Metamath Proof Explorer


Theorem poimirlem32

Description: Lemma for poimir , combining poimirlem28 , poimirlem30 , and poimirlem31 to get Equation (1) of Kulpa p. 547. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimir.i 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) )
poimir.r 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) )
poimir.1 ( 𝜑𝐹 ∈ ( ( 𝑅t 𝐼 ) Cn 𝑅 ) )
poimir.2 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝐼 ∧ ( 𝑧𝑛 ) = 0 ) ) → ( ( 𝐹𝑧 ) ‘ 𝑛 ) ≤ 0 )
poimir.3 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝐼 ∧ ( 𝑧𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹𝑧 ) ‘ 𝑛 ) )
Assertion poimirlem32 ( 𝜑 → ∃ 𝑐𝐼𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅t 𝐼 ) ( 𝑐𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimir.i 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) )
3 poimir.r 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) )
4 poimir.1 ( 𝜑𝐹 ∈ ( ( 𝑅t 𝐼 ) Cn 𝑅 ) )
5 poimir.2 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝐼 ∧ ( 𝑧𝑛 ) = 0 ) ) → ( ( 𝐹𝑧 ) ‘ 𝑛 ) ≤ 0 )
6 poimir.3 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝐼 ∧ ( 𝑧𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹𝑧 ) ‘ 𝑛 ) )
7 1 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑁 ∈ ℕ )
8 fvoveq1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) )
9 8 fveq1d ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) )
10 9 breq2d ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) )
11 fveq1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝑝𝑏 ) = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) )
12 11 neeq1d ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 𝑝𝑏 ) ≠ 0 ↔ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) )
13 10 12 anbi12d ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) )
14 13 ralbidv ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) )
15 14 rabbidv ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } )
16 15 uneq2d ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) )
17 16 supeq1d ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
18 1 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
19 0elfz ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) )
20 18 19 syl ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) )
21 20 snssd ( 𝜑 → { 0 } ⊆ ( 0 ... 𝑁 ) )
22 ssrab2 { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ⊆ ( 1 ... 𝑁 )
23 fz1ssfz0 ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 )
24 22 23 sstri { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ⊆ ( 0 ... 𝑁 )
25 24 a1i ( 𝜑 → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ⊆ ( 0 ... 𝑁 ) )
26 21 25 unssd ( 𝜑 → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ⊆ ( 0 ... 𝑁 ) )
27 ltso < Or ℝ
28 snfi { 0 } ∈ Fin
29 fzfi ( 1 ... 𝑁 ) ∈ Fin
30 rabfi ( ( 1 ... 𝑁 ) ∈ Fin → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ∈ Fin )
31 29 30 ax-mp { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ∈ Fin
32 unfi ( ( { 0 } ∈ Fin ∧ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ∈ Fin ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ∈ Fin )
33 28 31 32 mp2an ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ∈ Fin
34 c0ex 0 ∈ V
35 34 snid 0 ∈ { 0 }
36 elun1 ( 0 ∈ { 0 } → 0 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) )
37 ne0i ( 0 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ≠ ∅ )
38 35 36 37 mp2b ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ≠ ∅
39 0red ( ( 𝜑𝑁 ∈ ℕ ) → 0 ∈ ℝ )
40 39 snssd ( ( 𝜑𝑁 ∈ ℕ ) → { 0 } ⊆ ℝ )
41 1 40 ax-mp { 0 } ⊆ ℝ
42 elfzelz ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ )
43 42 ssriv ( 1 ... 𝑁 ) ⊆ ℤ
44 zssre ℤ ⊆ ℝ
45 43 44 sstri ( 1 ... 𝑁 ) ⊆ ℝ
46 22 45 sstri { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ⊆ ℝ
47 41 46 unssi ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ⊆ ℝ
48 33 38 47 3pm3.2i ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ∈ Fin ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ⊆ ℝ )
49 fisupcl ( ( < Or ℝ ∧ ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ∈ Fin ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ⊆ ℝ ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) )
50 27 48 49 mp2an sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } )
51 ssel ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ⊆ ( 0 ... 𝑁 ) → ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( 0 ... 𝑁 ) ) )
52 26 50 51 mpisyl ( 𝜑 → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( 0 ... 𝑁 ) )
53 52 ad2antrr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( 0 ... 𝑁 ) )
54 elfznn ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℕ )
55 nngt0 ( 𝑛 ∈ ℕ → 0 < 𝑛 )
56 55 adantr ( ( 𝑛 ∈ ℕ ∧ ( 𝑝𝑛 ) = 0 ) → 0 < 𝑛 )
57 simpr ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → ( 𝑝𝑏 ) ≠ 0 )
58 57 ralimi ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) ≠ 0 )
59 elfznn ( 𝑠 ∈ ( 1 ... 𝑁 ) → 𝑠 ∈ ℕ )
60 nnre ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ )
61 nnre ( 𝑠 ∈ ℕ → 𝑠 ∈ ℝ )
