| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimir.i |
|- I = ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) |
| 3 |
|
poimir.r |
|- R = ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |
| 4 |
|
poimir.1 |
|- ( ph -> F e. ( ( R |`t I ) Cn R ) ) |
| 5 |
|
poimir.2 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 0 ) ) -> ( ( F ` z ) ` n ) <_ 0 ) |
| 6 |
|
poimir.3 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 1 ) ) -> 0 <_ ( ( F ` z ) ` n ) ) |
| 7 |
1
|
adantr |
|- ( ( ph /\ k e. NN ) -> N e. NN ) |
| 8 |
|
fvoveq1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) = ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 9 |
8
|
fveq1d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) = ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) ) |
| 10 |
9
|
breq2d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) <-> 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) ) ) |
| 11 |
|
fveq1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p ` b ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) ) |
| 12 |
11
|
neeq1d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( p ` b ) =/= 0 <-> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) |
| 13 |
10 12
|
anbi12d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) <-> ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) ) |
| 14 |
13
|
ralbidv |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) <-> A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) ) |
| 15 |
14
|
rabbidv |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } = { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) |
| 16 |
15
|
uneq2d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) = ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) ) |
| 17 |
16
|
supeq1d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) |
| 18 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 19 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
| 20 |
18 19
|
syl |
|- ( ph -> 0 e. ( 0 ... N ) ) |
| 21 |
20
|
snssd |
|- ( ph -> { 0 } C_ ( 0 ... N ) ) |
| 22 |
|
ssrab2 |
|- { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } C_ ( 1 ... N ) |
| 23 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
| 24 |
22 23
|
sstri |
|- { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } C_ ( 0 ... N ) |
| 25 |
24
|
a1i |
|- ( ph -> { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } C_ ( 0 ... N ) ) |
| 26 |
21 25
|
unssd |
|- ( ph -> ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) C_ ( 0 ... N ) ) |
| 27 |
|
ltso |
|- < Or RR |
| 28 |
|
snfi |
|- { 0 } e. Fin |
| 29 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 30 |
|
rabfi |
|- ( ( 1 ... N ) e. Fin -> { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } e. Fin ) |
| 31 |
29 30
|
ax-mp |
|- { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } e. Fin |
| 32 |
|
unfi |
|- ( ( { 0 } e. Fin /\ { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } e. Fin ) -> ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) e. Fin ) |
| 33 |
28 31 32
|
mp2an |
|- ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) e. Fin |
| 34 |
|
c0ex |
|- 0 e. _V |
| 35 |
34
|
snid |
|- 0 e. { 0 } |
| 36 |
|
elun1 |
|- ( 0 e. { 0 } -> 0 e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) ) |
| 37 |
|
ne0i |
|- ( 0 e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) -> ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) =/= (/) ) |
| 38 |
35 36 37
|
mp2b |
|- ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) =/= (/) |
| 39 |
|
0red |
|- ( ( ph -> N e. NN ) -> 0 e. RR ) |
| 40 |
39
|
snssd |
|- ( ( ph -> N e. NN ) -> { 0 } C_ RR ) |
| 41 |
1 40
|
ax-mp |
|- { 0 } C_ RR |
| 42 |
|
elfzelz |
|- ( n e. ( 1 ... N ) -> n e. ZZ ) |
| 43 |
42
|
ssriv |
|- ( 1 ... N ) C_ ZZ |
| 44 |
|
zssre |
|- ZZ C_ RR |
| 45 |
43 44
|
sstri |
|- ( 1 ... N ) C_ RR |
| 46 |
22 45
|
sstri |
|- { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } C_ RR |
| 47 |
41 46
|
unssi |
|- ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) C_ RR |
| 48 |
33 38 47
|
3pm3.2i |
|- ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) e. Fin /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) =/= (/) /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) C_ RR ) |
| 49 |
|
fisupcl |
|- ( ( < Or RR /\ ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) e. Fin /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) =/= (/) /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) C_ RR ) ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) ) |
| 50 |
27 48 49
|
mp2an |
|- sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) |
| 51 |
|
ssel |
|- ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) C_ ( 0 ... N ) -> ( sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) e. ( 0 ... N ) ) ) |
| 52 |
26 50 51
|
mpisyl |
|- ( ph -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) e. ( 0 ... N ) ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( ph /\ k e. NN ) /\ p : ( 1 ... N ) --> ( 0 ... k ) ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) e. ( 0 ... N ) ) |
| 54 |
|
elfznn |
|- ( n e. ( 1 ... N ) -> n e. NN ) |
| 55 |
|
nngt0 |
|- ( n e. NN -> 0 < n ) |
| 56 |
55
|
adantr |
|- ( ( n e. NN /\ ( p ` n ) = 0 ) -> 0 < n ) |
| 57 |
|
simpr |
|- ( ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> ( p ` b ) =/= 0 ) |
| 58 |
57
|
ralimi |
|- ( A. b e. ( 1 ... s ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> A. b e. ( 1 ... s ) ( p ` b ) =/= 0 ) |
| 59 |
|
elfznn |
|- ( s e. ( 1 ... N ) -> s e. NN ) |
| 60 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 61 |
|
nnre |
|- ( s e. NN -> s e. RR ) |
| 62 |
|
lenlt |
|- ( ( n e. RR /\ s e. RR ) -> ( n <_ s <-> -. s < n ) ) |
| 63 |
60 61 62
|
syl2an |
|- ( ( n e. NN /\ s e. NN ) -> ( n <_ s <-> -. s < n ) ) |
| 64 |
|
elfz1b |
|- ( n e. ( 1 ... s ) <-> ( n e. NN /\ s e. NN /\ n <_ s ) ) |
| 65 |
64
|
biimpri |
|- ( ( n e. NN /\ s e. NN /\ n <_ s ) -> n e. ( 1 ... s ) ) |
| 66 |
65
|
3expia |
|- ( ( n e. NN /\ s e. NN ) -> ( n <_ s -> n e. ( 1 ... s ) ) ) |
| 67 |
63 66
|
sylbird |
|- ( ( n e. NN /\ s e. NN ) -> ( -. s < n -> n e. ( 1 ... s ) ) ) |
| 68 |
|
fveq2 |
|- ( b = n -> ( p ` b ) = ( p ` n ) ) |
| 69 |
68
|
eqeq1d |
|- ( b = n -> ( ( p ` b ) = 0 <-> ( p ` n ) = 0 ) ) |
| 70 |
69
|
rspcev |
|- ( ( n e. ( 1 ... s ) /\ ( p ` n ) = 0 ) -> E. b e. ( 1 ... s ) ( p ` b ) = 0 ) |
| 71 |
70
|
expcom |
|- ( ( p ` n ) = 0 -> ( n e. ( 1 ... s ) -> E. b e. ( 1 ... s ) ( p ` b ) = 0 ) ) |
