| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
poimir.i |
⊢ 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) |
| 3 |
|
poimir.r |
⊢ 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) |
| 4 |
|
poimir.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
| 5 |
|
poimir.2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
| 6 |
|
poimir.3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 8 |
|
fvoveq1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 9 |
8
|
fveq1d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) |
| 10 |
9
|
breq2d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) ) |
| 11 |
|
fveq1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝑝 ‘ 𝑏 ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ) |
| 12 |
11
|
neeq1d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 𝑝 ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) |
| 13 |
10 12
|
anbi12d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
| 14 |
13
|
ralbidv |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
| 15 |
14
|
rabbidv |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) |
| 16 |
15
|
uneq2d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) ) |
| 17 |
16
|
supeq1d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 18 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 19 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 21 |
20
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ( 0 ... 𝑁 ) ) |
| 22 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ⊆ ( 1 ... 𝑁 ) |
| 23 |
|
fz1ssfz0 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
| 24 |
22 23
|
sstri |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ⊆ ( 0 ... 𝑁 ) |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ⊆ ( 0 ... 𝑁 ) ) |
| 26 |
21 25
|
unssd |
⊢ ( 𝜑 → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ( 0 ... 𝑁 ) ) |
| 27 |
|
ltso |
⊢ < Or ℝ |
| 28 |
|
snfi |
⊢ { 0 } ∈ Fin |
| 29 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
| 30 |
|
rabfi |
⊢ ( ( 1 ... 𝑁 ) ∈ Fin → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ∈ Fin ) |
| 31 |
29 30
|
ax-mp |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ∈ Fin |
| 32 |
|
unfi |
⊢ ( ( { 0 } ∈ Fin ∧ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ∈ Fin ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ) |
| 33 |
28 31 32
|
mp2an |
⊢ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin |
| 34 |
|
c0ex |
⊢ 0 ∈ V |
| 35 |
34
|
snid |
⊢ 0 ∈ { 0 } |
| 36 |
|
elun1 |
⊢ ( 0 ∈ { 0 } → 0 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
| 37 |
|
ne0i |
⊢ ( 0 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ) |
| 38 |
35 36 37
|
mp2b |
⊢ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ |
| 39 |
|
0red |
⊢ ( ( 𝜑 → 𝑁 ∈ ℕ ) → 0 ∈ ℝ ) |
| 40 |
39
|
snssd |
⊢ ( ( 𝜑 → 𝑁 ∈ ℕ ) → { 0 } ⊆ ℝ ) |
| 41 |
1 40
|
ax-mp |
⊢ { 0 } ⊆ ℝ |
| 42 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ ) |
| 43 |
42
|
ssriv |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
| 44 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 45 |
43 44
|
sstri |
⊢ ( 1 ... 𝑁 ) ⊆ ℝ |
| 46 |
22 45
|
sstri |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ⊆ ℝ |
| 47 |
41 46
|
unssi |
⊢ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ |
| 48 |
33 38 47
|
3pm3.2i |
⊢ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ) |
| 49 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
| 50 |
27 48 49
|
mp2an |
⊢ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) |
| 51 |
|
ssel |
⊢ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ( 0 ... 𝑁 ) → ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( 0 ... 𝑁 ) ) ) |
| 52 |
26 50 51
|
mpisyl |
⊢ ( 𝜑 → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( 0 ... 𝑁 ) ) |
| 53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( 0 ... 𝑁 ) ) |
| 54 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℕ ) |
| 55 |
|
nngt0 |
⊢ ( 𝑛 ∈ ℕ → 0 < 𝑛 ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → 0 < 𝑛 ) |
| 57 |
|
simpr |
⊢ ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ( 𝑝 ‘ 𝑏 ) ≠ 0 ) |
| 58 |
57
|
ralimi |
⊢ ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 ) |
| 59 |
|
elfznn |
⊢ ( 𝑠 ∈ ( 1 ... 𝑁 ) → 𝑠 ∈ ℕ ) |
| 60 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
| 61 |
|
nnre |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℝ ) |
| 62 |
|
lenlt |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( 𝑛 ≤ 𝑠 ↔ ¬ 𝑠 < 𝑛 ) ) |
| 63 |
60 61 62
|
syl2an |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( 𝑛 ≤ 𝑠 ↔ ¬ 𝑠 < 𝑛 ) ) |
| 64 |
|
elfz1b |
⊢ ( 𝑛 ∈ ( 1 ... 𝑠 ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ∧ 𝑛 ≤ 𝑠 ) ) |
| 65 |
64
|
biimpri |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ∧ 𝑛 ≤ 𝑠 ) → 𝑛 ∈ ( 1 ... 𝑠 ) ) |
| 66 |
65
|
3expia |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( 𝑛 ≤ 𝑠 → 𝑛 ∈ ( 1 ... 𝑠 ) ) ) |
| 67 |
63 66
|
sylbird |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( ¬ 𝑠 < 𝑛 → 𝑛 ∈ ( 1 ... 𝑠 ) ) ) |
| 68 |
|
fveq2 |
⊢ ( 𝑏 = 𝑛 → ( 𝑝 ‘ 𝑏 ) = ( 𝑝 ‘ 𝑛 ) ) |
| 69 |
68
|
eqeq1d |
⊢ ( 𝑏 = 𝑛 → ( ( 𝑝 ‘ 𝑏 ) = 0 ↔ ( 𝑝 ‘ 𝑛 ) = 0 ) ) |
| 70 |
69
|
rspcev |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑠 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ) |
| 71 |
70
|
expcom |
⊢ ( ( 𝑝 ‘ 𝑛 ) = 0 → ( 𝑛 ∈ ( 1 ... 𝑠 ) → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ) ) |
| 72 |
67 71
|
sylan9 |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → ( ¬ 𝑠 < 𝑛 → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ) ) |
| 73 |
72
|
an32s |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ∧ 𝑠 ∈ ℕ ) → ( ¬ 𝑠 < 𝑛 → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ) ) |
| 74 |
|
nne |
⊢ ( ¬ ( 𝑝 ‘ 𝑏 ) ≠ 0 ↔ ( 𝑝 ‘ 𝑏 ) = 0 ) |
| 75 |
74
|
rexbii |
⊢ ( ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ¬ ( 𝑝 ‘ 𝑏 ) ≠ 0 ↔ ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ) |
| 76 |
|
rexnal |
⊢ ( ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ¬ ( 𝑝 ‘ 𝑏 ) ≠ 0 ↔ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 ) |
| 77 |
75 76
|
bitr3i |
⊢ ( ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ↔ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 ) |
| 78 |
73 77
|
imbitrdi |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ∧ 𝑠 ∈ ℕ ) → ( ¬ 𝑠 < 𝑛 → ¬ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) |
| 79 |
78
|
con4d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 → 𝑠 < 𝑛 ) ) |
| 80 |
59 79
|
sylan2 |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ∧ 𝑠 ∈ ( 1 ... 𝑁 ) ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 → 𝑠 < 𝑛 ) ) |
| 81 |
58 80
|
syl5 |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ∧ 𝑠 ∈ ( 1 ... 𝑁 ) ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) |
| 82 |
81
|
ralrimiva |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) |
| 83 |
|
ralunb |
⊢ ( ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ↔ ( ∀ 𝑠 ∈ { 0 } 𝑠 < 𝑛 ∧ ∀ 𝑠 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } 𝑠 < 𝑛 ) ) |
| 84 |
|
breq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 < 𝑛 ↔ 0 < 𝑛 ) ) |
| 85 |
34 84
|
ralsn |
⊢ ( ∀ 𝑠 ∈ { 0 } 𝑠 < 𝑛 ↔ 0 < 𝑛 ) |
| 86 |
|
oveq2 |
⊢ ( 𝑎 = 𝑠 → ( 1 ... 𝑎 ) = ( 1 ... 𝑠 ) ) |
| 87 |
86
|
raleqdv |
⊢ ( 𝑎 = 𝑠 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
| 88 |
87
|
ralrab |
⊢ ( ∀ 𝑠 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } 𝑠 < 𝑛 ↔ ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) |
| 89 |
85 88
|
anbi12i |
⊢ ( ( ∀ 𝑠 ∈ { 0 } 𝑠 < 𝑛 ∧ ∀ 𝑠 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } 𝑠 < 𝑛 ) ↔ ( 0 < 𝑛 ∧ ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) ) |
| 90 |
83 89
|
bitri |
⊢ ( ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ↔ ( 0 < 𝑛 ∧ ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) ) |
| 91 |
56 82 90
|
sylanbrc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ) |
| 92 |
|
breq1 |
⊢ ( 𝑠 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑠 < 𝑛 ↔ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) ) |
| 93 |
92
|
rspcva |
⊢ ( ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∧ ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) |
| 94 |
50 91 93
|
sylancr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) |
| 95 |
54 94
|
sylan |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) |
| 96 |
95
|
3adant2 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) |
| 97 |
96
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) |
| 98 |
42
|
zred |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℝ ) |
| 99 |
98
|
3ad2ant1 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) → 𝑛 ∈ ℝ ) |
| 100 |
99
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → 𝑛 ∈ ℝ ) |
| 101 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
| 102 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → 𝜑 ) |
| 103 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → 𝑘 ∈ ℕ ) |
| 104 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖 ∈ ℤ ) |
| 105 |
104
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖 ∈ ℝ ) |
| 106 |
|
nndivre |
⊢ ( ( 𝑖 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ℝ ) |
| 107 |
105 106
|
sylan |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ℝ ) |
| 108 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → 0 ≤ 𝑖 ) |
| 109 |
105 108
|
jca |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → ( 𝑖 ∈ ℝ ∧ 0 ≤ 𝑖 ) ) |
| 110 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 111 |
110
|
rpregt0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 112 |
|
divge0 |
⊢ ( ( ( 𝑖 ∈ ℝ ∧ 0 ≤ 𝑖 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → 0 ≤ ( 𝑖 / 𝑘 ) ) |
| 113 |
109 111 112
|
syl2an |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝑖 / 𝑘 ) ) |
| 114 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖 ≤ 𝑘 ) |
| 115 |
114
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑖 ≤ 𝑘 ) |
| 116 |
105
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑖 ∈ ℝ ) |
| 117 |
|
1red |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ ) |
| 118 |
110
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ ) |
| 119 |
116 117 118
|
ledivmuld |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑖 / 𝑘 ) ≤ 1 ↔ 𝑖 ≤ ( 𝑘 · 1 ) ) ) |
| 120 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 121 |
120
|
mulridd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · 1 ) = 𝑘 ) |
| 122 |
121
|
breq2d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ≤ ( 𝑘 · 1 ) ↔ 𝑖 ≤ 𝑘 ) ) |
| 123 |
122
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 ≤ ( 𝑘 · 1 ) ↔ 𝑖 ≤ 𝑘 ) ) |
| 124 |
119 123
|
bitrd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑖 / 𝑘 ) ≤ 1 ↔ 𝑖 ≤ 𝑘 ) ) |
| 125 |
115 124
|
mpbird |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ≤ 1 ) |
| 126 |
|
elicc01 |
⊢ ( ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑖 / 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝑖 / 𝑘 ) ∧ ( 𝑖 / 𝑘 ) ≤ 1 ) ) |
| 127 |
107 113 125 126
|
syl3anbrc |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ) |
| 128 |
127
|
ancoms |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑘 ) ) → ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ) |
| 129 |
|
elsni |
⊢ ( 𝑗 ∈ { 𝑘 } → 𝑗 = 𝑘 ) |
| 130 |
129
|
oveq2d |
⊢ ( 𝑗 ∈ { 𝑘 } → ( 𝑖 / 𝑗 ) = ( 𝑖 / 𝑘 ) ) |
| 131 |
130
|
eleq1d |
⊢ ( 𝑗 ∈ { 𝑘 } → ( ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ↔ ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ) ) |
| 132 |
128 131
|
syl5ibrcom |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑘 ) ) → ( 𝑗 ∈ { 𝑘 } → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ) ) |
| 133 |
132
|
impr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑗 ∈ { 𝑘 } ) ) → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ) |
| 134 |
103 133
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) ∧ ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑗 ∈ { 𝑘 } ) ) → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ) |
| 135 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) |
| 136 |
|
vex |
⊢ 𝑘 ∈ V |
| 137 |
136
|
fconst |
⊢ ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } |
| 138 |
137
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } ) |
| 139 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 140 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
| 141 |
134 135 138 139 139 140
|
off |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 142 |
2
|
eleq2i |
⊢ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ) |
| 143 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
| 144 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
| 145 |
143 144
|
elmap |
⊢ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ↔ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 146 |
142 145
|
bitri |
⊢ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 147 |
141 146
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) |
| 148 |
147
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) |
| 149 |
|
3anass |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) ) |
| 150 |
|
ancom |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) ↔ ( ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) |
| 151 |
149 150
|
bitri |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ↔ ( ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) |
| 152 |
|
ffn |
⊢ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) → 𝑝 Fn ( 1 ... 𝑁 ) ) |
| 153 |
152
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → 𝑝 Fn ( 1 ... 𝑁 ) ) |
| 154 |
|
fnconstg |
⊢ ( 𝑘 ∈ V → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) ) |
| 155 |
136 154
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) ) |
| 156 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 157 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑝 ‘ 𝑛 ) = 𝑘 ) |
| 158 |
136
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑛 ) = 𝑘 ) |
| 159 |
158
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑛 ) = 𝑘 ) |
| 160 |
153 155 156 156 140 157 159
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( 𝑘 / 𝑘 ) ) |
| 161 |
160
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( 𝑘 / 𝑘 ) ) |
| 162 |
151 161
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( 𝑘 / 𝑘 ) ) |
| 163 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
| 164 |
120 163
|
dividd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 / 𝑘 ) = 1 ) |
| 165 |
164
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( 𝑘 / 𝑘 ) = 1 ) |
| 166 |
162 165
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) |
| 167 |
|
ovex |
⊢ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ V |
| 168 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝑧 ∈ 𝐼 ↔ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) ) |
| 169 |
|
fveq1 |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝑧 ‘ 𝑛 ) = ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) ) |
| 170 |
169
|
eqeq1d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝑧 ‘ 𝑛 ) = 1 ↔ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) |
| 171 |
168 170
|
3anbi23d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) ) |
| 172 |
171
|
anbi2d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) ↔ ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) ) ) |
| 173 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 174 |
173
|
fveq1d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
| 175 |
174
|
breq2d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
| 176 |
172 175
|
imbi12d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ↔ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) ) |
| 177 |
167 176 6
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
| 178 |
102 101 148 166 177
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
| 179 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 180 |
|
simp3 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) → ( 𝑝 ‘ 𝑛 ) = 𝑘 ) |
| 181 |
|
neeq1 |
⊢ ( ( 𝑝 ‘ 𝑛 ) = 𝑘 → ( ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ 𝑘 ≠ 0 ) ) |
| 182 |
163 181
|
syl5ibrcom |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑝 ‘ 𝑛 ) = 𝑘 → ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
| 183 |
182
|
imp |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) → ( 𝑝 ‘ 𝑛 ) ≠ 0 ) |
| 184 |
179 180 183
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( 𝑝 ‘ 𝑛 ) ≠ 0 ) |
| 185 |
|
vex |
⊢ 𝑛 ∈ V |
| 186 |
|
fveq2 |
⊢ ( 𝑏 = 𝑛 → ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
| 187 |
186
|
breq2d |
⊢ ( 𝑏 = 𝑛 → ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
| 188 |
68
|
neeq1d |
⊢ ( 𝑏 = 𝑛 → ( ( 𝑝 ‘ 𝑏 ) ≠ 0 ↔ ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
| 189 |
187 188
|
anbi12d |
⊢ ( 𝑏 = 𝑛 → ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) ) |
| 190 |
185 189
|
ralsn |
⊢ ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
| 191 |
178 184 190
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) |
| 192 |
42
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℂ ) |
| 193 |
|
1cnd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 1 ∈ ℂ ) |
| 194 |
192 193
|
subeq0ad |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) = 0 ↔ 𝑛 = 1 ) ) |
| 195 |
194
|
biimpcd |
⊢ ( ( 𝑛 − 1 ) = 0 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 = 1 ) ) |
| 196 |
|
1z |
⊢ 1 ∈ ℤ |
| 197 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
| 198 |
196 197
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
| 199 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) |
| 200 |
|
sneq |
⊢ ( 𝑛 = 1 → { 𝑛 } = { 1 } ) |
| 201 |
198 199 200
|
3eqtr4a |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = { 𝑛 } ) |
| 202 |
201
|
raleqdv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
| 203 |
202
|
biimprd |
⊢ ( 𝑛 = 1 → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
| 204 |
195 203
|
syl6 |
⊢ ( ( 𝑛 − 1 ) = 0 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
| 205 |
|
ralun |
⊢ ( ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ∀ 𝑏 ∈ ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) |
| 206 |
|
npcan1 |
⊢ ( 𝑛 ∈ ℂ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
| 207 |
192 206
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
| 208 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 209 |
207 208
|
eqeltrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 210 |
|
peano2zm |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 − 1 ) ∈ ℤ ) |
| 211 |
|
uzid |
⊢ ( ( 𝑛 − 1 ) ∈ ℤ → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
| 212 |
|
peano2uz |
⊢ ( ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
| 213 |
42 210 211 212
|
4syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
| 214 |
207 213
|
eqeltrrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
| 215 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) ) |
| 216 |
209 214 215
|
syl2anc |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) ) |
| 217 |
207
|
oveq1d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) = ( 𝑛 ... 𝑛 ) ) |
| 218 |
|
fzsn |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ... 𝑛 ) = { 𝑛 } ) |
| 219 |
42 218
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 ... 𝑛 ) = { 𝑛 } ) |
| 220 |
217 219
|
eqtrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) = { 𝑛 } ) |
| 221 |
220
|
uneq2d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ) |
| 222 |
216 221
|
eqtrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ) |
| 223 |
222
|
raleqdv |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
| 224 |
205 223
|
imbitrrid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
| 225 |
224
|
expd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
| 226 |
225
|
com12 |
⊢ ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
| 227 |
226
|
adantl |
⊢ ( ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
| 228 |
204 227
|
jaoi |
⊢ ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
| 229 |
228
|
imdistand |
⊢ ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
| 230 |
229
|
com12 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
| 231 |
|
elun |
⊢ ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) ∈ { 0 } ∨ ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
| 232 |
|
ovex |
⊢ ( 𝑛 − 1 ) ∈ V |
| 233 |
232
|
elsn |
⊢ ( ( 𝑛 − 1 ) ∈ { 0 } ↔ ( 𝑛 − 1 ) = 0 ) |
| 234 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑛 − 1 ) → ( 1 ... 𝑎 ) = ( 1 ... ( 𝑛 − 1 ) ) ) |
| 235 |
234
|
raleqdv |
⊢ ( 𝑎 = ( 𝑛 − 1 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
| 236 |
235
|
elrab |
⊢ ( ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ↔ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
| 237 |
233 236
|
orbi12i |
⊢ ( ( ( 𝑛 − 1 ) ∈ { 0 } ∨ ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
| 238 |
231 237
|
bitri |
⊢ ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
| 239 |
|
oveq2 |
⊢ ( 𝑎 = 𝑛 → ( 1 ... 𝑎 ) = ( 1 ... 𝑛 ) ) |
| 240 |
239
|
raleqdv |
⊢ ( 𝑎 = 𝑛 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
| 241 |
240
|
elrab |
⊢ ( 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
| 242 |
230 238 241
|
3imtr4g |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
| 243 |
|
elun2 |
⊢ ( 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
| 244 |
242 243
|
syl6 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) ) |
| 245 |
101 191 244
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) ) |
| 246 |
|
fimaxre2 |
⊢ ( ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ) → ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑗 ≤ 𝑖 ) |
| 247 |
47 33 246
|
mp2an |
⊢ ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑗 ≤ 𝑖 |
| 248 |
47 38 247
|
3pm3.2i |
⊢ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑗 ≤ 𝑖 ) |
| 249 |
248
|
suprubii |
⊢ ( 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 250 |
245 249
|
syl6 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 251 |
|
ltm1 |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) < 𝑛 ) |
| 252 |
|
peano2rem |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) ∈ ℝ ) |
| 253 |
47 50
|
sselii |
⊢ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ℝ |
| 254 |
|
ltletr |
⊢ ( ( ( 𝑛 − 1 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ℝ ) → ( ( ( 𝑛 − 1 ) < 𝑛 ∧ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 255 |
253 254
|
mp3an3 |
⊢ ( ( ( 𝑛 − 1 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( ( 𝑛 − 1 ) < 𝑛 ∧ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 256 |
252 255
|
mpancom |
⊢ ( 𝑛 ∈ ℝ → ( ( ( 𝑛 − 1 ) < 𝑛 ∧ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 257 |
251 256
|
mpand |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 258 |
100 250 257
|
sylsyld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 259 |
253
|
ltnri |
⊢ ¬ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) |
| 260 |
|
breq1 |
⊢ ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 261 |
259 260
|
mtbii |
⊢ ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ¬ ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 262 |
261
|
necon2ai |
⊢ ( ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) ) |
| 263 |
258 262
|
syl6 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) ) ) |
| 264 |
|
eleq1 |
⊢ ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) ) |
| 265 |
50 264
|
mpbii |
⊢ ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
| 266 |
265
|
necon3bi |
⊢ ( ¬ ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) ) |
| 267 |
263 266
|
pm2.61d1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) ) |
| 268 |
7 17 53 97 267 179
|
poimirlem28 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 269 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 270 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 𝑘 ) ⊆ ℕ0 |
| 271 |
|
mapss |
⊢ ( ( ℕ0 ∈ V ∧ ( 0 ..^ 𝑘 ) ⊆ ℕ0 ) → ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
| 272 |
269 270 271
|
mp2an |
⊢ ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
| 273 |
|
xpss1 |
⊢ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
| 274 |
272 273
|
ax-mp |
⊢ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
| 275 |
274
|
sseli |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
| 276 |
|
xp1st |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ 𝑠 ) ∈ ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ) |
| 277 |
|
elmapi |
⊢ ( ( 1st ‘ 𝑠 ) ∈ ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ 𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) ) |
| 278 |
|
frn |
⊢ ( ( 1st ‘ 𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) → ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) |
| 279 |
276 277 278
|
3syl |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) |
| 280 |
275 279
|
jca |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) ) |
| 281 |
280
|
anim1i |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( ( 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 282 |
|
anass |
⊢ ( ( ( 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ↔ ( 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
| 283 |
281 282
|
sylib |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
| 284 |
283
|
reximi2 |
⊢ ( ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ∃ 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 285 |
268 284
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∃ 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 286 |
285
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ∃ 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 287 |
|
nnex |
⊢ ℕ ∈ V |
| 288 |
144 269
|
ixpconst |
⊢ X 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 = ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
| 289 |
|
omelon |
⊢ ω ∈ On |
| 290 |
|
nn0ennn |
⊢ ℕ0 ≈ ℕ |
| 291 |
|
nnenom |
⊢ ℕ ≈ ω |
| 292 |
290 291
|
entr2i |
⊢ ω ≈ ℕ0 |
| 293 |
|
isnumi |
⊢ ( ( ω ∈ On ∧ ω ≈ ℕ0 ) → ℕ0 ∈ dom card ) |
| 294 |
289 292 293
|
mp2an |
⊢ ℕ0 ∈ dom card |
| 295 |
294
|
rgenw |
⊢ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card |
| 296 |
|
finixpnum |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card ) → X 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card ) |
| 297 |
29 295 296
|
mp2an |
⊢ X 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card |
| 298 |
288 297
|
eqeltrri |
⊢ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∈ dom card |
| 299 |
144 144
|
mapval |
⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } |
| 300 |
|
mapfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ) |
| 301 |
29 29 300
|
mp2an |
⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin |
| 302 |
299 301
|
eqeltrri |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } ∈ Fin |
| 303 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
| 304 |
303
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } |
| 305 |
|
ssfi |
⊢ ( ( { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } ) → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin ) |
| 306 |
302 304 305
|
mp2an |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin |
| 307 |
|
finnum |
⊢ ( { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ dom card ) |
| 308 |
306 307
|
ax-mp |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ dom card |
| 309 |
|
xpnum |
⊢ ( ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∈ dom card ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ dom card ) → ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ dom card ) |
| 310 |
298 308 309
|
mp2an |
⊢ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ dom card |
| 311 |
|
ssrab2 |
⊢ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
| 312 |
311
|
rgenw |
⊢ ∀ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
| 313 |
|
ss2iun |
⊢ ( ∀ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ∪ 𝑘 ∈ ℕ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
| 314 |
312 313
|
ax-mp |
⊢ ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ∪ 𝑘 ∈ ℕ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
| 315 |
|
1nn |
⊢ 1 ∈ ℕ |
| 316 |
|
ne0i |
⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) |
| 317 |
|
iunconst |
⊢ ( ℕ ≠ ∅ → ∪ 𝑘 ∈ ℕ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) = ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
| 318 |
315 316 317
|
mp2b |
⊢ ∪ 𝑘 ∈ ℕ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) = ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
| 319 |
314 318
|
sseqtri |
⊢ ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
| 320 |
|
ssnum |
⊢ ( ( ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ dom card ∧ ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ∈ dom card ) |
| 321 |
310 319 320
|
mp2an |
⊢ ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ∈ dom card |
| 322 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( 1st ‘ 𝑠 ) = ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
| 323 |
322
|
rneqd |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ran ( 1st ‘ 𝑠 ) = ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
| 324 |
323
|
sseq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ↔ ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) ) |
| 325 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( 2nd ‘ 𝑠 ) = ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
| 326 |
325
|
imaeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ) |
| 327 |
326
|
xpeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
| 328 |
325
|
imaeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 329 |
328
|
xpeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 330 |
327 329
|
uneq12d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 331 |
322 330
|
oveq12d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 332 |
331
|
fvoveq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
| 333 |
332
|
fveq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) |
| 334 |
333
|
breq2d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) ) |
| 335 |
331
|
fveq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ) |
| 336 |
335
|
neeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) |
| 337 |
334 336
|
anbi12d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
| 338 |
337
|
ralbidv |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
| 339 |
338
|
rabbidv |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) |
| 340 |
339
|
uneq2d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) ) |
| 341 |
340
|
supeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 342 |
341
|
eqeq2d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 343 |
342
|
rexbidv |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 344 |
343
|
ralbidv |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 345 |
324 344
|
anbi12d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ↔ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
| 346 |
345
|
ac6num |
⊢ ( ( ℕ ∈ V ∧ ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ∈ dom card ∧ ∀ 𝑘 ∈ ℕ ∃ 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
| 347 |
287 321 346
|
mp3an12 |
⊢ ( ∀ 𝑘 ∈ ℕ ∃ 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
| 348 |
286 347
|
syl |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
| 349 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝑁 ∈ ℕ ) |
| 350 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
| 351 |
|
eqid |
⊢ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑛 ) |
| 352 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
| 353 |
|
simpl |
⊢ ( ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) |
| 354 |
353
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∀ 𝑘 ∈ ℕ ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) |
| 355 |
354
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∀ 𝑘 ∈ ℕ ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) |
| 356 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑝 → ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) = ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ) |
| 357 |
356
|
rneqd |
⊢ ( 𝑘 = 𝑝 → ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) = ran ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ) |
| 358 |
|
oveq2 |
⊢ ( 𝑘 = 𝑝 → ( 0 ..^ 𝑘 ) = ( 0 ..^ 𝑝 ) ) |
| 359 |
357 358
|
sseq12d |
⊢ ( 𝑘 = 𝑝 → ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ↔ ran ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ⊆ ( 0 ..^ 𝑝 ) ) ) |
| 360 |
359
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℕ ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ 𝑝 ∈ ℕ ) → ran ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ⊆ ( 0 ..^ 𝑝 ) ) |
| 361 |
355 360
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ 𝑝 ∈ ℕ ) → ran ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ⊆ ( 0 ..^ 𝑝 ) ) |
| 362 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝜑 ) |
| 363 |
362 5
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
| 364 |
|
eqid |
⊢ ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 365 |
|
simpr |
⊢ ( ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 366 |
365
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∀ 𝑘 ∈ ℕ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 367 |
366
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∀ 𝑘 ∈ ℕ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 368 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑝 → ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) ) |
| 369 |
368
|
imaeq1d |
⊢ ( 𝑘 = 𝑝 → ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) ) |
| 370 |
369
|
xpeq1d |
⊢ ( 𝑘 = 𝑝 → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
| 371 |
368
|
imaeq1d |
⊢ ( 𝑘 = 𝑝 → ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 372 |
371
|
xpeq1d |
⊢ ( 𝑘 = 𝑝 → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 373 |
370 372
|
uneq12d |
⊢ ( 𝑘 = 𝑝 → ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 374 |
356 373
|
oveq12d |
⊢ ( 𝑘 = 𝑝 → ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 375 |
|
sneq |
⊢ ( 𝑘 = 𝑝 → { 𝑘 } = { 𝑝 } ) |
| 376 |
375
|
xpeq2d |
⊢ ( 𝑘 = 𝑝 → ( ( 1 ... 𝑁 ) × { 𝑘 } ) = ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) |
| 377 |
374 376
|
oveq12d |
⊢ ( 𝑘 = 𝑝 → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) |
| 378 |
377
|
fveq2d |
⊢ ( 𝑘 = 𝑝 → ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ) |
| 379 |
378
|
fveq1d |
⊢ ( 𝑘 = 𝑝 → ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ) |
| 380 |
379
|
breq2d |
⊢ ( 𝑘 = 𝑝 → ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ) ) |
| 381 |
374
|
fveq1d |
⊢ ( 𝑘 = 𝑝 → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ) |
| 382 |
381
|
neeq1d |
⊢ ( 𝑘 = 𝑝 → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) |
| 383 |
380 382
|
anbi12d |
⊢ ( 𝑘 = 𝑝 → ( ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
| 384 |
383
|
ralbidv |
⊢ ( 𝑘 = 𝑝 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
| 385 |
384
|
rabbidv |
⊢ ( 𝑘 = 𝑝 → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) |
| 386 |
385
|
uneq2d |
⊢ ( 𝑘 = 𝑝 → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) ) |
| 387 |
386
|
supeq1d |
⊢ ( 𝑘 = 𝑝 → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 388 |
387
|
eqeq2d |
⊢ ( 𝑘 = 𝑝 → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 389 |
388
|
rexbidv |
⊢ ( 𝑘 = 𝑝 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 390 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑞 → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 391 |
390
|
rexbidv |
⊢ ( 𝑖 = 𝑞 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 392 |
|
oveq2 |
⊢ ( 𝑗 = 𝑚 → ( 1 ... 𝑗 ) = ( 1 ... 𝑚 ) ) |
| 393 |
392
|
imaeq2d |
⊢ ( 𝑗 = 𝑚 → ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) ) |
| 394 |
393
|
xpeq1d |
⊢ ( 𝑗 = 𝑚 → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ) |
| 395 |
|
oveq1 |
⊢ ( 𝑗 = 𝑚 → ( 𝑗 + 1 ) = ( 𝑚 + 1 ) ) |
| 396 |
395
|
oveq1d |
⊢ ( 𝑗 = 𝑚 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑚 + 1 ) ... 𝑁 ) ) |
| 397 |
396
|
imaeq2d |
⊢ ( 𝑗 = 𝑚 → ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) ) |
| 398 |
397
|
xpeq1d |
⊢ ( 𝑗 = 𝑚 → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 399 |
394 398
|
uneq12d |
⊢ ( 𝑗 = 𝑚 → ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 400 |
399
|
oveq2d |
⊢ ( 𝑗 = 𝑚 → ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 401 |
400
|
fvoveq1d |
⊢ ( 𝑗 = 𝑚 → ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ) |
| 402 |
401
|
fveq1d |
⊢ ( 𝑗 = 𝑚 → ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ) |
| 403 |
402
|
breq2d |
⊢ ( 𝑗 = 𝑚 → ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ) ) |
| 404 |
400
|
fveq1d |
⊢ ( 𝑗 = 𝑚 → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ) |
| 405 |
404
|
neeq1d |
⊢ ( 𝑗 = 𝑚 → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) |
| 406 |
403 405
|
anbi12d |
⊢ ( 𝑗 = 𝑚 → ( ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
| 407 |
406
|
ralbidv |
⊢ ( 𝑗 = 𝑚 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
| 408 |
407
|
rabbidv |
⊢ ( 𝑗 = 𝑚 → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) |
| 409 |
408
|
uneq2d |
⊢ ( 𝑗 = 𝑚 → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) ) |
| 410 |
409
|
supeq1d |
⊢ ( 𝑗 = 𝑚 → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 411 |
410
|
eqeq2d |
⊢ ( 𝑗 = 𝑚 → ( 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 412 |
411
|
cbvrexvw |
⊢ ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 413 |
391 412
|
bitrdi |
⊢ ( 𝑖 = 𝑞 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 414 |
389 413
|
rspc2v |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑘 ∈ ℕ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
| 415 |
367 414
|
mpan9 |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
| 416 |
349 2 3 350 363 364 352 361 415
|
poimirlem31 |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ◡ ≤ } ) ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑛 ) ) |
| 417 |
349 2 3 350 351 352 361 416
|
poimirlem30 |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∃ 𝑐 ∈ 𝐼 ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
| 418 |
417
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) → ∃ 𝑐 ∈ 𝐼 ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
| 419 |
348 418
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝐼 ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |