Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimir.i |
⊢ 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) |
3 |
|
poimir.r |
⊢ 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) |
4 |
|
poimir.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
5 |
|
poimir.2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
6 |
|
poimir.3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
8 |
|
fvoveq1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) |
10 |
9
|
breq2d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) ) |
11 |
|
fveq1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝑝 ‘ 𝑏 ) = ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ) |
12 |
11
|
neeq1d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 𝑝 ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) |
13 |
10 12
|
anbi12d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
15 |
14
|
rabbidv |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) |
16 |
15
|
uneq2d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) ) |
17 |
16
|
supeq1d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
18 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
19 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
21 |
20
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ( 0 ... 𝑁 ) ) |
22 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ⊆ ( 1 ... 𝑁 ) |
23 |
|
fz1ssfz0 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
24 |
22 23
|
sstri |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ⊆ ( 0 ... 𝑁 ) |
25 |
24
|
a1i |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ⊆ ( 0 ... 𝑁 ) ) |
26 |
21 25
|
unssd |
⊢ ( 𝜑 → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ( 0 ... 𝑁 ) ) |
27 |
|
ltso |
⊢ < Or ℝ |
28 |
|
snfi |
⊢ { 0 } ∈ Fin |
29 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
30 |
|
rabfi |
⊢ ( ( 1 ... 𝑁 ) ∈ Fin → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ∈ Fin ) |
31 |
29 30
|
ax-mp |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ∈ Fin |
32 |
|
unfi |
⊢ ( ( { 0 } ∈ Fin ∧ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ∈ Fin ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ) |
33 |
28 31 32
|
mp2an |
⊢ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin |
34 |
|
c0ex |
⊢ 0 ∈ V |
35 |
34
|
snid |
⊢ 0 ∈ { 0 } |
36 |
|
elun1 |
⊢ ( 0 ∈ { 0 } → 0 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
37 |
|
ne0i |
⊢ ( 0 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ) |
38 |
35 36 37
|
mp2b |
⊢ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ |
39 |
|
0red |
⊢ ( ( 𝜑 → 𝑁 ∈ ℕ ) → 0 ∈ ℝ ) |
40 |
39
|
snssd |
⊢ ( ( 𝜑 → 𝑁 ∈ ℕ ) → { 0 } ⊆ ℝ ) |
41 |
1 40
|
ax-mp |
⊢ { 0 } ⊆ ℝ |
42 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ ) |
43 |
42
|
ssriv |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
44 |
|
zssre |
⊢ ℤ ⊆ ℝ |
45 |
43 44
|
sstri |
⊢ ( 1 ... 𝑁 ) ⊆ ℝ |
46 |
22 45
|
sstri |
⊢ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ⊆ ℝ |
47 |
41 46
|
unssi |
⊢ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ |
48 |
33 38 47
|
3pm3.2i |
⊢ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ) |
49 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
50 |
27 48 49
|
mp2an |
⊢ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) |
51 |
|
ssel |
⊢ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ( 0 ... 𝑁 ) → ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( 0 ... 𝑁 ) ) ) |
52 |
26 50 51
|
mpisyl |
⊢ ( 𝜑 → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( 0 ... 𝑁 ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( 0 ... 𝑁 ) ) |
54 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℕ ) |
55 |
|
nngt0 |
⊢ ( 𝑛 ∈ ℕ → 0 < 𝑛 ) |
56 |
55
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → 0 < 𝑛 ) |
57 |
|
simpr |
⊢ ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ( 𝑝 ‘ 𝑏 ) ≠ 0 ) |
58 |
57
|
ralimi |
⊢ ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 ) |
59 |
|
elfznn |
⊢ ( 𝑠 ∈ ( 1 ... 𝑁 ) → 𝑠 ∈ ℕ ) |
60 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
61 |
|
nnre |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℝ ) |
62 |
|
lenlt |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( 𝑛 ≤ 𝑠 ↔ ¬ 𝑠 < 𝑛 ) ) |
63 |
60 61 62
|
syl2an |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( 𝑛 ≤ 𝑠 ↔ ¬ 𝑠 < 𝑛 ) ) |
64 |
|
elfz1b |
⊢ ( 𝑛 ∈ ( 1 ... 𝑠 ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ∧ 𝑛 ≤ 𝑠 ) ) |
65 |
64
|
biimpri |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ∧ 𝑛 ≤ 𝑠 ) → 𝑛 ∈ ( 1 ... 𝑠 ) ) |
66 |
65
|
3expia |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( 𝑛 ≤ 𝑠 → 𝑛 ∈ ( 1 ... 𝑠 ) ) ) |
67 |
63 66
|
sylbird |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( ¬ 𝑠 < 𝑛 → 𝑛 ∈ ( 1 ... 𝑠 ) ) ) |
68 |
|
fveq2 |