| 72 |
67 71
|
sylan9 |
|- ( ( ( n e. NN /\ s e. NN ) /\ ( p ` n ) = 0 ) -> ( -. s < n -> E. b e. ( 1 ... s ) ( p ` b ) = 0 ) ) |
| 73 |
72
|
an32s |
|- ( ( ( n e. NN /\ ( p ` n ) = 0 ) /\ s e. NN ) -> ( -. s < n -> E. b e. ( 1 ... s ) ( p ` b ) = 0 ) ) |
| 74 |
|
nne |
|- ( -. ( p ` b ) =/= 0 <-> ( p ` b ) = 0 ) |
| 75 |
74
|
rexbii |
|- ( E. b e. ( 1 ... s ) -. ( p ` b ) =/= 0 <-> E. b e. ( 1 ... s ) ( p ` b ) = 0 ) |
| 76 |
|
rexnal |
|- ( E. b e. ( 1 ... s ) -. ( p ` b ) =/= 0 <-> -. A. b e. ( 1 ... s ) ( p ` b ) =/= 0 ) |
| 77 |
75 76
|
bitr3i |
|- ( E. b e. ( 1 ... s ) ( p ` b ) = 0 <-> -. A. b e. ( 1 ... s ) ( p ` b ) =/= 0 ) |
| 78 |
73 77
|
imbitrdi |
|- ( ( ( n e. NN /\ ( p ` n ) = 0 ) /\ s e. NN ) -> ( -. s < n -> -. A. b e. ( 1 ... s ) ( p ` b ) =/= 0 ) ) |
| 79 |
78
|
con4d |
|- ( ( ( n e. NN /\ ( p ` n ) = 0 ) /\ s e. NN ) -> ( A. b e. ( 1 ... s ) ( p ` b ) =/= 0 -> s < n ) ) |
| 80 |
59 79
|
sylan2 |
|- ( ( ( n e. NN /\ ( p ` n ) = 0 ) /\ s e. ( 1 ... N ) ) -> ( A. b e. ( 1 ... s ) ( p ` b ) =/= 0 -> s < n ) ) |
| 81 |
58 80
|
syl5 |
|- ( ( ( n e. NN /\ ( p ` n ) = 0 ) /\ s e. ( 1 ... N ) ) -> ( A. b e. ( 1 ... s ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> s < n ) ) |
| 82 |
81
|
ralrimiva |
|- ( ( n e. NN /\ ( p ` n ) = 0 ) -> A. s e. ( 1 ... N ) ( A. b e. ( 1 ... s ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> s < n ) ) |
| 83 |
|
ralunb |
|- ( A. s e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) s < n <-> ( A. s e. { 0 } s < n /\ A. s e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } s < n ) ) |
| 84 |
|
breq1 |
|- ( s = 0 -> ( s < n <-> 0 < n ) ) |
| 85 |
34 84
|
ralsn |
|- ( A. s e. { 0 } s < n <-> 0 < n ) |
| 86 |
|
oveq2 |
|- ( a = s -> ( 1 ... a ) = ( 1 ... s ) ) |
| 87 |
86
|
raleqdv |
|- ( a = s -> ( A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) <-> A. b e. ( 1 ... s ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) |
| 88 |
87
|
ralrab |
|- ( A. s e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } s < n <-> A. s e. ( 1 ... N ) ( A. b e. ( 1 ... s ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> s < n ) ) |
| 89 |
85 88
|
anbi12i |
|- ( ( A. s e. { 0 } s < n /\ A. s e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } s < n ) <-> ( 0 < n /\ A. s e. ( 1 ... N ) ( A. b e. ( 1 ... s ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> s < n ) ) ) |
| 90 |
83 89
|
bitri |
|- ( A. s e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) s < n <-> ( 0 < n /\ A. s e. ( 1 ... N ) ( A. b e. ( 1 ... s ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> s < n ) ) ) |
| 91 |
56 82 90
|
sylanbrc |
|- ( ( n e. NN /\ ( p ` n ) = 0 ) -> A. s e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) s < n ) |
| 92 |
|
breq1 |
|- ( s = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) -> ( s < n <-> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) < n ) ) |
| 93 |
92
|
rspcva |
|- ( ( sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) /\ A. s e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) s < n ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) < n ) |
| 94 |
50 91 93
|
sylancr |
|- ( ( n e. NN /\ ( p ` n ) = 0 ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) < n ) |
| 95 |
54 94
|
sylan |
|- ( ( n e. ( 1 ... N ) /\ ( p ` n ) = 0 ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) < n ) |
| 96 |
95
|
3adant2 |
|- ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = 0 ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) < n ) |
| 97 |
96
|
adantl |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = 0 ) ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) < n ) |
| 98 |
42
|
zred |
|- ( n e. ( 1 ... N ) -> n e. RR ) |
| 99 |
98
|
3ad2ant1 |
|- ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) -> n e. RR ) |
| 100 |
99
|
adantl |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> n e. RR ) |
| 101 |
|
simpr1 |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> n e. ( 1 ... N ) ) |
| 102 |
|
simpll |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ph ) |
| 103 |
|
simplr |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) ) ) -> k e. NN ) |
| 104 |
|
elfzelz |
|- ( i e. ( 0 ... k ) -> i e. ZZ ) |
| 105 |
104
|
zred |
|- ( i e. ( 0 ... k ) -> i e. RR ) |
| 106 |
|
nndivre |
|- ( ( i e. RR /\ k e. NN ) -> ( i / k ) e. RR ) |
| 107 |
105 106
|
sylan |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> ( i / k ) e. RR ) |
| 108 |
|
elfzle1 |
|- ( i e. ( 0 ... k ) -> 0 <_ i ) |
| 109 |
105 108
|
jca |
|- ( i e. ( 0 ... k ) -> ( i e. RR /\ 0 <_ i ) ) |
| 110 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 111 |
110
|
rpregt0d |
|- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
| 112 |
|
divge0 |
|- ( ( ( i e. RR /\ 0 <_ i ) /\ ( k e. RR /\ 0 < k ) ) -> 0 <_ ( i / k ) ) |
| 113 |
109 111 112
|
syl2an |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> 0 <_ ( i / k ) ) |
| 114 |
|
elfzle2 |
|- ( i e. ( 0 ... k ) -> i <_ k ) |
| 115 |
114
|
adantr |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> i <_ k ) |
| 116 |
105
|
adantr |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> i e. RR ) |
| 117 |
|
1red |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> 1 e. RR ) |
| 118 |
110
|
adantl |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> k e. RR+ ) |
| 119 |
116 117 118
|
ledivmuld |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> ( ( i / k ) <_ 1 <-> i <_ ( k x. 1 ) ) ) |
| 120 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 121 |
120
|
mulridd |
|- ( k e. NN -> ( k x. 1 ) = k ) |
| 122 |
121
|
breq2d |
|- ( k e. NN -> ( i <_ ( k x. 1 ) <-> i <_ k ) ) |
| 123 |
122
|
adantl |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> ( i <_ ( k x. 1 ) <-> i <_ k ) ) |
| 124 |
119 123
|
bitrd |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> ( ( i / k ) <_ 1 <-> i <_ k ) ) |
| 125 |
115 124
|
mpbird |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> ( i / k ) <_ 1 ) |
| 126 |
|
elicc01 |
|- ( ( i / k ) e. ( 0 [,] 1 ) <-> ( ( i / k ) e. RR /\ 0 <_ ( i / k ) /\ ( i / k ) <_ 1 ) ) |
| 127 |
107 113 125 126
|
syl3anbrc |
|- ( ( i e. ( 0 ... k ) /\ k e. NN ) -> ( i / k ) e. ( 0 [,] 1 ) ) |
| 128 |
127
|
ancoms |
|- ( ( k e. NN /\ i e. ( 0 ... k ) ) -> ( i / k ) e. ( 0 [,] 1 ) ) |
| 129 |
|
elsni |
|- ( j e. { k } -> j = k ) |
| 130 |
129
|
oveq2d |
|- ( j e. { k } -> ( i / j ) = ( i / k ) ) |
| 131 |
130
|
eleq1d |
|- ( j e. { k } -> ( ( i / j ) e. ( 0 [,] 1 ) <-> ( i / k ) e. ( 0 [,] 1 ) ) ) |
| 132 |
128 131
|
syl5ibrcom |
|- ( ( k e. NN /\ i e. ( 0 ... k ) ) -> ( j e. { k } -> ( i / j ) e. ( 0 [,] 1 ) ) ) |
| 133 |
132
|
impr |
|- ( ( k e. NN /\ ( i e. ( 0 ... k ) /\ j e. { k } ) ) -> ( i / j ) e. ( 0 [,] 1 ) ) |
| 134 |
103 133
|
sylan |
|- ( ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) ) ) /\ ( i e. ( 0 ... k ) /\ j e. { k } ) ) -> ( i / j ) e. ( 0 [,] 1 ) ) |
| 135 |
|
simprr |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) ) ) -> p : ( 1 ... N ) --> ( 0 ... k ) ) |
| 136 |
|
vex |
|- k e. _V |
| 137 |
136
|
fconst |
|- ( ( 1 ... N ) X. { k } ) : ( 1 ... N ) --> { k } |
| 138 |
137
|
a1i |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) ) ) -> ( ( 1 ... N ) X. { k } ) : ( 1 ... N ) --> { k } ) |
| 139 |
|
fzfid |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) ) ) -> ( 1 ... N ) e. Fin ) |
| 140 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 141 |
134 135 138 139 139 140
|
off |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) ) ) -> ( p oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 142 |
2
|
eleq2i |
|- ( ( p oF / ( ( 1 ... N ) X. { k } ) ) e. I <-> ( p oF / ( ( 1 ... N ) X. { k } ) ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) ) |
| 143 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
| 144 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 145 |
143 144
|
elmap |
|- ( ( p oF / ( ( 1 ... N ) X. { k } ) ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) <-> ( p oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 146 |
142 145
|
bitri |
|- ( ( p oF / ( ( 1 ... N ) X. { k } ) ) e. I <-> ( p oF / ( ( 1 ... N ) X. { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 147 |
141 146
|
sylibr |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) ) ) -> ( p oF / ( ( 1 ... N ) X. { k } ) ) e. I ) |
| 148 |
147
|
3adantr3 |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( p oF / ( ( 1 ... N ) X. { k } ) ) e. I ) |
| 149 |
|
3anass |
|- ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) <-> ( n e. ( 1 ... N ) /\ ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) ) |
| 150 |
|
ancom |
|- ( ( n e. ( 1 ... N ) /\ ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) <-> ( ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) /\ n e. ( 1 ... N ) ) ) |
| 151 |
149 150
|
bitri |
|- ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) <-> ( ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) /\ n e. ( 1 ... N ) ) ) |
| 152 |
|
ffn |
|- ( p : ( 1 ... N ) --> ( 0 ... k ) -> p Fn ( 1 ... N ) ) |
| 153 |
152
|
ad2antrl |
|- ( ( ( ph /\ k e. NN ) /\ ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> p Fn ( 1 ... N ) ) |
| 154 |
|
fnconstg |
|- ( k e. _V -> ( ( 1 ... N ) X. { k } ) Fn ( 1 ... N ) ) |
| 155 |
136 154
|
mp1i |
|- ( ( ( ph /\ k e. NN ) /\ ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( ( 1 ... N ) X. { k } ) Fn ( 1 ... N ) ) |
| 156 |
|
fzfid |
|- ( ( ( ph /\ k e. NN ) /\ ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( 1 ... N ) e. Fin ) |
| 157 |
|
simplrr |
|- ( ( ( ( ph /\ k e. NN ) /\ ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) /\ n e. ( 1 ... N ) ) -> ( p ` n ) = k ) |
| 158 |
136
|
fvconst2 |
|- ( n e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { k } ) ` n ) = k ) |
| 159 |
158
|
adantl |
|- ( ( ( ( ph /\ k e. NN ) /\ ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1 ... N ) X. { k } ) ` n ) = k ) |
| 160 |
153 155 156 156 140 157 159
|
ofval |
|- ( ( ( ( ph /\ k e. NN ) /\ ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) /\ n e. ( 1 ... N ) ) -> ( ( p oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = ( k / k ) ) |
| 161 |
160
|
anasss |
|- ( ( ( ph /\ k e. NN ) /\ ( ( p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) /\ n e. ( 1 ... N ) ) ) -> ( ( p oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = ( k / k ) ) |
| 162 |
151 161
|
sylan2b |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( ( p oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = ( k / k ) ) |
| 163 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
| 164 |
120 163
|
dividd |
|- ( k e. NN -> ( k / k ) = 1 ) |
| 165 |
164
|
ad2antlr |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( k / k ) = 1 ) |
| 166 |
162 165
|
eqtrd |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( ( p oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 1 ) |
| 167 |
|
ovex |
|- ( p oF / ( ( 1 ... N ) X. { k } ) ) e. _V |
| 168 |
|
eleq1 |
|- ( z = ( p oF / ( ( 1 ... N ) X. { k } ) ) -> ( z e. I <-> ( p oF / ( ( 1 ... N ) X. { k } ) ) e. I ) ) |
| 169 |
|
fveq1 |
|- ( z = ( p oF / ( ( 1 ... N ) X. { k } ) ) -> ( z ` n ) = ( ( p oF / ( ( 1 ... N ) X. { k } ) ) ` n ) ) |
| 170 |
169
|
eqeq1d |
|- ( z = ( p oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( z ` n ) = 1 <-> ( ( p oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 1 ) ) |
| 171 |
168 170
|
3anbi23d |
|- ( z = ( p oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 1 ) <-> ( n e. ( 1 ... N ) /\ ( p oF / ( ( 1 ... N ) X. { k } ) ) e. I /\ ( ( p oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 1 ) ) ) |
| 172 |
171
|
anbi2d |
|- ( z = ( p oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 1 ) ) <-> ( ph /\ ( n e. ( 1 ... N ) /\ ( p oF / ( ( 1 ... N ) X. { k } ) ) e. I /\ ( ( p oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 1 ) ) ) ) |
| 173 |
|
fveq2 |
|- ( z = ( p oF / ( ( 1 ... N ) X. { k } ) ) -> ( F ` z ) = ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 174 |
173
|
fveq1d |
|- ( z = ( p oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( F ` z ) ` n ) = ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 175 |
174
|
breq2d |
|- ( z = ( p oF / ( ( 1 ... N ) X. { k } ) ) -> ( 0 <_ ( ( F ` z ) ` n ) <-> 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 176 |
172 175
|
imbi12d |
|- ( z = ( p oF / ( ( 1 ... N ) X. { k } ) ) -> ( ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 1 ) ) -> 0 <_ ( ( F ` z ) ` n ) ) <-> ( ( ph /\ ( n e. ( 1 ... N ) /\ ( p oF / ( ( 1 ... N ) X. { k } ) ) e. I /\ ( ( p oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 1 ) ) -> 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) ) |
| 177 |
167 176 6
|
vtocl |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ ( p oF / ( ( 1 ... N ) X. { k } ) ) e. I /\ ( ( p oF / ( ( 1 ... N ) X. { k } ) ) ` n ) = 1 ) ) -> 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 178 |
102 101 148 166 177
|
syl13anc |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 179 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
| 180 |
|
simp3 |
|- ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) -> ( p ` n ) = k ) |
| 181 |
|
neeq1 |
|- ( ( p ` n ) = k -> ( ( p ` n ) =/= 0 <-> k =/= 0 ) ) |
| 182 |
163 181
|
syl5ibrcom |
|- ( k e. NN -> ( ( p ` n ) = k -> ( p ` n ) =/= 0 ) ) |
| 183 |
182
|
imp |
|- ( ( k e. NN /\ ( p ` n ) = k ) -> ( p ` n ) =/= 0 ) |
| 184 |
179 180 183
|
syl2an |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( p ` n ) =/= 0 ) |
| 185 |
|
vex |
|- n e. _V |
| 186 |
|
fveq2 |
|- ( b = n -> ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) = ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) |
| 187 |
186
|
breq2d |
|- ( b = n -> ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) <-> 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) ) ) |
| 188 |
68
|
neeq1d |
|- ( b = n -> ( ( p ` b ) =/= 0 <-> ( p ` n ) =/= 0 ) ) |
| 189 |
187 188
|
anbi12d |
|- ( b = n -> ( ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) <-> ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) /\ ( p ` n ) =/= 0 ) ) ) |
| 190 |
185 189
|
ralsn |
|- ( A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) <-> ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` n ) /\ ( p ` n ) =/= 0 ) ) |
| 191 |
178 184 190
|
sylanbrc |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) |
| 192 |
42
|
zcnd |
|- ( n e. ( 1 ... N ) -> n e. CC ) |
| 193 |
|
1cnd |
|- ( n e. ( 1 ... N ) -> 1 e. CC ) |
| 194 |
192 193
|
subeq0ad |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) = 0 <-> n = 1 ) ) |
| 195 |
194
|
biimpcd |
|- ( ( n - 1 ) = 0 -> ( n e. ( 1 ... N ) -> n = 1 ) ) |
| 196 |
|
1z |
|- 1 e. ZZ |
| 197 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 198 |
196 197
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
| 199 |
|
oveq2 |
|- ( n = 1 -> ( 1 ... n ) = ( 1 ... 1 ) ) |
| 200 |
|
sneq |
|- ( n = 1 -> { n } = { 1 } ) |
| 201 |
198 199 200
|
3eqtr4a |
|- ( n = 1 -> ( 1 ... n ) = { n } ) |
| 202 |
201
|
raleqdv |
|- ( n = 1 -> ( A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) <-> A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) |
| 203 |
202
|
biimprd |
|- ( n = 1 -> ( A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) |
| 204 |
195 203
|
syl6 |
|- ( ( n - 1 ) = 0 -> ( n e. ( 1 ... N ) -> ( A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) ) |
| 205 |
|
ralun |
|- ( ( A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) /\ A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) -> A. b e. ( ( 1 ... ( n - 1 ) ) u. { n } ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) |
| 206 |
|
npcan1 |
|- ( n e. CC -> ( ( n - 1 ) + 1 ) = n ) |
| 207 |
192 206
|
syl |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) + 1 ) = n ) |
| 208 |
|
elfzuz |
|- ( n e. ( 1 ... N ) -> n e. ( ZZ>= ` 1 ) ) |
| 209 |
207 208
|
eqeltrd |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 210 |
|
peano2zm |
|- ( n e. ZZ -> ( n - 1 ) e. ZZ ) |
| 211 |
|
uzid |
|- ( ( n - 1 ) e. ZZ -> ( n - 1 ) e. ( ZZ>= ` ( n - 1 ) ) ) |
| 212 |
|
peano2uz |
|- ( ( n - 1 ) e. ( ZZ>= ` ( n - 1 ) ) -> ( ( n - 1 ) + 1 ) e. ( ZZ>= ` ( n - 1 ) ) ) |
| 213 |
42 210 211 212
|
4syl |
|- ( n e. ( 1 ... N ) -> ( ( n - 1 ) + 1 ) e. ( ZZ>= ` ( n - 1 ) ) ) |
| 214 |
207 213
|
eqeltrrd |
|- ( n e. ( 1 ... N ) -> n e. ( ZZ>= ` ( n - 1 ) ) ) |
| 215 |
|
fzsplit2 |
|- ( ( ( ( n - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` ( n - 1 ) ) ) -> ( 1 ... n ) = ( ( 1 ... ( n - 1 ) ) u. ( ( ( n - 1 ) + 1 ) ... n ) ) ) |
| 216 |
209 214 215
|
syl2anc |
|- ( n e. ( 1 ... N ) -> ( 1 ... n ) = ( ( 1 ... ( n - 1 ) ) u. ( ( ( n - 1 ) + 1 ) ... n ) ) ) |
| 217 |
207
|
oveq1d |
|- ( n e. ( 1 ... N ) -> ( ( ( n - 1 ) + 1 ) ... n ) = ( n ... n ) ) |
| 218 |
|
fzsn |
|- ( n e. ZZ -> ( n ... n ) = { n } ) |
| 219 |
42 218
|
syl |
|- ( n e. ( 1 ... N ) -> ( n ... n ) = { n } ) |
| 220 |
217 219
|
eqtrd |
|- ( n e. ( 1 ... N ) -> ( ( ( n - 1 ) + 1 ) ... n ) = { n } ) |
| 221 |
220
|
uneq2d |
|- ( n e. ( 1 ... N ) -> ( ( 1 ... ( n - 1 ) ) u. ( ( ( n - 1 ) + 1 ) ... n ) ) = ( ( 1 ... ( n - 1 ) ) u. { n } ) ) |
| 222 |
216 221
|
eqtrd |
|- ( n e. ( 1 ... N ) -> ( 1 ... n ) = ( ( 1 ... ( n - 1 ) ) u. { n } ) ) |
| 223 |
222
|
raleqdv |
|- ( n e. ( 1 ... N ) -> ( A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) <-> A. b e. ( ( 1 ... ( n - 1 ) ) u. { n } ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) |
| 224 |
205 223
|
imbitrrid |
|- ( n e. ( 1 ... N ) -> ( ( A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) /\ A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) -> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) |
| 225 |
224
|
expd |
|- ( n e. ( 1 ... N ) -> ( A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> ( A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) ) |
| 226 |
225
|
com12 |
|- ( A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> ( n e. ( 1 ... N ) -> ( A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) ) |
| 227 |
226
|
adantl |
|- ( ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) -> ( n e. ( 1 ... N ) -> ( A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) ) |
| 228 |
204 227
|
jaoi |
|- ( ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) -> ( n e. ( 1 ... N ) -> ( A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) -> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) ) |
| 229 |
228
|
imdistand |
|- ( ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) -> ( ( n e. ( 1 ... N ) /\ A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) -> ( n e. ( 1 ... N ) /\ A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) ) |
| 230 |
229
|
com12 |
|- ( ( n e. ( 1 ... N ) /\ A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) -> ( ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) -> ( n e. ( 1 ... N ) /\ A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) ) |
| 231 |
|
elun |
|- ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) <-> ( ( n - 1 ) e. { 0 } \/ ( n - 1 ) e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) ) |
| 232 |
|
ovex |
|- ( n - 1 ) e. _V |
| 233 |
232
|
elsn |
|- ( ( n - 1 ) e. { 0 } <-> ( n - 1 ) = 0 ) |
| 234 |
|
oveq2 |
|- ( a = ( n - 1 ) -> ( 1 ... a ) = ( 1 ... ( n - 1 ) ) ) |
| 235 |
234
|
raleqdv |
|- ( a = ( n - 1 ) -> ( A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) <-> A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) |
| 236 |
235
|
elrab |
|- ( ( n - 1 ) e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } <-> ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) |
| 237 |
233 236
|
orbi12i |
|- ( ( ( n - 1 ) e. { 0 } \/ ( n - 1 ) e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) <-> ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) ) |
| 238 |
231 237
|
bitri |
|- ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) <-> ( ( n - 1 ) = 0 \/ ( ( n - 1 ) e. ( 1 ... N ) /\ A. b e. ( 1 ... ( n - 1 ) ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) ) |
| 239 |
|
oveq2 |
|- ( a = n -> ( 1 ... a ) = ( 1 ... n ) ) |
| 240 |
239
|
raleqdv |
|- ( a = n -> ( A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) <-> A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) |
| 241 |
240
|
elrab |
|- ( n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } <-> ( n e. ( 1 ... N ) /\ A. b e. ( 1 ... n ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) ) |
| 242 |
230 238 241
|
3imtr4g |
|- ( ( n e. ( 1 ... N ) /\ A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) -> ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) -> n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) ) |
| 243 |
|
elun2 |
|- ( n e. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } -> n e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) ) |
| 244 |
242 243
|
syl6 |
|- ( ( n e. ( 1 ... N ) /\ A. b e. { n } ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) ) -> ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) -> n e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) ) ) |
| 245 |
101 191 244
|
syl2anc |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) -> n e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) ) ) |
| 246 |
|
fimaxre2 |
|- ( ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) C_ RR /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) e. Fin ) -> E. i e. RR A. j e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) j <_ i ) |
| 247 |
47 33 246
|
mp2an |
|- E. i e. RR A. j e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) j <_ i |
| 248 |
47 38 247
|
3pm3.2i |
|- ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) C_ RR /\ ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) =/= (/) /\ E. i e. RR A. j e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) j <_ i ) |
| 249 |
248
|
suprubii |
|- ( n e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) -> n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) |
| 250 |
245 249
|
syl6 |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) -> n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 251 |
|
ltm1 |
|- ( n e. RR -> ( n - 1 ) < n ) |
| 252 |
|
peano2rem |
|- ( n e. RR -> ( n - 1 ) e. RR ) |
| 253 |
47 50
|
sselii |
|- sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) e. RR |
| 254 |
|
ltletr |
|- ( ( ( n - 1 ) e. RR /\ n e. RR /\ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) e. RR ) -> ( ( ( n - 1 ) < n /\ n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) -> ( n - 1 ) < sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 255 |
253 254
|
mp3an3 |
|- ( ( ( n - 1 ) e. RR /\ n e. RR ) -> ( ( ( n - 1 ) < n /\ n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) -> ( n - 1 ) < sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 256 |
252 255
|
mpancom |
|- ( n e. RR -> ( ( ( n - 1 ) < n /\ n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) -> ( n - 1 ) < sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 257 |
251 256
|
mpand |
|- ( n e. RR -> ( n <_ sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) -> ( n - 1 ) < sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 258 |
100 250 257
|
sylsyld |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) -> ( n - 1 ) < sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 259 |
253
|
ltnri |
|- -. sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) < sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) |
| 260 |
|
breq1 |
|- ( sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) = ( n - 1 ) -> ( sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) < sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) <-> ( n - 1 ) < sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 261 |
259 260
|
mtbii |
|- ( sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) = ( n - 1 ) -> -. ( n - 1 ) < sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) ) |
| 262 |
261
|
necon2ai |
|- ( ( n - 1 ) < sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) =/= ( n - 1 ) ) |
| 263 |
258 262
|
syl6 |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> ( ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) =/= ( n - 1 ) ) ) |
| 264 |
|
eleq1 |
|- ( sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) = ( n - 1 ) -> ( sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) <-> ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) ) ) |
| 265 |
50 264
|
mpbii |
|- ( sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) = ( n - 1 ) -> ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) ) |
| 266 |
265
|
necon3bi |
|- ( -. ( n - 1 ) e. ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) =/= ( n - 1 ) ) |
| 267 |
263 266
|
pm2.61d1 |
|- ( ( ( ph /\ k e. NN ) /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... k ) /\ ( p ` n ) = k ) ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( p oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( p ` b ) =/= 0 ) } ) , RR , < ) =/= ( n - 1 ) ) |
| 268 |
7 17 53 97 267 179
|
poimirlem28 |
|- ( ( ph /\ k e. NN ) -> E. s e. ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) |
| 269 |
|
nn0ex |
|- NN0 e. _V |
| 270 |
|
fzo0ssnn0 |
|- ( 0 ..^ k ) C_ NN0 |
| 271 |
|
mapss |
|- ( ( NN0 e. _V /\ ( 0 ..^ k ) C_ NN0 ) -> ( ( 0 ..^ k ) ^m ( 1 ... N ) ) C_ ( NN0 ^m ( 1 ... N ) ) ) |
| 272 |
269 270 271
|
mp2an |
|- ( ( 0 ..^ k ) ^m ( 1 ... N ) ) C_ ( NN0 ^m ( 1 ... N ) ) |
| 273 |
|
xpss1 |
|- ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) C_ ( NN0 ^m ( 1 ... N ) ) -> ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) C_ ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 274 |
272 273
|
ax-mp |
|- ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) C_ ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 275 |
274
|
sseli |
|- ( s e. ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 276 |
|
xp1st |
|- ( s e. ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` s ) e. ( ( 0 ..^ k ) ^m ( 1 ... N ) ) ) |
| 277 |
|
elmapi |
|- ( ( 1st ` s ) e. ( ( 0 ..^ k ) ^m ( 1 ... N ) ) -> ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ k ) ) |
| 278 |
|
frn |
|- ( ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ k ) -> ran ( 1st ` s ) C_ ( 0 ..^ k ) ) |
| 279 |
276 277 278
|
3syl |
|- ( s e. ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ran ( 1st ` s ) C_ ( 0 ..^ k ) ) |
| 280 |
275 279
|
jca |
|- ( s e. ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ran ( 1st ` s ) C_ ( 0 ..^ k ) ) ) |
| 281 |
280
|
anim1i |
|- ( ( s e. ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) -> ( ( s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ran ( 1st ` s ) C_ ( 0 ..^ k ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 282 |
|
anass |
|- ( ( ( s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ran ( 1st ` s ) C_ ( 0 ..^ k ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) <-> ( s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) ) |
| 283 |
281 282
|
sylib |
|- ( ( s e. ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) -> ( s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) ) |
| 284 |
283
|
reximi2 |
|- ( E. s e. ( ( ( 0 ..^ k ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) -> E. s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 285 |
268 284
|
syl |
|- ( ( ph /\ k e. NN ) -> E. s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 286 |
285
|
ralrimiva |
|- ( ph -> A. k e. NN E. s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 287 |
|
nnex |
|- NN e. _V |
| 288 |
144 269
|
ixpconst |
|- X_ n e. ( 1 ... N ) NN0 = ( NN0 ^m ( 1 ... N ) ) |
| 289 |
|
omelon |
|- _om e. On |
| 290 |
|
nn0ennn |
|- NN0 ~~ NN |
| 291 |
|
nnenom |
|- NN ~~ _om |
| 292 |
290 291
|
entr2i |
|- _om ~~ NN0 |
| 293 |
|
isnumi |
|- ( ( _om e. On /\ _om ~~ NN0 ) -> NN0 e. dom card ) |
| 294 |
289 292 293
|
mp2an |
|- NN0 e. dom card |
| 295 |
294
|
rgenw |
|- A. n e. ( 1 ... N ) NN0 e. dom card |
| 296 |
|
finixpnum |
|- ( ( ( 1 ... N ) e. Fin /\ A. n e. ( 1 ... N ) NN0 e. dom card ) -> X_ n e. ( 1 ... N ) NN0 e. dom card ) |
| 297 |
29 295 296
|
mp2an |
|- X_ n e. ( 1 ... N ) NN0 e. dom card |
| 298 |
288 297
|
eqeltrri |
|- ( NN0 ^m ( 1 ... N ) ) e. dom card |
| 299 |
144 144
|
mapval |
|- ( ( 1 ... N ) ^m ( 1 ... N ) ) = { f | f : ( 1 ... N ) --> ( 1 ... N ) } |
| 300 |
|
mapfi |
|- ( ( ( 1 ... N ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin ) |
| 301 |
29 29 300
|
mp2an |
|- ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin |
| 302 |
299 301
|
eqeltrri |
|- { f | f : ( 1 ... N ) --> ( 1 ... N ) } e. Fin |
| 303 |
|
f1of |
|- ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> f : ( 1 ... N ) --> ( 1 ... N ) ) |
| 304 |
303
|
ss2abi |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ { f | f : ( 1 ... N ) --> ( 1 ... N ) } |
| 305 |
|
ssfi |
|- ( ( { f | f : ( 1 ... N ) --> ( 1 ... N ) } e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ { f | f : ( 1 ... N ) --> ( 1 ... N ) } ) -> { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) |
| 306 |
302 304 305
|
mp2an |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin |
| 307 |
|
finnum |
|- ( { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin -> { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. dom card ) |
| 308 |
306 307
|
ax-mp |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. dom card |
| 309 |
|
xpnum |
|- ( ( ( NN0 ^m ( 1 ... N ) ) e. dom card /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. dom card ) -> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. dom card ) |
| 310 |
298 308 309
|
mp2an |
|- ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. dom card |
| 311 |
|
ssrab2 |
|- { s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) } C_ ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 312 |
311
|
rgenw |
|- A. k e. NN { s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) } C_ ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 313 |
|
ss2iun |
|- ( A. k e. NN { s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) } C_ ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> U_ k e. NN { s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) } C_ U_ k e. NN ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 314 |
312 313
|
ax-mp |
|- U_ k e. NN { s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) } C_ U_ k e. NN ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 315 |
|
1nn |
|- 1 e. NN |
| 316 |
|
ne0i |
|- ( 1 e. NN -> NN =/= (/) ) |
| 317 |
|
iunconst |
|- ( NN =/= (/) -> U_ k e. NN ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) = ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 318 |
315 316 317
|
mp2b |
|- U_ k e. NN ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) = ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 319 |
314 318
|
sseqtri |
|- U_ k e. NN { s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) } C_ ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 320 |
|
ssnum |
|- ( ( ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. dom card /\ U_ k e. NN { s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) } C_ ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> U_ k e. NN { s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) } e. dom card ) |
| 321 |
310 319 320
|
mp2an |
|- U_ k e. NN { s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) } e. dom card |
| 322 |
|
fveq2 |
|- ( s = ( g ` k ) -> ( 1st ` s ) = ( 1st ` ( g ` k ) ) ) |
| 323 |
322
|
rneqd |
|- ( s = ( g ` k ) -> ran ( 1st ` s ) = ran ( 1st ` ( g ` k ) ) ) |
| 324 |
323
|
sseq1d |
|- ( s = ( g ` k ) -> ( ran ( 1st ` s ) C_ ( 0 ..^ k ) <-> ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) ) ) |
| 325 |
|
fveq2 |
|- ( s = ( g ` k ) -> ( 2nd ` s ) = ( 2nd ` ( g ` k ) ) ) |
| 326 |
325
|
imaeq1d |
|- ( s = ( g ` k ) -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) ) |
| 327 |
326
|
xpeq1d |
|- ( s = ( g ` k ) -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 328 |
325
|
imaeq1d |
|- ( s = ( g ` k ) -> ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) ) |
| 329 |
328
|
xpeq1d |
|- ( s = ( g ` k ) -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 330 |
327 329
|
uneq12d |
|- ( s = ( g ` k ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 331 |
322 330
|
oveq12d |
|- ( s = ( g ` k ) -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 332 |
331
|
fvoveq1d |
|- ( s = ( g ` k ) -> ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) = ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ) |
| 333 |
332
|
fveq1d |
|- ( s = ( g ` k ) -> ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) = ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) ) |
| 334 |
333
|
breq2d |
|- ( s = ( g ` k ) -> ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) <-> 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) ) ) |
| 335 |
331
|
fveq1d |
|- ( s = ( g ` k ) -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) = ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) ) |
| 336 |
335
|
neeq1d |
|- ( s = ( g ` k ) -> ( ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 <-> ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) |
| 337 |
334 336
|
anbi12d |
|- ( s = ( g ` k ) -> ( ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) <-> ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) ) |
| 338 |
337
|
ralbidv |
|- ( s = ( g ` k ) -> ( A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) <-> A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) ) |
| 339 |
338
|
rabbidv |
|- ( s = ( g ` k ) -> { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } = { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) |
| 340 |
339
|
uneq2d |
|- ( s = ( g ` k ) -> ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) = ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) ) |
| 341 |
340
|
supeq1d |
|- ( s = ( g ` k ) -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) |
| 342 |
341
|
eqeq2d |
|- ( s = ( g ` k ) -> ( i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) <-> i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 343 |
342
|
rexbidv |
|- ( s = ( g ` k ) -> ( E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) <-> E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 344 |
343
|
ralbidv |
|- ( s = ( g ` k ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 345 |
324 344
|
anbi12d |
|- ( s = ( g ` k ) -> ( ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) <-> ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) ) |
| 346 |
345
|
ac6num |
|- ( ( NN e. _V /\ U_ k e. NN { s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) } e. dom card /\ A. k e. NN E. s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) -> E. g ( g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) ) |
| 347 |
287 321 346
|
mp3an12 |
|- ( A. k e. NN E. s e. ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( ran ( 1st ` s ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) -> E. g ( g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) ) |
| 348 |
286 347
|
syl |
|- ( ph -> E. g ( g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) ) |
| 349 |
1
|
ad2antrr |
|- ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) -> N e. NN ) |
| 350 |
4
|
ad2antrr |
|- ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) -> F e. ( ( R |`t I ) Cn R ) ) |
| 351 |
|
eqid |
|- ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` n ) = ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` n ) |
| 352 |
|
simplr |
|- ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) -> g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 353 |
|
simpl |
|- ( ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) -> ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) ) |
| 354 |
353
|
ralimi |
|- ( A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) -> A. k e. NN ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) ) |
| 355 |
354
|
adantl |
|- ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) -> A. k e. NN ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) ) |
| 356 |
|
2fveq3 |
|- ( k = p -> ( 1st ` ( g ` k ) ) = ( 1st ` ( g ` p ) ) ) |
| 357 |
356
|
rneqd |
|- ( k = p -> ran ( 1st ` ( g ` k ) ) = ran ( 1st ` ( g ` p ) ) ) |
| 358 |
|
oveq2 |
|- ( k = p -> ( 0 ..^ k ) = ( 0 ..^ p ) ) |
| 359 |
357 358
|
sseq12d |
|- ( k = p -> ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) <-> ran ( 1st ` ( g ` p ) ) C_ ( 0 ..^ p ) ) ) |
| 360 |
359
|
rspccva |
|- ( ( A. k e. NN ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ p e. NN ) -> ran ( 1st ` ( g ` p ) ) C_ ( 0 ..^ p ) ) |
| 361 |
355 360
|
sylan |
|- ( ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) /\ p e. NN ) -> ran ( 1st ` ( g ` p ) ) C_ ( 0 ..^ p ) ) |
| 362 |
|
simpll |
|- ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) -> ph ) |
| 363 |
362 5
|
sylan |
|- ( ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 0 ) ) -> ( ( F ` z ) ` n ) <_ 0 ) |
| 364 |
|
eqid |
|- ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 365 |
|
simpr |
|- ( ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) -> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) |
| 366 |
365
|
ralimi |
|- ( A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) -> A. k e. NN A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) |
| 367 |
366
|
adantl |
|- ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) -> A. k e. NN A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) |
| 368 |
|
2fveq3 |
|- ( k = p -> ( 2nd ` ( g ` k ) ) = ( 2nd ` ( g ` p ) ) ) |
| 369 |
368
|
imaeq1d |
|- ( k = p -> ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) ) |
| 370 |
369
|
xpeq1d |
|- ( k = p -> ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 371 |
368
|
imaeq1d |
|- ( k = p -> ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) ) |
| 372 |
371
|
xpeq1d |
|- ( k = p -> ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 373 |
370 372
|
uneq12d |
|- ( k = p -> ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 374 |
356 373
|
oveq12d |
|- ( k = p -> ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 375 |
|
sneq |
|- ( k = p -> { k } = { p } ) |
| 376 |
375
|
xpeq2d |
|- ( k = p -> ( ( 1 ... N ) X. { k } ) = ( ( 1 ... N ) X. { p } ) ) |
| 377 |
374 376
|
oveq12d |
|- ( k = p -> ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) = ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) |
| 378 |
377
|
fveq2d |
|- ( k = p -> ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) = ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ) |
| 379 |
378
|
fveq1d |
|- ( k = p -> ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) = ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) ) |
| 380 |
379
|
breq2d |
|- ( k = p -> ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) <-> 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) ) ) |
| 381 |
374
|
fveq1d |
|- ( k = p -> ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) = ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) ) |
| 382 |
381
|
neeq1d |
|- ( k = p -> ( ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 <-> ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) |
| 383 |
380 382
|
anbi12d |
|- ( k = p -> ( ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) <-> ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) ) |
| 384 |
383
|
ralbidv |
|- ( k = p -> ( A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) <-> A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) ) |
| 385 |
384
|
rabbidv |
|- ( k = p -> { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } = { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) |
| 386 |
385
|
uneq2d |
|- ( k = p -> ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) = ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) ) |
| 387 |
386
|
supeq1d |
|- ( k = p -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) |
| 388 |
387
|
eqeq2d |
|- ( k = p -> ( i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) <-> i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 389 |
388
|
rexbidv |
|- ( k = p -> ( E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) <-> E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 390 |
|
eqeq1 |
|- ( i = q -> ( i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) <-> q = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 391 |
390
|
rexbidv |
|- ( i = q -> ( E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) <-> E. j e. ( 0 ... N ) q = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 392 |
|
oveq2 |
|- ( j = m -> ( 1 ... j ) = ( 1 ... m ) ) |
| 393 |
392
|
imaeq2d |
|- ( j = m -> ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) ) |
| 394 |
393
|
xpeq1d |
|- ( j = m -> ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) ) |
| 395 |
|
oveq1 |
|- ( j = m -> ( j + 1 ) = ( m + 1 ) ) |
| 396 |
395
|
oveq1d |
|- ( j = m -> ( ( j + 1 ) ... N ) = ( ( m + 1 ) ... N ) ) |
| 397 |
396
|
imaeq2d |
|- ( j = m -> ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) ) |
| 398 |
397
|
xpeq1d |
|- ( j = m -> ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) |
| 399 |
394 398
|
uneq12d |
|- ( j = m -> ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 400 |
399
|
oveq2d |
|- ( j = m -> ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 401 |
400
|
fvoveq1d |
|- ( j = m -> ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) = ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ) |
| 402 |
401
|
fveq1d |
|- ( j = m -> ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) = ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) ) |
| 403 |
402
|
breq2d |
|- ( j = m -> ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) <-> 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) ) ) |
| 404 |
400
|
fveq1d |
|- ( j = m -> ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) = ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) ) |
| 405 |
404
|
neeq1d |
|- ( j = m -> ( ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 <-> ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) |
| 406 |
403 405
|
anbi12d |
|- ( j = m -> ( ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) <-> ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) ) |
| 407 |
406
|
ralbidv |
|- ( j = m -> ( A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) <-> A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) ) ) |
| 408 |
407
|
rabbidv |
|- ( j = m -> { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } = { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) |
| 409 |
408
|
uneq2d |
|- ( j = m -> ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) = ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) ) |
| 410 |
409
|
supeq1d |
|- ( j = m -> sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) |
| 411 |
410
|
eqeq2d |
|- ( j = m -> ( q = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) <-> q = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 412 |
411
|
cbvrexvw |
|- ( E. j e. ( 0 ... N ) q = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) <-> E. m e. ( 0 ... N ) q = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) |
| 413 |
391 412
|
bitrdi |
|- ( i = q -> ( E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) <-> E. m e. ( 0 ... N ) q = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 414 |
389 413
|
rspc2v |
|- ( ( p e. NN /\ q e. ( 0 ... N ) ) -> ( A. k e. NN A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) -> E. m e. ( 0 ... N ) q = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) |
| 415 |
367 414
|
mpan9 |
|- ( ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) /\ ( p e. NN /\ q e. ( 0 ... N ) ) ) -> E. m e. ( 0 ... N ) q = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) |
| 416 |
349 2 3 350 363 364 352 361 415
|
poimirlem31 |
|- ( ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) /\ ( p e. NN /\ n e. ( 1 ... N ) /\ r e. { <_ , `' <_ } ) ) -> E. m e. ( 0 ... N ) 0 r ( ( F ` ( ( ( 1st ` ( g ` p ) ) oF + ( ( ( ( 2nd ` ( g ` p ) ) " ( 1 ... m ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` p ) ) " ( ( m + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { p } ) ) ) ` n ) ) |
| 417 |
349 2 3 350 351 352 361 416
|
poimirlem30 |
|- ( ( ( ph /\ g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) -> E. c e. I A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( c e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 418 |
417
|
anasss |
|- ( ( ph /\ ( g : NN --> ( ( NN0 ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. k e. NN ( ran ( 1st ` ( g ` k ) ) C_ ( 0 ..^ k ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = sup ( ( { 0 } u. { a e. ( 1 ... N ) | A. b e. ( 1 ... a ) ( 0 <_ ( ( F ` ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) oF / ( ( 1 ... N ) X. { k } ) ) ) ` b ) /\ ( ( ( 1st ` ( g ` k ) ) oF + ( ( ( ( 2nd ` ( g ` k ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( g ` k ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` b ) =/= 0 ) } ) , RR , < ) ) ) ) -> E. c e. I A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( c e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |
| 419 |
348 418
|
exlimddv |
|- ( ph -> E. c e. I A. n e. ( 1 ... N ) A. v e. ( R |`t I ) ( c e. v -> A. r e. { <_ , `' <_ } E. z e. v 0 r ( ( F ` z ) ` n ) ) ) |