62 lenlt ( ( 𝑛 ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( 𝑛𝑠 ↔ ¬ 𝑠 < 𝑛 ) )
63 60 61 62 syl2an ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( 𝑛𝑠 ↔ ¬ 𝑠 < 𝑛 ) )
64 elfz1b ( 𝑛 ∈ ( 1 ... 𝑠 ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ∧ 𝑛𝑠 ) )
65 64 biimpri ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ∧ 𝑛𝑠 ) → 𝑛 ∈ ( 1 ... 𝑠 ) )
66 65 3expia ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( 𝑛𝑠𝑛 ∈ ( 1 ... 𝑠 ) ) )
67 63 66 sylbird ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( ¬ 𝑠 < 𝑛𝑛 ∈ ( 1 ... 𝑠 ) ) )
68 fveq2 ( 𝑏 = 𝑛 → ( 𝑝𝑏 ) = ( 𝑝𝑛 ) )
69 68 eqeq1d ( 𝑏 = 𝑛 → ( ( 𝑝𝑏 ) = 0 ↔ ( 𝑝𝑛 ) = 0 ) )
70 69 rspcev ( ( 𝑛 ∈ ( 1 ... 𝑠 ) ∧ ( 𝑝𝑛 ) = 0 ) → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) = 0 )
71 70 expcom ( ( 𝑝𝑛 ) = 0 → ( 𝑛 ∈ ( 1 ... 𝑠 ) → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) = 0 ) )
72 67 71 sylan9 ( ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ) ∧ ( 𝑝𝑛 ) = 0 ) → ( ¬ 𝑠 < 𝑛 → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) = 0 ) )
73 72 an32s ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝𝑛 ) = 0 ) ∧ 𝑠 ∈ ℕ ) → ( ¬ 𝑠 < 𝑛 → ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) = 0 ) )
74 nne ( ¬ ( 𝑝𝑏 ) ≠ 0 ↔ ( 𝑝𝑏 ) = 0 )
75 74 rexbii ( ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ¬ ( 𝑝𝑏 ) ≠ 0 ↔ ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) = 0 )
76 rexnal ( ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ¬ ( 𝑝𝑏 ) ≠ 0 ↔ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) ≠ 0 )
77 75 76 bitr3i ( ∃ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) = 0 ↔ ¬ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) ≠ 0 )
78 73 77 syl6ib ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝𝑛 ) = 0 ) ∧ 𝑠 ∈ ℕ ) → ( ¬ 𝑠 < 𝑛 → ¬ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) ≠ 0 ) )
79 78 con4d ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝𝑛 ) = 0 ) ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) ≠ 0 → 𝑠 < 𝑛 ) )
80 59 79 sylan2 ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝𝑛 ) = 0 ) ∧ 𝑠 ∈ ( 1 ... 𝑁 ) ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 𝑝𝑏 ) ≠ 0 → 𝑠 < 𝑛 ) )
81 58 80 syl5 ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝𝑛 ) = 0 ) ∧ 𝑠 ∈ ( 1 ... 𝑁 ) ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) )
82 81 ralrimiva ( ( 𝑛 ∈ ℕ ∧ ( 𝑝𝑛 ) = 0 ) → ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) )
83 ralunb ( ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ↔ ( ∀ 𝑠 ∈ { 0 } 𝑠 < 𝑛 ∧ ∀ 𝑠 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } 𝑠 < 𝑛 ) )
84 breq1 ( 𝑠 = 0 → ( 𝑠 < 𝑛 ↔ 0 < 𝑛 ) )
85 34 84 ralsn ( ∀ 𝑠 ∈ { 0 } 𝑠 < 𝑛 ↔ 0 < 𝑛 )
86 oveq2 ( 𝑎 = 𝑠 → ( 1 ... 𝑎 ) = ( 1 ... 𝑠 ) )
87 86 raleqdv ( 𝑎 = 𝑠 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) )
88 87 ralrab ( ∀ 𝑠 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } 𝑠 < 𝑛 ↔ ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) )
89 85 88 anbi12i ( ( ∀ 𝑠 ∈ { 0 } 𝑠 < 𝑛 ∧ ∀ 𝑠 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } 𝑠 < 𝑛 ) ↔ ( 0 < 𝑛 ∧ ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) )
90 83 89 bitri ( ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ↔ ( 0 < 𝑛 ∧ ∀ 𝑠 ∈ ( 1 ... 𝑁 ) ( ∀ 𝑏 ∈ ( 1 ... 𝑠 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → 𝑠 < 𝑛 ) ) )
91 56 82 90 sylanbrc ( ( 𝑛 ∈ ℕ ∧ ( 𝑝𝑛 ) = 0 ) → ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 )
92 breq1 ( 𝑠 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑠 < 𝑛 ↔ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 ) )
93 92 rspcva ( ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ∧ ∀ 𝑠 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) 𝑠 < 𝑛 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 )
94 50 91 93 sylancr ( ( 𝑛 ∈ ℕ ∧ ( 𝑝𝑛 ) = 0 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 )
95 54 94 sylan ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝𝑛 ) = 0 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 )
96 95 3adant2 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 0 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 )
97 96 adantl ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 0 ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) < 𝑛 )
98 42 zred ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℝ )
99 98 3ad2ant1 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) → 𝑛 ∈ ℝ )
100 99 adantl ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → 𝑛 ∈ ℝ )
101 simpr1 ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) )
102 simpll ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → 𝜑 )
103 simplr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → 𝑘 ∈ ℕ )
104 elfzelz ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖 ∈ ℤ )
105 104 zred ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖 ∈ ℝ )
106 nndivre ( ( 𝑖 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ℝ )
107 105 106 sylan ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ℝ )
108 elfzle1 ( 𝑖 ∈ ( 0 ... 𝑘 ) → 0 ≤ 𝑖 )
109 105 108 jca ( 𝑖 ∈ ( 0 ... 𝑘 ) → ( 𝑖 ∈ ℝ ∧ 0 ≤ 𝑖 ) )
110 nnrp ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ )
111 110 rpregt0d ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) )
112 divge0 ( ( ( 𝑖 ∈ ℝ ∧ 0 ≤ 𝑖 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → 0 ≤ ( 𝑖 / 𝑘 ) )
113 109 111 112 syl2an ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝑖 / 𝑘 ) )
114 elfzle2 ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖𝑘 )
115 114 adantr ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑖𝑘 )
116 105 adantr ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑖 ∈ ℝ )
117 1red ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ )
118 110 adantl ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ )
119 116 117 118 ledivmuld ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑖 / 𝑘 ) ≤ 1 ↔ 𝑖 ≤ ( 𝑘 · 1 ) ) )
120 nncn ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ )
121 120 mulid1d ( 𝑘 ∈ ℕ → ( 𝑘 · 1 ) = 𝑘 )
122 121 breq2d ( 𝑘 ∈ ℕ → ( 𝑖 ≤ ( 𝑘 · 1 ) ↔ 𝑖𝑘 ) )
123 122 adantl ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 ≤ ( 𝑘 · 1 ) ↔ 𝑖𝑘 ) )
124 119 123 bitrd ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑖 / 𝑘 ) ≤ 1 ↔ 𝑖𝑘 ) )
125 115 124 mpbird ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ≤ 1 )
126 elicc01 ( ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑖 / 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝑖 / 𝑘 ) ∧ ( 𝑖 / 𝑘 ) ≤ 1 ) )
127 107 113 125 126 syl3anbrc ( ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) )
128 127 ancoms ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑘 ) ) → ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) )
129 elsni ( 𝑗 ∈ { 𝑘 } → 𝑗 = 𝑘 )
130 129 oveq2d ( 𝑗 ∈ { 𝑘 } → ( 𝑖 / 𝑗 ) = ( 𝑖 / 𝑘 ) )
131 130 eleq1d ( 𝑗 ∈ { 𝑘 } → ( ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ↔ ( 𝑖 / 𝑘 ) ∈ ( 0 [,] 1 ) ) )
132 128 131 syl5ibrcom ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 0 ... 𝑘 ) ) → ( 𝑗 ∈ { 𝑘 } → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) ) )
133 132 impr ( ( 𝑘 ∈ ℕ ∧ ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑗 ∈ { 𝑘 } ) ) → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) )
134 103 133 sylan ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) ∧ ( 𝑖 ∈ ( 0 ... 𝑘 ) ∧ 𝑗 ∈ { 𝑘 } ) ) → ( 𝑖 / 𝑗 ) ∈ ( 0 [,] 1 ) )
135 simprr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) )
136 vex 𝑘 ∈ V
137 136 fconst ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 }
138 137 a1i ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) : ( 1 ... 𝑁 ) ⟶ { 𝑘 } )
139 fzfid ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin )
140 inidm ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 )
141 134 135 138 139 139 140 off ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
142 2 eleq2i ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) )
143 ovex ( 0 [,] 1 ) ∈ V
144 ovex ( 1 ... 𝑁 ) ∈ V
145 143 144 elmap ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ↔ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
146 142 145 bitri ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ↔ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) )
147 141 146 sylibr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ) ) → ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 )
148 147 3adantr3 ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 )
149 3anass ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) )
150 ancom ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) ↔ ( ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) )
151 149 150 bitri ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ↔ ( ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) )
152 ffn ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) → 𝑝 Fn ( 1 ... 𝑁 ) )
153 152 ad2antrl ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → 𝑝 Fn ( 1 ... 𝑁 ) )
154 fnconstg ( 𝑘 ∈ V → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) )
155 136 154 mp1i ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( ( 1 ... 𝑁 ) × { 𝑘 } ) Fn ( 1 ... 𝑁 ) )
156 fzfid ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( 1 ... 𝑁 ) ∈ Fin )
157 simplrr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑝𝑛 ) = 𝑘 )
158 136 fvconst2 ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑛 ) = 𝑘 )
159 158 adantl ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 𝑘 } ) ‘ 𝑛 ) = 𝑘 )
160 153 155 156 156 140 157 159 ofval ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( 𝑘 / 𝑘 ) )
161 160 anasss ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( 𝑘 / 𝑘 ) )
162 151 161 sylan2b ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = ( 𝑘 / 𝑘 ) )
163 nnne0 ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 )
164 120 163 dividd ( 𝑘 ∈ ℕ → ( 𝑘 / 𝑘 ) = 1 )
165 164 ad2antlr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( 𝑘 / 𝑘 ) = 1 )
166 162 165 eqtrd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 )
167 ovex ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ V
168 eleq1 ( 𝑧 = ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝑧𝐼 ↔ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ) )
169 fveq1 ( 𝑧 = ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝑧𝑛 ) = ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) )
170 169 eqeq1d ( 𝑧 = ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝑧𝑛 ) = 1 ↔ ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) )
171 168 170 3anbi23d ( 𝑧 = ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝐼 ∧ ( 𝑧𝑛 ) = 1 ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) )
172 171 anbi2d ( 𝑧 = ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝐼 ∧ ( 𝑧𝑛 ) = 1 ) ) ↔ ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) ) )
173 fveq2 ( 𝑧 = ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 𝐹𝑧 ) = ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) )
174 173 fveq1d ( 𝑧 = ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( 𝐹𝑧 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) )
175 174 breq2d ( 𝑧 = ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( 0 ≤ ( ( 𝐹𝑧 ) ‘ 𝑛 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) )
176 172 175 imbi12d ( 𝑧 = ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) → ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝐼 ∧ ( 𝑧𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) ↔ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) ) )
177 167 176 6 vtocl ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ∈ 𝐼 ∧ ( ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) )
178 102 101 148 166 177 syl13anc ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) )
179 simpr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ )
180 simp3 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) → ( 𝑝𝑛 ) = 𝑘 )
181 neeq1 ( ( 𝑝𝑛 ) = 𝑘 → ( ( 𝑝𝑛 ) ≠ 0 ↔ 𝑘 ≠ 0 ) )
182 163 181 syl5ibrcom ( 𝑘 ∈ ℕ → ( ( 𝑝𝑛 ) = 𝑘 → ( 𝑝𝑛 ) ≠ 0 ) )
183 182 imp ( ( 𝑘 ∈ ℕ ∧ ( 𝑝𝑛 ) = 𝑘 ) → ( 𝑝𝑛 ) ≠ 0 )
184 179 180 183 syl2an ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( 𝑝𝑛 ) ≠ 0 )
185 vex 𝑛 ∈ V
186 fveq2 ( 𝑏 = 𝑛 → ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) )
187 186 breq2d ( 𝑏 = 𝑛 → ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ) )
188 68 neeq1d ( 𝑏 = 𝑛 → ( ( 𝑝𝑏 ) ≠ 0 ↔ ( 𝑝𝑛 ) ≠ 0 ) )
189 187 188 anbi12d ( 𝑏 = 𝑛 → ( ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑝𝑛 ) ≠ 0 ) ) )
190 185 189 ralsn ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑛 ) ∧ ( 𝑝𝑛 ) ≠ 0 ) )
191 178 184 190 sylanbrc ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) )
192 42 zcnd ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℂ )
193 1cnd ( 𝑛 ∈ ( 1 ... 𝑁 ) → 1 ∈ ℂ )
194 192 193 subeq0ad ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) = 0 ↔ 𝑛 = 1 ) )
195 194 biimpcd ( ( 𝑛 − 1 ) = 0 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 = 1 ) )
196 1z 1 ∈ ℤ
197 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
198 196 197 ax-mp ( 1 ... 1 ) = { 1 }
199 oveq2 ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) )
200 sneq ( 𝑛 = 1 → { 𝑛 } = { 1 } )
201 198 199 200 3eqtr4a ( 𝑛 = 1 → ( 1 ... 𝑛 ) = { 𝑛 } )
202 201 raleqdv ( 𝑛 = 1 → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) )
203 202 biimprd ( 𝑛 = 1 → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) )
204 195 203 syl6 ( ( 𝑛 − 1 ) = 0 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) )
205 ralun ( ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) → ∀ 𝑏 ∈ ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) )
206 npcan1 ( 𝑛 ∈ ℂ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 )
207 192 206 syl ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 )
208 elfzuz ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( ℤ ‘ 1 ) )
209 207 208 eqeltrd ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
210 peano2zm ( 𝑛 ∈ ℤ → ( 𝑛 − 1 ) ∈ ℤ )
211 uzid ( ( 𝑛 − 1 ) ∈ ℤ → ( 𝑛 − 1 ) ∈ ( ℤ ‘ ( 𝑛 − 1 ) ) )
212 peano2uz ( ( 𝑛 − 1 ) ∈ ( ℤ ‘ ( 𝑛 − 1 ) ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑛 − 1 ) ) )
213 42 210 211 212 4syl ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑛 − 1 ) ) )
214 207 213 eqeltrrd ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( ℤ ‘ ( 𝑛 − 1 ) ) )
215 fzsplit2 ( ( ( ( 𝑛 − 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ ‘ ( 𝑛 − 1 ) ) ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) )
216 209 214 215 syl2anc ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) )
217 207 oveq1d ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) = ( 𝑛 ... 𝑛 ) )
218 fzsn ( 𝑛 ∈ ℤ → ( 𝑛 ... 𝑛 ) = { 𝑛 } )
219 42 218 syl ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 ... 𝑛 ) = { 𝑛 } )
220 217 219 eqtrd ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) = { 𝑛 } )
221 220 uneq2d ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 1 ... ( 𝑛 − 1 ) ) ∪ ( ( ( 𝑛 − 1 ) + 1 ) ... 𝑛 ) ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) )
222 216 221 eqtrd ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑛 ) = ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) )
223 222 raleqdv ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( ( 1 ... ( 𝑛 − 1 ) ) ∪ { 𝑛 } ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) )
224 205 223 syl5ibr ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) )
225 224 expd ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) )
226 225 com12 ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) )
227 226 adantl ( ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) )
228 204 227 jaoi ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) )
229 228 imdistand ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) )
230 229 com12 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) → ( ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) )
231 elun ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) ∈ { 0 } ∨ ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) )
232 ovex ( 𝑛 − 1 ) ∈ V
233 232 elsn ( ( 𝑛 − 1 ) ∈ { 0 } ↔ ( 𝑛 − 1 ) = 0 )
234 oveq2 ( 𝑎 = ( 𝑛 − 1 ) → ( 1 ... 𝑎 ) = ( 1 ... ( 𝑛 − 1 ) ) )
235 234 raleqdv ( 𝑎 = ( 𝑛 − 1 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) )
236 235 elrab ( ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ↔ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) )
237 233 236 orbi12i ( ( ( 𝑛 − 1 ) ∈ { 0 } ∨ ( 𝑛 − 1 ) ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) )
238 231 237 bitri ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ↔ ( ( 𝑛 − 1 ) = 0 ∨ ( ( 𝑛 − 1 ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) ) )
239 oveq2 ( 𝑎 = 𝑛 → ( 1 ... 𝑎 ) = ( 1 ... 𝑛 ) )
240 239 raleqdv ( 𝑎 = 𝑛 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) )
241 240 elrab ( 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) )
242 230 238 241 3imtr4g ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) → 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) )
243 elun2 ( 𝑛 ∈ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) )
244 242 243 syl6 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑏 ∈ { 𝑛 } ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ) )
245 101 191 244 syl2anc ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) → 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ) )
246 fimaxre2 ( ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ⊆ ℝ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ∈ Fin ) → ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) 𝑗𝑖 )
247 47 33 246 mp2an 𝑖 ∈ ℝ ∀ 𝑗 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) 𝑗𝑖
248 47 38 247 3pm3.2i ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ⊆ ℝ ∧ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ≠ ∅ ∧ ∃ 𝑖 ∈ ℝ ∀ 𝑗 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) 𝑗𝑖 )
249 248 suprubii ( 𝑛 ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) → 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
250 245 249 syl6 ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) → 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
251 ltm1 ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) < 𝑛 )
252 peano2rem ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) ∈ ℝ )
253 47 50 sselii sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ℝ
254 ltletr ( ( ( 𝑛 − 1 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ℝ ) → ( ( ( 𝑛 − 1 ) < 𝑛𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
255 253 254 mp3an3 ( ( ( 𝑛 − 1 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( ( 𝑛 − 1 ) < 𝑛𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
256 252 255 mpancom ( 𝑛 ∈ ℝ → ( ( ( 𝑛 − 1 ) < 𝑛𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
257 251 256 mpand ( 𝑛 ∈ ℝ → ( 𝑛 ≤ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
258 100 250 257 sylsyld ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) → ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
259 253 ltnri ¬ sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < )
260 breq1 ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
261 259 260 mtbii ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ¬ ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
262 261 necon2ai ( ( 𝑛 − 1 ) < sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) )
263 258 262 syl6 ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → ( ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) ) )
264 eleq1 ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ↔ ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) ) )
265 50 264 mpbii ( sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) = ( 𝑛 − 1 ) → ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) )
266 265 necon3bi ( ¬ ( 𝑛 − 1 ) ∈ ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) )
267 263 266 pm2.61d1 ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝑘 ) ∧ ( 𝑝𝑛 ) = 𝑘 ) ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( 𝑝f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( 𝑝𝑏 ) ≠ 0 ) } ) , ℝ , < ) ≠ ( 𝑛 − 1 ) )
268 7 17 53 97 267 179 poimirlem28 ( ( 𝜑𝑘 ∈ ℕ ) → ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
269 nn0ex 0 ∈ V
270 fzo0ssnn0 ( 0 ..^ 𝑘 ) ⊆ ℕ0
271 mapss ( ( ℕ0 ∈ V ∧ ( 0 ..^ 𝑘 ) ⊆ ℕ0 ) → ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℕ0m ( 1 ... 𝑁 ) ) )
272 269 270 271 mp2an ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℕ0m ( 1 ... 𝑁 ) )
273 xpss1 ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℕ0m ( 1 ... 𝑁 ) ) → ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ⊆ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
274 272 273 ax-mp ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ⊆ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
275 274 sseli ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
276 xp1st ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st𝑠 ) ∈ ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) )
277 elmapi ( ( 1st𝑠 ) ∈ ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) )
278 frn ( ( 1st𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝑘 ) → ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) )
279 276 277 278 3syl ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) )
280 275 279 jca ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) )
281 280 anim1i ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( ( 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
282 anass ( ( ( 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ↔ ( 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) )
283 281 282 sylib ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ( 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) )
284 283 reximi2 ( ∃ 𝑠 ∈ ( ( ( 0 ..^ 𝑘 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ∃ 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
285 268 284 syl ( ( 𝜑𝑘 ∈ ℕ ) → ∃ 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
286 285 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ℕ ∃ 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
287 nnex ℕ ∈ V
288 144 269 ixpconst X 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 = ( ℕ0m ( 1 ... 𝑁 ) )
289 omelon ω ∈ On
290 nn0ennn 0 ≈ ℕ
291 nnenom ℕ ≈ ω
292 290 291 entr2i ω ≈ ℕ0
293 isnumi ( ( ω ∈ On ∧ ω ≈ ℕ0 ) → ℕ0 ∈ dom card )
294 289 292 293 mp2an 0 ∈ dom card
295 294 rgenw 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card
296 finixpnum ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card ) → X 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card )
297 29 295 296 mp2an X 𝑛 ∈ ( 1 ... 𝑁 ) ℕ0 ∈ dom card
298 288 297 eqeltrri ( ℕ0m ( 1 ... 𝑁 ) ) ∈ dom card
299 144 144 mapval ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) = { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) }
300 mapfi ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin )
301 29 29 300 mp2an ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin
302 299 301 eqeltrri { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } ∈ Fin
303 f1of ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
304 303 ss2abi { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) }
305 ssfi ( ( { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } ) → { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin )
306 302 304 305 mp2an { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin
307 finnum ( { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin → { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ dom card )
308 306 307 ax-mp { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ dom card
309 xpnum ( ( ( ℕ0m ( 1 ... 𝑁 ) ) ∈ dom card ∧ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ dom card ) → ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ dom card )
310 298 308 309 mp2an ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ dom card
311 ssrab2 { 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
312 311 rgenw 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
313 ss2iun ( ∀ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ 𝑘 ∈ ℕ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
314 312 313 ax-mp 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ 𝑘 ∈ ℕ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
315 1nn 1 ∈ ℕ
316 ne0i ( 1 ∈ ℕ → ℕ ≠ ∅ )
317 iunconst ( ℕ ≠ ∅ → 𝑘 ∈ ℕ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) = ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
318 315 316 317 mp2b 𝑘 ∈ ℕ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) = ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
319 314 318 sseqtri 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
320 ssnum ( ( ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ dom card ∧ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ⊆ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ∈ dom card )
321 310 319 320 mp2an 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ∈ dom card
322 fveq2 ( 𝑠 = ( 𝑔𝑘 ) → ( 1st𝑠 ) = ( 1st ‘ ( 𝑔𝑘 ) ) )
323 322 rneqd ( 𝑠 = ( 𝑔𝑘 ) → ran ( 1st𝑠 ) = ran ( 1st ‘ ( 𝑔𝑘 ) ) )
324 323 sseq1d ( 𝑠 = ( 𝑔𝑘 ) → ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ↔ ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ) )
325 fveq2 ( 𝑠 = ( 𝑔𝑘 ) → ( 2nd𝑠 ) = ( 2nd ‘ ( 𝑔𝑘 ) ) )
326 325 imaeq1d ( 𝑠 = ( 𝑔𝑘 ) → ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) )
327 326 xpeq1d ( 𝑠 = ( 𝑔𝑘 ) → ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
328 325 imaeq1d ( 𝑠 = ( 𝑔𝑘 ) → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
329 328 xpeq1d ( 𝑠 = ( 𝑔𝑘 ) → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
330 327 329 uneq12d ( 𝑠 = ( 𝑔𝑘 ) → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
331 322 330 oveq12d ( 𝑠 = ( 𝑔𝑘 ) → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
332 331 fvoveq1d ( 𝑠 = ( 𝑔𝑘 ) → ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) )
333 332 fveq1d ( 𝑠 = ( 𝑔𝑘 ) → ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) )
334 333 breq2d ( 𝑠 = ( 𝑔𝑘 ) → ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ) )
335 331 fveq1d ( 𝑠 = ( 𝑔𝑘 ) → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) = ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) )
336 335 neeq1d ( 𝑠 = ( 𝑔𝑘 ) → ( ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) )
337 334 336 anbi12d ( 𝑠 = ( 𝑔𝑘 ) → ( ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) )
338 337 ralbidv ( 𝑠 = ( 𝑔𝑘 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) )
339 338 rabbidv ( 𝑠 = ( 𝑔𝑘 ) → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } )
340 339 uneq2d ( 𝑠 = ( 𝑔𝑘 ) → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) )
341 340 supeq1d ( 𝑠 = ( 𝑔𝑘 ) → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
342 341 eqeq2d ( 𝑠 = ( 𝑔𝑘 ) → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
343 342 rexbidv ( 𝑠 = ( 𝑔𝑘 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
344 343 ralbidv ( 𝑠 = ( 𝑔𝑘 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
345 324 344 anbi12d ( 𝑠 = ( 𝑔𝑘 ) → ( ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ↔ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) )
346 345 ac6num ( ( ℕ ∈ V ∧ 𝑘 ∈ ℕ { 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) } ∈ dom card ∧ ∀ 𝑘 ∈ ℕ ∃ 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) )
347 287 321 346 mp3an12 ( ∀ 𝑘 ∈ ℕ ∃ 𝑠 ∈ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ran ( 1st𝑠 ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) )
348 286 347 syl ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) )
349 1 ad2antrr ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝑁 ∈ ℕ )
350 4 ad2antrr ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝐹 ∈ ( ( 𝑅t 𝐼 ) Cn 𝑅 ) )
351 eqid ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑛 )
352 simplr ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
353 simpl ( ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) )
354 353 ralimi ( ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∀ 𝑘 ∈ ℕ ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) )
355 354 adantl ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∀ 𝑘 ∈ ℕ ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) )
356 2fveq3 ( 𝑘 = 𝑝 → ( 1st ‘ ( 𝑔𝑘 ) ) = ( 1st ‘ ( 𝑔𝑝 ) ) )
357 356 rneqd ( 𝑘 = 𝑝 → ran ( 1st ‘ ( 𝑔𝑘 ) ) = ran ( 1st ‘ ( 𝑔𝑝 ) ) )
358 oveq2 ( 𝑘 = 𝑝 → ( 0 ..^ 𝑘 ) = ( 0 ..^ 𝑝 ) )
359 357 358 sseq12d ( 𝑘 = 𝑝 → ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ↔ ran ( 1st ‘ ( 𝑔𝑝 ) ) ⊆ ( 0 ..^ 𝑝 ) ) )
360 359 rspccva ( ( ∀ 𝑘 ∈ ℕ ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ 𝑝 ∈ ℕ ) → ran ( 1st ‘ ( 𝑔𝑝 ) ) ⊆ ( 0 ..^ 𝑝 ) )
361 355 360 sylan ( ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ 𝑝 ∈ ℕ ) → ran ( 1st ‘ ( 𝑔𝑝 ) ) ⊆ ( 0 ..^ 𝑝 ) )
362 simpll ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → 𝜑 )
363 362 5 sylan ( ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝐼 ∧ ( 𝑧𝑛 ) = 0 ) ) → ( ( 𝐹𝑧 ) ‘ 𝑛 ) ≤ 0 )
364 eqid ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
365 simpr ( ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
366 365 ralimi ( ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) → ∀ 𝑘 ∈ ℕ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
367 366 adantl ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∀ 𝑘 ∈ ℕ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
368 2fveq3 ( 𝑘 = 𝑝 → ( 2nd ‘ ( 𝑔𝑘 ) ) = ( 2nd ‘ ( 𝑔𝑝 ) ) )
369 368 imaeq1d ( 𝑘 = 𝑝 → ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) )
370 369 xpeq1d ( 𝑘 = 𝑝 → ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
371 368 imaeq1d ( 𝑘 = 𝑝 → ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
372 371 xpeq1d ( 𝑘 = 𝑝 → ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
373 370 372 uneq12d ( 𝑘 = 𝑝 → ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
374 356 373 oveq12d ( 𝑘 = 𝑝 → ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
375 sneq ( 𝑘 = 𝑝 → { 𝑘 } = { 𝑝 } )
376 375 xpeq2d ( 𝑘 = 𝑝 → ( ( 1 ... 𝑁 ) × { 𝑘 } ) = ( ( 1 ... 𝑁 ) × { 𝑝 } ) )
377 374 376 oveq12d ( 𝑘 = 𝑝 → ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) = ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) )
378 377 fveq2d ( 𝑘 = 𝑝 → ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) )
379 378 fveq1d ( 𝑘 = 𝑝 → ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) )
380 379 breq2d ( 𝑘 = 𝑝 → ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ) )
381 374 fveq1d ( 𝑘 = 𝑝 → ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) = ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) )
382 381 neeq1d ( 𝑘 = 𝑝 → ( ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) )
383 380 382 anbi12d ( 𝑘 = 𝑝 → ( ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) )
384 383 ralbidv ( 𝑘 = 𝑝 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) )
385 384 rabbidv ( 𝑘 = 𝑝 → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } )
386 385 uneq2d ( 𝑘 = 𝑝 → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) )
387 386 supeq1d ( 𝑘 = 𝑝 → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
388 387 eqeq2d ( 𝑘 = 𝑝 → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
389 388 rexbidv ( 𝑘 = 𝑝 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
390 eqeq1 ( 𝑖 = 𝑞 → ( 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
391 390 rexbidv ( 𝑖 = 𝑞 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
392 oveq2 ( 𝑗 = 𝑚 → ( 1 ... 𝑗 ) = ( 1 ... 𝑚 ) )
393 392 imaeq2d ( 𝑗 = 𝑚 → ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) )
394 393 xpeq1d ( 𝑗 = 𝑚 → ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) )
395 oveq1 ( 𝑗 = 𝑚 → ( 𝑗 + 1 ) = ( 𝑚 + 1 ) )
396 395 oveq1d ( 𝑗 = 𝑚 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑚 + 1 ) ... 𝑁 ) )
397 396 imaeq2d ( 𝑗 = 𝑚 → ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) )
398 397 xpeq1d ( 𝑗 = 𝑚 → ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) )
399 394 398 uneq12d ( 𝑗 = 𝑚 → ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
400 399 oveq2d ( 𝑗 = 𝑚 → ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
401 400 fvoveq1d ( 𝑗 = 𝑚 → ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) = ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) )
402 401 fveq1d ( 𝑗 = 𝑚 → ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) = ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) )
403 402 breq2d ( 𝑗 = 𝑚 → ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ↔ 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ) )
404 400 fveq1d ( 𝑗 = 𝑚 → ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) = ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) )
405 404 neeq1d ( 𝑗 = 𝑚 → ( ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ↔ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) )
406 403 405 anbi12d ( 𝑗 = 𝑚 → ( ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) )
407 406 ralbidv ( 𝑗 = 𝑚 → ( ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) ) )
408 407 rabbidv ( 𝑗 = 𝑚 → { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } = { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } )
409 408 uneq2d ( 𝑗 = 𝑚 → ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) = ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) )
410 409 supeq1d ( 𝑗 = 𝑚 → sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
411 410 eqeq2d ( 𝑗 = 𝑚 → ( 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
412 411 cbvrexvw ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
413 391 412 bitrdi ( 𝑖 = 𝑞 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ↔ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
414 389 413 rspc2v ( ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑘 ∈ ℕ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) )
415 367 414 mpan9 ( ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ( 0 ... 𝑁 ) ) ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑞 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) )
416 349 2 3 350 363 364 352 361 415 poimirlem31 ( ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑟 ∈ { ≤ , ≤ } ) ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 0 𝑟 ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑝 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( 1 ... 𝑚 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑝 ) ) “ ( ( 𝑚 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑝 } ) ) ) ‘ 𝑛 ) )
417 349 2 3 350 351 352 361 416 poimirlem30 ( ( ( 𝜑𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) → ∃ 𝑐𝐼𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅t 𝐼 ) ( 𝑐𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
418 417 anasss ( ( 𝜑 ∧ ( 𝑔 : ℕ ⟶ ( ( ℕ0m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑘 ∈ ℕ ( ran ( 1st ‘ ( 𝑔𝑘 ) ) ⊆ ( 0 ..^ 𝑘 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = sup ( ( { 0 } ∪ { 𝑎 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑏 ∈ ( 1 ... 𝑎 ) ( 0 ≤ ( ( 𝐹 ‘ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∘f / ( ( 1 ... 𝑁 ) × { 𝑘 } ) ) ) ‘ 𝑏 ) ∧ ( ( ( 1st ‘ ( 𝑔𝑘 ) ) ∘f + ( ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 𝑔𝑘 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑏 ) ≠ 0 ) } ) , ℝ , < ) ) ) ) → ∃ 𝑐𝐼𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅t 𝐼 ) ( 𝑐𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )
419 348 418 exlimddv ( 𝜑 → ∃ 𝑐𝐼𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑣 ∈ ( 𝑅t 𝐼 ) ( 𝑐𝑣 → ∀ 𝑟 ∈ { ≤ , ≤ } ∃ 𝑧𝑣 0 𝑟 ( ( 𝐹𝑧 ) ‘ 𝑛 ) ) )