⊢ ( 𝑏 = 𝑛 → ( 𝑝 ‘ 𝑏 ) = ( 𝑝 ‘ 𝑛 ) ) |
69 |
68
|
eqeq1d |
⊢ ( 𝑏 = 𝑛 → ( ( 𝑝 ‘ 𝑏 ) = 0 ↔ ( 𝑝 ‘ 𝑛 ) = 0 ) ) |
70 |
69
|
rspcev |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑠 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ) |
71 |
70
|
expcom |
⊢ ( ( 𝑝 ‘ 𝑛 ) = 0 → ( 𝑛 ∈ ( 1 ... 𝑠 ) → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ) ) |
72 |
67 71
|
sylan9 |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → ( ¬ 𝑠 < 𝑛 → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ) ) |
73 |
72
|
an32s |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ∧ 𝑠 ∈ ℕ ) → ( ¬ 𝑠 < 𝑛 → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ) ) |
74 |
|
nne |
⊢ ( ¬ ( 𝑝 ‘ 𝑏 ) ≠ 0 ↔ ( 𝑝 ‘ 𝑏 ) = 0 ) |
75 |
74
|
rexbii |
⊢ ( ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ¬ ( 𝑝 ‘ 𝑏 ) ≠ 0 ↔ ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ) |
76 |
|
rexnal |
⊢ ( ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ¬ ( 𝑝 ‘ 𝑏 ) ≠ 0 ↔ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 ) |
77 |
75 76
|
bitr3i |
⊢ ( ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) = 0 ↔ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 ) |
78 |
73 77
|
syl6ib |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ∧ 𝑠 ∈ ℕ ) → ( ¬ 𝑠 < 𝑛 → ¬ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) |
79 |
78
|
con4d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 → 𝑠 < 𝑛 ) ) |
80 |
59 79
|
sylan2 |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ∧ 𝑠 ∈ ( 1 ... 𝑁 ) ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝 ‘ 𝑏 ) ≠ 0 → 𝑠 < 𝑛 ) ) |
81 |
58 80
|
syl5 |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ∧ 𝑠 ∈ ( 1 ... 𝑁 ) ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) |
82 |
81
|
ralrimiva |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) |
83 |
|
ralunb |
⊢ ( ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ↔ ( ∀ 𝑠 ∈ { 0 } 𝑠 < 𝑛 ∧ ∀ 𝑠 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } 𝑠 < 𝑛 ) ) |
84 |
|
breq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 < 𝑛 ↔ 0 < 𝑛 ) ) |
85 |
34 84
|
ralsn |
⊢ ( ∀ 𝑠 ∈ { 0 } 𝑠 < 𝑛 ↔ 0 < 𝑛 ) |
86 |
|
oveq2 |
⊢ ( 𝑎 = 𝑠 → ( 1 ... 𝑎 ) = ( 1 ... 𝑠 ) ) |
87 |
86
|
raleqdv |
⊢ ( 𝑎 = 𝑠 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
88 |
87
|
ralrab |
⊢ ( ∀ 𝑠 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } 𝑠 < 𝑛 ↔ ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) |
89 |
85 88
|
anbi12i |
⊢ ( ( ∀ 𝑠 ∈ { 0 } 𝑠 < 𝑛 ∧ ∀ 𝑠 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } 𝑠 < 𝑛 ) ↔ ( 0 < 𝑛 ∧ ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) ) |
90 |
83 89
|
bitri |
⊢ ( ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ↔ ( 0 < 𝑛 ∧ ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) ) |
91 |
56 82 90
|
sylanbrc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ) |
92 |
|
breq1 |
⊢ ( 𝑠 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑠 < 𝑛 ↔ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) ) |
93 |
92
|
rspcva |
⊢ ( ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∧ ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) |
94 |
50 91 93
|
sylancr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) |
95 |
54 94
|
sylan |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) |
96 |
95
|
3adant2 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) |
97 |
96
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 0 ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) |
98 |
42
|
zred |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℝ ) |
99 |
98
|
3ad2ant1 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) → 𝑛 ∈ ℝ ) |
100 |
99
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → 𝑛 ∈ ℝ ) |
101 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
102 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → 𝜑 ) |
103 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → 𝑘 ∈ ℕ ) |
104 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖 ∈ ℤ ) |
105 |
104
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖 ∈ ℝ ) |
106 |
|
nndivre |
⊢ ( ( 𝑖 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ℝ ) |
107 |
105 106
|
sylan |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ℝ ) |
108 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → 0 ≤ 𝑖 ) |
109 |
105 108
|
jca |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → ( 𝑖 ∈ ℝ ∧ 0 ≤ 𝑖 ) ) |
110 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
111 |
110
|
rpregt0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
112 |
|
divge0 |
⊢ ( ( ( 𝑖 ∈ ℝ ∧ 0 ≤ 𝑖 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → 0 ≤ ( 𝑖 / 𝑘 ) ) |
113 |
109 111 112
|
syl2an |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝑖 / 𝑘 ) ) |
114 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖 ≤ 𝑘 ) |
115 |
