` m ) - ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) ) ) |
| 338 |
251
|
recnd |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( 1st ` ( G ` k ) ) ` m ) e. CC ) |
| 339 |
176
|
recnd |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) e. CC ) |
| 340 |
209
|
ad3antlr |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> k e. CC ) |
| 341 |
210
|
ad3antlr |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> k =/= 0 ) |
| 342 |
338 339 340 341
|
divdird |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) = ( ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) + ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) |
| 343 |
107
|
recnd |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) e. CC ) |
| 344 |
343
|
adantlr |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) e. CC ) |
| 345 |
344 179
|
subnegd |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) - -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) = ( ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) + ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) |
| 346 |
342 345
|
eqtr4d |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) = ( ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) - -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) |
| 347 |
346
|
oveq2d |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) - ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) = ( ( C ` m ) - ( ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) - -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) ) |
| 348 |
347
|
adantl3r |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) - ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) = ( ( C ` m ) - ( ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) - -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) ) |
| 349 |
334
|
recnd |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( C ` m ) e. CC ) |
| 350 |
107
|
adantllr |
|- ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) e. RR ) |
| 351 |
350
|
adantlr |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) e. RR ) |
| 352 |
351
|
recnd |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) e. CC ) |
| 353 |
179
|
adantl3r |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) e. CC ) |
| 354 |
353
|
negcld |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) e. CC ) |
| 355 |
349 352 354
|
subsubd |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) - ( ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) - -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) = ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) |
| 356 |
348 355
|
eqtrd |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) - ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) = ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) |
| 357 |
356
|
fveq2d |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( abs ` ( ( C ` m ) - ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) ) ) = ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) ) |
| 358 |
331 337 357
|
3eqtrd |
|- ( ( ( ( ( ph /\ C e. I ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) = ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) ) |
| 359 |
358
|
adantl3r |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) = ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) ) |
| 360 |
83
|
2halvesd |
|- ( c e. RR+ -> ( ( c / 2 ) + ( c / 2 ) ) = c ) |
| 361 |
360
|
eqcomd |
|- ( c e. RR+ -> c = ( ( c / 2 ) + ( c / 2 ) ) ) |
| 362 |
361
|
ad4antlr |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> c = ( ( c / 2 ) + ( c / 2 ) ) ) |
| 363 |
359 362
|
breq12d |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) < c <-> ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) |
| 364 |
329 363
|
anbi12d |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. RR /\ ( ( C ` m ) ( ( abs o. - ) |` ( RR X. RR ) ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) ) < c ) <-> ( ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR /\ ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) ) |
| 365 |
293 364
|
bitrd |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) <-> ( ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR /\ ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) ) |
| 366 |
79 365
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) <-> ( ( ( ( ( 1st ` ( G ` k ) ) ` m ) + ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) ) / k ) e. RR /\ ( abs ` ( ( ( C ` m ) - ( ( ( 1st ` ( G ` k ) ) ` m ) / k ) ) + -u ( ( ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` m ) / k ) ) ) < ( ( c / 2 ) + ( c / 2 ) ) ) ) ) |
| 367 |
256 288 366
|
3imtr4d |
|- ( ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) /\ m e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) ) ) |
| 368 |
367
|
ralimdva |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) -> ( A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) -> A. m e. ( 1 ... N ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) ) ) |
| 369 |
|
simplr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> k e. NN ) |
| 370 |
|
elfznn0 |
|- ( v e. ( 0 ... k ) -> v e. NN0 ) |
| 371 |
370
|
nn0red |
|- ( v e. ( 0 ... k ) -> v e. RR ) |
| 372 |
|
nndivre |
|- ( ( v e. RR /\ k e. NN ) -> ( v / k ) e. RR ) |
| 373 |
371 372
|
sylan |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> ( v / k ) e. RR ) |
| 374 |
|
elfzle1 |
|- ( v e. ( 0 ... k ) -> 0 <_ v ) |
| 375 |
371 374
|
jca |
|- ( v e. ( 0 ... k ) -> ( v e. RR /\ 0 <_ v ) ) |
| 376 |
186
|
rpregt0d |
|- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
| 377 |
|
divge0 |
|- ( ( ( v e. RR /\ 0 <_ v ) /\ ( k e. RR /\ 0 < k ) ) -> 0 <_ ( v / k ) ) |
| 378 |
375 376 377
|
syl2an |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> 0 <_ ( v / k ) ) |
| 379 |
|
elfzle2 |
|- ( v e. ( 0 ... k ) -> v <_ k ) |
| 380 |
379
|
adantr |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> v <_ k ) |
| 381 |
371
|
adantr |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> v e. RR ) |
| 382 |
|
1red |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> 1 e. RR ) |
| 383 |
186
|
adantl |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> k e. RR+ ) |
| 384 |
381 382 383
|
ledivmuld |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> ( ( v / k ) <_ 1 <-> v <_ ( k x. 1 ) ) ) |
| 385 |
209
|
mulridd |
|- ( k e. NN -> ( k x. 1 ) = k ) |
| 386 |
385
|
breq2d |
|- ( k e. NN -> ( v <_ ( k x. 1 ) <-> v <_ k ) ) |
| 387 |
386
|
adantl |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> ( v <_ ( k x. 1 ) <-> v <_ k ) ) |
| 388 |
384 387
|
bitrd |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> ( ( v / k ) <_ 1 <-> v <_ k ) ) |
| 389 |
380 388
|
mpbird |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> ( v / k ) <_ 1 ) |
| 390 |
|
elicc01 |
|- ( ( v / k ) e. ( 0 [,] 1 ) <-> ( ( v / k ) e. RR /\ 0 <_ ( v / k ) /\ ( v / k ) <_ 1 ) ) |
| 391 |
373 378 389 390
|
syl3anbrc |
|- ( ( v e. ( 0 ... k ) /\ k e. NN ) -> ( v / k ) e. ( 0 [,] 1 ) ) |
| 392 |
391
|
ancoms |
|- ( ( k e. NN /\ v e. ( 0 ... k ) ) -> ( v / k ) e. ( 0 [,] 1 ) ) |
| 393 |
|
elsni |
|- ( z e. { k } -> z = k ) |
| 394 |
393
|
oveq2d |
|- ( z e. { k } -> ( v / z ) = ( v / k ) ) |
| 395 |
394
|
eleq1d |
|- ( z e. { k } -> ( ( v / z ) e. ( 0 [,] 1 ) <-> ( v / k ) e. ( 0 [,] 1 ) ) ) |
| 396 |
392 395
|
syl5ibrcom |
|- ( ( k e. NN /\ v e. ( 0 ... k ) ) -> ( z e. { k } -> ( v / z ) e. ( 0 [,] 1 ) ) ) |
| 397 |
396
|
impr |
|- ( ( k e. NN /\ ( v e. ( 0 ... k ) /\ z e. { k } ) ) -> ( v / z ) e. ( 0 [,] 1 ) ) |
| 398 |
369 397
|
sylan |
|- ( ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) /\ ( v e. ( 0 ... k ) /\ z e. { k } ) ) -> ( v / z ) e. ( 0 [,] 1 ) ) |
| 399 |
270
|
fconst |
|- ( ( 1 ... N ) X. { k } ) : ( 1 ... N ) --> { k } |
| 400 |
399
|
a1i |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( 1 ... N ) X. { k } ) : ( 1 ... N ) --> { k } ) |
| 401 |
398 318 400 317 317 274
|
off |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 402 |
401
|
ffnd |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) Fn ( 1 ... N ) ) |
| 403 |
124 402
|
sylan |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) Fn ( 1 ... N ) ) |
| 404 |
368 403
|
jctild |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) -> ( A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) ) ) ) |
| 405 |
2
|
eleq2i |
|- ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I <-> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) ) |
| 406 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
| 407 |
406 43
|
elmap |
|- ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) <-> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 408 |
405 407
|
bitri |
|- ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I <-> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 409 |
401 408
|
sylibr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 0 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I ) |
| 410 |
124 409
|
sylan |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I ) |
| 411 |
404 410
|
jctird |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) -> ( A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) ) /\ ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I ) ) ) |
| 412 |
|
elin |
|- ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) <-> ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) /\ ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I ) ) |
| 413 |
|
ovex |
|- ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. _V |
| 414 |
413
|
elixp |
|- ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) <-> ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) ) ) |
| 415 |
414
|
anbi1i |
|- ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) /\ ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I ) <-> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) ) /\ ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I ) ) |
| 416 |
412 415
|
bitri |
|- ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) <-> ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) Fn ( 1 ... N ) /\ A. m e. ( 1 ... N ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) ) /\ ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. I ) ) |
| 417 |
411 416
|
imbitrrdi |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) -> ( A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) ) ) |
| 418 |
|
ssel |
|- ( ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v -> ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v ) ) |
| 419 |
418
|
com12 |
|- ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) -> ( ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v ) ) |
| 420 |
417 419
|
syl6 |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) -> ( A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v ) ) ) |
| 421 |
420
|
impd |
|- ( ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) /\ j e. ( 0 ... N ) ) -> ( ( A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) /\ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) -> ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v ) ) |
| 422 |
421
|
ralrimdva |
|- ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) /\ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) -> A. j e. ( 0 ... N ) ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v ) ) |
| 423 |
422
|
expd |
|- ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v -> A. j e. ( 0 ... N ) ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v ) ) ) |
| 424 |
8
|
3exp2 |
|- ( ph -> ( k e. NN -> ( n e. ( 1 ... N ) -> ( r e. { <_ , `' <_ } -> E. j e. ( 0 ... N ) 0 r X ) ) ) ) |
| 425 |
424
|
imp43 |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ r e. { <_ , `' <_ } ) ) -> E. j e. ( 0 ... N ) 0 r X ) |
| 426 |
|
r19.29 |
|- ( ( A. j e. ( 0 ... N ) ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v /\ E. j e. ( 0 ... N ) 0 r X ) -> E. j e. ( 0 ... N ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v /\ 0 r X ) ) |
| 427 |
|
fveq2 |
|- ( z = ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) -> ( F ` z ) = ( F ` ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 428 |
427
|
fveq1d |
|- ( z = ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( F ` z ) ` n ) = ( ( F ` ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 429 |
428 5
|
eqtr4di |
|- ( z = ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( F ` z ) ` n ) = X ) |
| 430 |
429
|
breq2d |
|- ( z = ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) -> ( 0 r ( ( F ` z ) ` n ) <-> 0 r X ) ) |
| 431 |
430
|
rspcev |
|- ( ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v /\ 0 r X ) -> E. z e. v 0 r ( ( F ` z ) ` n ) ) |
| 432 |
431
|
rexlimivw |
|- ( E. j e. ( 0 ... N ) ( ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v /\ 0 r X ) -> E. z e. v 0 r ( ( F ` z ) ` n ) ) |
| 433 |
426 432
|
syl |
|- ( ( A. j e. ( 0 ... N ) ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v /\ E. j e. ( 0 ... N ) 0 r X ) -> E. z e. v 0 r ( ( F ` z ) ` n ) ) |
| 434 |
433
|
expcom |
|- ( E. j e. ( 0 ... N ) 0 r X -> ( A. j e. ( 0 ... N ) ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v -> E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 435 |
425 434
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ r e. { <_ , `' <_ } ) ) -> ( A. j e. ( 0 ... N ) ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v -> E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 436 |
435
|
ralrimdvva |
|- ( ( ph /\ k e. NN ) -> ( A. j e. ( 0 ... N ) ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 437 |
122 436
|
sylan2 |
|- ( ( ph /\ ( c e. RR+ /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) ) -> ( A. j e. ( 0 ... N ) ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 438 |
437
|
anassrs |
|- ( ( ( ph /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( A. j e. ( 0 ... N ) ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 439 |
438
|
adantllr |
|- ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( A. j e. ( 0 ... N ) ( ( ( 1st ` ( G ` k ) ) oF + ( ( ( ( 2nd ` ( G ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( G ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) e. v -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 440 |
423 439
|
syl6d |
|- ( ( ( ( ph /\ C e. I ) /\ c e. RR+ ) /\ k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
| 441 |
440
|
rexlimdva |
|- ( ( ( ph /\ C e. I ) /\ c e. RR+ ) -> ( E. k e. ( ZZ>= ` -u ( |_ ` -u ( 2 / c ) ) ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / -u ( |_ ` -u ( 2 / c ) ) ) ) -> ( ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
| 442 |
74 441
|
syld |
|- ( ( ( ph /\ C e. I ) /\ c e. RR+ ) -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> ( ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
| 443 |
442
|
com23 |
|- ( ( ( ph /\ C e. I ) /\ c e. RR+ ) -> ( ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
| 444 |
443
|
impr |
|- ( ( ( ph /\ C e. I ) /\ ( c e. RR+ /\ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) ) -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 445 |
51 444
|
sylanl2 |
|- ( ( ( ph /\ ( v e. ( R |`t I ) /\ C e. v ) ) /\ ( c e. RR+ /\ ( X_ m e. ( 1 ... N ) ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) c ) i^i I ) C_ v ) ) -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 446 |
35 445
|
rexlimddv |
|- ( ( ph /\ ( v e. ( R |`t I ) /\ C e. v ) ) -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 447 |
446
|
expr |
|- ( ( ph /\ v e. ( R |`t I ) ) -> ( C e. v -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
| 448 |
447
|
com23 |
|- ( ( ph /\ v e. ( R |`t I ) ) -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> ( C e. v -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
| 449 |
|
r19.21v |
|- ( A. n e. ( 1 ... N ) ( C e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) <-> ( C e. v -> A. n e. ( 1 ... N ) A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 450 |
448 449
|
imbitrrdi |
|- ( ( ph /\ v e. ( R |`t I ) ) -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> A. n e. ( 1 ... N ) ( C e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
| 451 |
450
|
ralrimdva |
|- ( ph -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> A. v e. ( R |`t I ) A. n e. ( 1 ... N ) ( C e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |
| 452 |
|
ralcom |
|- ( A. v e. ( R |`t I ) A. n e. ( 1 ... N ) ( C e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) <-> A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( C e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 453 |
451 452
|
imbitrdi |
|- ( ph -> ( A. i e. NN E. k e. ( ZZ>= ` i ) A. m e. ( 1 ... N ) ( ( ( 1st ` ( G ` k ) ) oF / ( ( 1 ... N ) X. { k } ) ) ` m ) e. ( ( C ` m ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ( 1 / i ) ) -> A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( C e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) ) |