114
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑖 ≤ 𝑘 ) |
116 |
105
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑖 ∈ ℝ ) |
117 |
|
1red |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ ) |
118 |
110
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ ) |
119 |
116 117 118
|
ledivmuld |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑖 / 𝑘 ) ≤ 1 ↔ 𝑖 ≤ ( 𝑘 · 1 ) ) ) |
120 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
121 |
120
|
mulid1d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · 1 ) = 𝑘 ) |
122 |
121
|
breq2d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ≤ ( 𝑘 · 1 ) ↔ 𝑖 ≤ 𝑘 ) ) |
123 |
122
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 ≤ ( 𝑘 · 1 ) ↔ 𝑖 ≤ 𝑘 ) ) |
124 |
119 123
|
bitrd |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑖 / 𝑘 ) ≤ 1 ↔ 𝑖 ≤ 𝑘 ) ) |
125 |
115 124
|
mpbird |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ≤ 1 ) |
126 |
|
elicc01 |
⊢ ( ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑖 / 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝑖 / 𝑘 ) ∧ ( 𝑖 / 𝑘 ) ≤ 1 ) ) |
127 |
107 113 125 126
|
syl3anbrc |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ) |
128 |
127
|
ancoms |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑘 ) ) → ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ) |
129 |
|
elsni |
⊢ ( 𝑗 ∈ { 𝑘 } → 𝑗 = 𝑘 ) |
130 |
129
|
oveq2d |
⊢ ( 𝑗 ∈ { 𝑘 } → ( 𝑖 / 𝑗 ) = ( 𝑖 / 𝑘 ) ) |
131 |
130
|
eleq1d |
⊢ ( 𝑗 ∈ { 𝑘 } → ( ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ↔ ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ) ) |
132 |
128 131
|
syl5ibrcom |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑘 ) ) → ( 𝑗 ∈ { 𝑘 } → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ) ) |
133 |
132
|
impr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑗 ∈ { 𝑘 } ) ) → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ) |
134 |
103 133
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) ∧ ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑗 ∈ { 𝑘 } ) ) → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ) |
135 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) |
136 |
|
vex |
⊢ 𝑘 ∈ V |
137 |
136
|
fconst |
⊢ ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } |
138 |
137
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } ) |
139 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
140 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
141 |
134 135 138 139 139 140
|
off |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
142 |
2
|
eleq2i |
⊢ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ) |
143 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
144 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
145 |
143 144
|
elmap |
⊢ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ↔ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
146 |
142 145
|
bitri |
⊢ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
147 |
141 146
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) |
148 |
147
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) |
149 |
|
3anass |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) ) |
150 |
|
ancom |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) ↔ ( ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) |
151 |
149 150
|
bitri |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ↔ ( ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) |
152 |
|
ffn |
⊢ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) → 𝑝 Fn ( 1 ... 𝑁 ) ) |
153 |
152
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → 𝑝 Fn ( 1 ... 𝑁 ) ) |
154 |
|
fnconstg |
⊢ ( 𝑘 ∈ V → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) ) |
155 |
136 154
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) ) |
156 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
157 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑝 ‘ 𝑛 ) = 𝑘 ) |
158 |
136
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑛 ) = 𝑘 ) |
159 |
158
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑛 ) = 𝑘 ) |
160 |
153 155 156 156 140 157 159
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( 𝑘 / 𝑘 ) ) |
161 |
160
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( 𝑘 / 𝑘 ) ) |
162 |
151 161
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( 𝑘 / 𝑘 ) ) |
163 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
164 |
120 163
|
dividd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 / 𝑘 ) = 1 ) |
165 |
164
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( 𝑘 / 𝑘 ) = 1 ) |
166 |
162 165
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) |
167 |
|
ovex |
⊢ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ V |
168 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝑧 ∈ 𝐼 ↔ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) ) |
169 |
|
fveq1 |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝑧 ‘ 𝑛 ) = ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) ) |
170 |
169
|
eqeq1d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝑧 ‘ 𝑛 ) = 1 ↔ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) |
171 |
168 170
|
3anbi23d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) ) |
172 |
171
|
anbi2d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) ↔ ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) ) ) |
173 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
174 |
173
|
fveq1d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
175 |
174
|
breq2d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
176 |
172 175
|
imbi12d |
⊢ ( 𝑧 = ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ↔ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) ) |
177 |
167 176 6
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
178 |
102 101 148 166 177
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
179 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
180 |
|
simp3 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) → ( 𝑝 ‘ 𝑛 ) = 𝑘 ) |
181 |
|
neeq1 |
⊢ ( ( 𝑝 ‘ 𝑛 ) = 𝑘 → ( ( 𝑝 ‘ 𝑛 ) ≠ 0 ↔ 𝑘 ≠ 0 ) ) |
182 |
163 181
|
syl5ibrcom |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑝 ‘ 𝑛 ) = 𝑘 → ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
183 |
182
|
imp |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) → ( 𝑝 ‘ 𝑛 ) ≠ 0 ) |
184 |
179 180 183
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( 𝑝 ‘ 𝑛 ) ≠ 0 ) |
185 |
|
vex |
⊢ 𝑛 ∈ V |
186 |
|
fveq2 |
⊢ ( 𝑏 = 𝑛 → ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) |
187 |
186
|
breq2d |
⊢ ( 𝑏 = 𝑛 → ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) |
188 |
68
|
neeq1d |
⊢ ( 𝑏 = 𝑛 → ( ( 𝑝 ‘ 𝑏 ) ≠ 0 ↔ ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
189 |
187 188
|
anbi12d |
⊢ ( 𝑏 = 𝑛 → ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) ) |
190 |
185 189
|
ralsn |
⊢ ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑝 ‘ 𝑛 ) ≠ 0 ) ) |
191 |
178 184 190
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) |
192 |
42
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℂ ) |
193 |
|
1cnd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 1 ∈ ℂ ) |
194 |
192 193
|
subeq0ad |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) = 0 ↔ 𝑛 = 1 ) ) |
195 |
194
|
biimpcd |
⊢ ( ( 𝑛 − 1 ) = 0 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 = 1 ) ) |
196 |
|
1z |
⊢ 1 ∈ ℤ |
197 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
198 |
196 197
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
199 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) |
200 |
|
sneq |
⊢ ( 𝑛 = 1 → { 𝑛 } = { 1 } ) |
201 |
198 199 200
|
3eqtr4a |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = { 𝑛 } ) |
202 |
201
|
raleqdv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
203 |
202
|
biimprd |
⊢ ( 𝑛 = 1 → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
204 |
195 203
|
syl6 |
⊢ ( ( 𝑛 − 1 ) = 0 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
205 |
|
ralun |
⊢ ( ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ∀ 𝑏 ∈ ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) |
206 |
|
npcan1 |
⊢ ( 𝑛 ∈ ℂ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
207 |
192 206
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
208 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
209 |
207 208
|
eqeltrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
210 |
|
peano2zm |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 − 1 ) ∈ ℤ ) |
211 |
|
uzid |
⊢ ( ( 𝑛 − 1 ) ∈ ℤ → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
212 |
|
peano2uz |
⊢ ( ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
213 |
42 210 211 212
|
4syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
214 |
207 213
|
eqeltrrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
215 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) ) |
216 |
209 214 215
|
syl2anc |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) ) |
217 |
207
|
oveq1d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) = ( 𝑛 ... 𝑛 ) ) |
218 |
|
fzsn |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ... 𝑛 ) = { 𝑛 } ) |
219 |
42 218
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 ... 𝑛 ) = { 𝑛 } ) |
220 |
217 219
|
eqtrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) = { 𝑛 } ) |
221 |
220
|
uneq2d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ) |
222 |
216 221
|
eqtrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ) |
223 |
222
|
raleqdv |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
224 |
205 223
|
syl5ibr |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
225 |
224
|
expd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
226 |
225
|
com12 |
⊢ ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
227 |
226
|
adantl |
⊢ ( ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
228 |
204 227
|
jaoi |
⊢ ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
229 |
228
|
imdistand |
⊢ ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
230 |
229
|
com12 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
231 |
|
elun |
⊢ ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) ∈ { 0 } ∨ ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
232 |
|
ovex |
⊢ ( 𝑛 − 1 ) ∈ V |
233 |
232
|
elsn |
⊢ ( ( 𝑛 − 1 ) ∈ { 0 } ↔ ( 𝑛 − 1 ) = 0 ) |
234 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑛 − 1 ) → ( 1 ... 𝑎 ) = ( 1 ... ( 𝑛 − 1 ) ) ) |
235 |
234
|
raleqdv |
⊢ ( 𝑎 = ( 𝑛 − 1 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
236 |
235
|
elrab |
⊢ ( ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ↔ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
237 |
233 236
|
orbi12i |
⊢ ( ( ( 𝑛 − 1 ) ∈ { 0 } ∨ ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
238 |
231 237
|
bitri |
⊢ ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) ) |
239 |
|
oveq2 |
⊢ ( 𝑎 = 𝑛 → ( 1 ... 𝑎 ) = ( 1 ... 𝑛 ) ) |
240 |
239
|
raleqdv |
⊢ ( 𝑎 = 𝑛 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
241 |
240
|
elrab |
⊢ ( 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) ) |
242 |
230 238 241
|
3imtr4g |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
243 |
|
elun2 |
⊢ ( 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
244 |
242 243
|
syl6 |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) ) |
245 |
101 191 244
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) ) |
246 |
|
fimaxre2 |
⊢ ( ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ∈ Fin ) → ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑗 ≤ 𝑖 ) |
247 |
47 33 246
|
mp2an |
⊢ ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑗 ≤ 𝑖 |
248 |
47 38 247
|
3pm3.2i |
⊢ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ⊆ ℝ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) 𝑗 ≤ 𝑖 ) |
249 |
248
|
suprubii |
⊢ ( 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
250 |
245 249
|
syl6 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
251 |
|
ltm1 |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) < 𝑛 ) |
252 |
|
peano2rem |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) ∈ ℝ ) |
253 |
47 50
|
sselii |
⊢ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ℝ |
254 |
|
ltletr |
⊢ ( ( ( 𝑛 − 1 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ℝ ) → ( ( ( 𝑛 − 1 ) < 𝑛 ∧ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
255 |
253 254
|
mp3an3 |
⊢ ( ( ( 𝑛 − 1 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( ( 𝑛 − 1 ) < 𝑛 ∧ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
256 |
252 255
|
mpancom |
⊢ ( 𝑛 ∈ ℝ → ( ( ( 𝑛 − 1 ) < 𝑛 ∧ 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
257 |
251 256
|
mpand |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
258 |
100 250 257
|
sylsyld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
259 |
253
|
ltnri |
⊢ ¬ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) |
260 |
|
breq1 |
⊢ ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
261 |
259 260
|
mtbii |
⊢ ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ¬ ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
262 |
261
|
necon2ai |
⊢ ( ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) ) |
263 |
258 262
|
syl6 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) ) ) |
264 |
|
eleq1 |
⊢ ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ↔ ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) ) |
265 |
50 264
|
mpbii |
⊢ ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) ) |
266 |
265
|
necon3bi |
⊢ ( ¬ ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) ) |
267 |
263 266
|
pm2.61d1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝 ‘ 𝑛 ) = 𝑘 ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝 ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝 ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) ) |
268 |
7 17 53 97 267 179
|
poimirlem28 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
269 |
|
nn0ex |
⊢ ℕ0 ∈ V |
270 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 𝑘 ) ⊆ ℕ0 |
271 |
|
mapss |
⊢ ( ( ℕ0 ∈ V ∧ ( 0 ..^ 𝑘 ) ⊆ ℕ0 ) → ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
272 |
269 270 271
|
mp2an |
⊢ ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
273 |
|
xpss1 |
⊢ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
274 |
272 273
|
ax-mp |
⊢ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
275 |
274
|
sseli |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
276 |
|
xp1st |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ 𝑠 ) ∈ ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ) |
277 |
|
elmapi |
⊢ ( ( 1st ‘ 𝑠 ) ∈ ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ 𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) ) |
278 |
|
frn |
⊢ ( ( 1st ‘ 𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) → ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) |
279 |
276 277 278
|
3syl |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) |
280 |
275 279
|
jca |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) ) |
281 |
280
|
anim1i |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( ( 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
282 |
|
anass |
⊢ ( ( ( 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ↔ ( 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
283 |
281 282
|
sylib |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
284 |
283
|
reximi2 |
⊢ ( ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ∃ 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
285 |
268 284
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∃ 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
286 |
285
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ∃ 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
287 |
|
nnex |
⊢ ℕ ∈ V |
288 |
144 269
|
ixpconst |
⊢ X 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 = ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
289 |
|
omelon |
⊢ ω ∈ On |
290 |
|
nn0ennn |
⊢ ℕ0 ≈ ℕ |
291 |
|
nnenom |
⊢ ℕ ≈ ω |
292 |
290 291
|
entr2i |
⊢ ω ≈ ℕ0 |
293 |
|
isnumi |
⊢ ( ( ω ∈ On ∧ ω ≈ ℕ0 ) → ℕ0 ∈ dom card ) |
294 |
289 292 293
|
mp2an |
⊢ ℕ0 ∈ dom card |
295 |
294
|
rgenw |
⊢ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card |
296 |
|
finixpnum |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card ) → X 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card ) |
297 |
29 295 296
|
mp2an |
⊢ X 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card |
298 |
288 297
|
eqeltrri |
⊢ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∈ dom card |
299 |
144 144
|
mapval |
⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } |
300 |
|
mapfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ) |
301 |
29 29 300
|
mp2an |
⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin |
302 |
299 301
|
eqeltrri |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } ∈ Fin |
303 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
304 |
303
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } |
305 |
|
ssfi |
⊢ ( ( { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } ) → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin ) |
306 |
302 304 305
|
mp2an |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin |
307 |
|
finnum |
⊢ ( { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ dom card ) |
308 |
306 307
|
ax-mp |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ dom card |
309 |
|
xpnum |
⊢ ( ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∈ dom card ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ dom card ) → ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ dom card ) |
310 |
298 308 309
|
mp2an |
⊢ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ dom card |
311 |
|
ssrab2 |
⊢ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
312 |
311
|
rgenw |
⊢ ∀ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
313 |
|
ss2iun |
⊢ ( ∀ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ∪ 𝑘 ∈ ℕ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
314 |
312 313
|
ax-mp |
⊢ ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ∪ 𝑘 ∈ ℕ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
315 |
|
1nn |
⊢ 1 ∈ ℕ |
316 |
|
ne0i |
⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) |
317 |
|
iunconst |
⊢ ( ℕ ≠ ∅ → ∪ 𝑘 ∈ ℕ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) = ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
318 |
315 316 317
|
mp2b |
⊢ ∪ 𝑘 ∈ ℕ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) = ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
319 |
314 318
|
sseqtri |
⊢ ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
320 |
|
ssnum |
⊢ ( ( ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ dom card ∧ ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ∈ dom card ) |
321 |
310 319 320
|
mp2an |
⊢ ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ∈ dom card |
322 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( 1st ‘ 𝑠 ) = ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
323 |
322
|
rneqd |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ran ( 1st ‘ 𝑠 ) = ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
324 |
323
|
sseq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ↔ ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) ) |
325 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( 2nd ‘ 𝑠 ) = ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
326 |
325
|
imaeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) ) |
327 |
326
|
xpeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
328 |
325
|
imaeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
329 |
328
|
xpeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
330 |
327 329
|
uneq12d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
331 |
322 330
|
oveq12d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
332 |
331
|
fvoveq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ) |
333 |
332
|
fveq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) |
334 |
333
|
breq2d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) ) |
335 |
331
|
fveq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ) |
336 |
335
|
neeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) |
337 |
334 336
|
anbi12d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
338 |
337
|
ralbidv |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
339 |
338
|
rabbidv |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) |
340 |
339
|
uneq2d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) ) |
341 |
340
|
supeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
342 |
341
|
eqeq2d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
343 |
342
|
rexbidv |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
344 |
343
|
ralbidv |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
345 |
324 344
|
anbi12d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑘 ) → ( ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ↔ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
346 |
345
|
ac6num |
⊢ ( ( ℕ ∈ V ∧ ∪ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ∈ dom card ∧ ∀ 𝑘 ∈ ℕ ∃ 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
347 |
287 321 346
|
mp3an12 |
⊢ ( ∀ 𝑘 ∈ ℕ ∃ 𝑠 ∈ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st ‘ 𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
348 |
286 347
|
syl |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) |
349 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝑁 ∈ ℕ ) |
350 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
351 |
|
eqid |
⊢ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑛 ) |
352 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
353 |
|
simpl |
⊢ ( ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) |
354 |
353
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∀ 𝑘 ∈ ℕ ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) |
355 |
354
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∀ 𝑘 ∈ ℕ ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) |
356 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑝 → ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) = ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ) |
357 |
356
|
rneqd |
⊢ ( 𝑘 = 𝑝 → ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) = ran ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ) |
358 |
|
oveq2 |
⊢ ( 𝑘 = 𝑝 → ( 0 ..^ 𝑘 ) = ( 0 ..^ 𝑝 ) ) |
359 |
357 358
|
sseq12d |
⊢ ( 𝑘 = 𝑝 → ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ↔ ran ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ⊆ ( 0 ..^ 𝑝 ) ) ) |
360 |
359
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℕ ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ 𝑝 ∈ ℕ ) → ran ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ⊆ ( 0 ..^ 𝑝 ) ) |
361 |
355 360
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ 𝑝 ∈ ℕ ) → ran ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ⊆ ( 0 ..^ 𝑝 ) ) |
362 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝜑 ) |
363 |
362 5
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
364 |
|
eqid |
⊢ ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
365 |
|
simpr |
⊢ ( ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
366 |
365
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∀ 𝑘 ∈ ℕ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
367 |
366
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∀ 𝑘 ∈ ℕ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
368 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑝 → ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) ) |
369 |
368
|
imaeq1d |
⊢ ( 𝑘 = 𝑝 → ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) ) |
370 |
369
|
xpeq1d |
⊢ ( 𝑘 = 𝑝 → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
371 |
368
|
imaeq1d |
⊢ ( 𝑘 = 𝑝 → ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
372 |
371
|
xpeq1d |
⊢ ( 𝑘 = 𝑝 → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
373 |
370 372
|
uneq12d |
⊢ ( 𝑘 = 𝑝 → ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
374 |
356 373
|
oveq12d |
⊢ ( 𝑘 = 𝑝 → ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
375 |
|
sneq |
⊢ ( 𝑘 = 𝑝 → { 𝑘 } = { 𝑝 } ) |
376 |
375
|
xpeq2d |
⊢ ( 𝑘 = 𝑝 → ( ( 1 ... 𝑁 ) × { 𝑘 } ) = ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) |
377 |
374 376
|
oveq12d |
⊢ ( 𝑘 = 𝑝 → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) |
378 |
377
|
fveq2d |
⊢ ( 𝑘 = 𝑝 → ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ) |
379 |
378
|
fveq1d |
⊢ ( 𝑘 = 𝑝 → ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ) |
380 |
379
|
breq2d |
⊢ ( 𝑘 = 𝑝 → ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ) ) |
381 |
374
|
fveq1d |
⊢ ( 𝑘 = 𝑝 → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ) |
382 |
381
|
neeq1d |
⊢ ( 𝑘 = 𝑝 → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) |
383 |
380 382
|
anbi12d |
⊢ ( 𝑘 = 𝑝 → ( ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
384 |
383
|
ralbidv |
⊢ ( 𝑘 = 𝑝 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
385 |
384
|
rabbidv |
⊢ ( 𝑘 = 𝑝 → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) |
386 |
385
|
uneq2d |
⊢ ( 𝑘 = 𝑝 → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) ) |
387 |
386
|
supeq1d |
⊢ ( 𝑘 = 𝑝 → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
388 |
387
|
eqeq2d |
⊢ ( 𝑘 = 𝑝 → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
389 |
388
|
rexbidv |
⊢ ( 𝑘 = 𝑝 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
390 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑞 → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
391 |
390
|
rexbidv |
⊢ ( 𝑖 = 𝑞 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
392 |
|
oveq2 |
⊢ ( 𝑗 = 𝑚 → ( 1 ... 𝑗 ) = ( 1 ... 𝑚 ) ) |
393 |
392
|
imaeq2d |
⊢ ( 𝑗 = 𝑚 → ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) ) |
394 |
393
|
xpeq1d |
⊢ ( 𝑗 = 𝑚 → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ) |
395 |
|
oveq1 |
⊢ ( 𝑗 = 𝑚 → ( 𝑗 + 1 ) = ( 𝑚 + 1 ) ) |
396 |
395
|
oveq1d |
⊢ ( 𝑗 = 𝑚 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑚 + 1 ) ... 𝑁 ) ) |
397 |
396
|
imaeq2d |
⊢ ( 𝑗 = 𝑚 → ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) ) |
398 |
397
|
xpeq1d |
⊢ ( 𝑗 = 𝑚 → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
399 |
394 398
|
uneq12d |
⊢ ( 𝑗 = 𝑚 → ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
400 |
399
|
oveq2d |
⊢ ( 𝑗 = 𝑚 → ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
401 |
400
|
fvoveq1d |
⊢ ( 𝑗 = 𝑚 → ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ) |
402 |
401
|
fveq1d |
⊢ ( 𝑗 = 𝑚 → ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ) |
403 |
402
|
breq2d |
⊢ ( 𝑗 = 𝑚 → ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ) ) |
404 |
400
|
fveq1d |
⊢ ( 𝑗 = 𝑚 → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ) |
405 |
404
|
neeq1d |
⊢ ( 𝑗 = 𝑚 → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) |
406 |
403 405
|
anbi12d |
⊢ ( 𝑗 = 𝑚 → ( ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
407 |
406
|
ralbidv |
⊢ ( 𝑗 = 𝑚 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) ) |
408 |
407
|
rabbidv |
⊢ ( 𝑗 = 𝑚 → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) |
409 |
408
|
uneq2d |
⊢ ( 𝑗 = 𝑚 → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) ) |
410 |
409
|
supeq1d |
⊢ ( 𝑗 = 𝑚 → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
411 |
410
|
eqeq2d |
⊢ ( 𝑗 = 𝑚 → ( 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
412 |
411
|
cbvrexvw |
⊢ ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
413 |
391 412
|
bitrdi |
⊢ ( 𝑖 = 𝑞 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
414 |
389 413
|
rspc2v |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑘 ∈ ℕ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) |
415 |
367 414
|
mpan9 |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) |
416 |
349 2 3 350 363 364 352 361 415
|
poimirlem31 |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ◡ ≤ } ) ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑛 ) ) |
417 |
349 2 3 350 351 352 361 416
|
poimirlem30 |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∃ 𝑐 ∈ 𝐼 ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
418 |
417
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ℕ ⟶ ( ( ℕ0 ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) → ∃ 𝑐 ∈ 𝐼 ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
419 |
348 418
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝐼 ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅 ↾t 𝐼 ) ( 𝑐 ∈ 𝑣 → ∀ 𝑟 ∈ { ≤ , ◡ ≤ } ∃ 𝑧 ∈ 𝑣 0 𝑟 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |