| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem28.1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) |
| 3 |
|
poimirlem28.2 |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
| 4 |
|
poimirlem28.3 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n ) |
| 5 |
|
poimirlem28.4 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> B =/= ( n - 1 ) ) |
| 6 |
|
poimirlem28.5 |
|- ( ph -> K e. NN ) |
| 7 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 8 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 9 |
8
|
leidd |
|- ( ph -> N <_ N ) |
| 10 |
7 7 9
|
3jca |
|- ( ph -> ( N e. NN0 /\ N e. NN0 /\ N <_ N ) ) |
| 11 |
|
oveq2 |
|- ( k = 0 -> ( 1 ... k ) = ( 1 ... 0 ) ) |
| 12 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
| 13 |
11 12
|
eqtrdi |
|- ( k = 0 -> ( 1 ... k ) = (/) ) |
| 14 |
13
|
oveq2d |
|- ( k = 0 -> ( ( 0 ..^ K ) ^m ( 1 ... k ) ) = ( ( 0 ..^ K ) ^m (/) ) ) |
| 15 |
|
fzofi |
|- ( 0 ..^ K ) e. Fin |
| 16 |
|
map0e |
|- ( ( 0 ..^ K ) e. Fin -> ( ( 0 ..^ K ) ^m (/) ) = 1o ) |
| 17 |
15 16
|
ax-mp |
|- ( ( 0 ..^ K ) ^m (/) ) = 1o |
| 18 |
|
df1o2 |
|- 1o = { (/) } |
| 19 |
17 18
|
eqtri |
|- ( ( 0 ..^ K ) ^m (/) ) = { (/) } |
| 20 |
14 19
|
eqtrdi |
|- ( k = 0 -> ( ( 0 ..^ K ) ^m ( 1 ... k ) ) = { (/) } ) |
| 21 |
|
eqidd |
|- ( k = 0 -> f = f ) |
| 22 |
21 13 13
|
f1oeq123d |
|- ( k = 0 -> ( f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) <-> f : (/) -1-1-onto-> (/) ) ) |
| 23 |
|
eqid |
|- (/) = (/) |
| 24 |
|
f1o00 |
|- ( f : (/) -1-1-onto-> (/) <-> ( f = (/) /\ (/) = (/) ) ) |
| 25 |
23 24
|
mpbiran2 |
|- ( f : (/) -1-1-onto-> (/) <-> f = (/) ) |
| 26 |
22 25
|
bitrdi |
|- ( k = 0 -> ( f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) <-> f = (/) ) ) |
| 27 |
26
|
abbidv |
|- ( k = 0 -> { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } = { f | f = (/) } ) |
| 28 |
|
df-sn |
|- { (/) } = { f | f = (/) } |
| 29 |
27 28
|
eqtr4di |
|- ( k = 0 -> { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } = { (/) } ) |
| 30 |
20 29
|
xpeq12d |
|- ( k = 0 -> ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) = ( { (/) } X. { (/) } ) ) |
| 31 |
|
0ex |
|- (/) e. _V |
| 32 |
31 31
|
xpsn |
|- ( { (/) } X. { (/) } ) = { <. (/) , (/) >. } |
| 33 |
30 32
|
eqtr2di |
|- ( k = 0 -> { <. (/) , (/) >. } = ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) ) |
| 34 |
|
elsni |
|- ( s e. { <. (/) , (/) >. } -> s = <. (/) , (/) >. ) |
| 35 |
31 31
|
op1std |
|- ( s = <. (/) , (/) >. -> ( 1st ` s ) = (/) ) |
| 36 |
34 35
|
syl |
|- ( s e. { <. (/) , (/) >. } -> ( 1st ` s ) = (/) ) |
| 37 |
36
|
oveq1d |
|- ( s e. { <. (/) , (/) >. } -> ( ( 1st ` s ) oF + (/) ) = ( (/) oF + (/) ) ) |
| 38 |
|
f0 |
|- (/) : (/) --> (/) |
| 39 |
|
ffn |
|- ( (/) : (/) --> (/) -> (/) Fn (/) ) |
| 40 |
38 39
|
mp1i |
|- ( s e. { <. (/) , (/) >. } -> (/) Fn (/) ) |
| 41 |
31
|
a1i |
|- ( s e. { <. (/) , (/) >. } -> (/) e. _V ) |
| 42 |
|
inidm |
|- ( (/) i^i (/) ) = (/) |
| 43 |
|
0fv |
|- ( (/) ` n ) = (/) |
| 44 |
43
|
a1i |
|- ( ( s e. { <. (/) , (/) >. } /\ n e. (/) ) -> ( (/) ` n ) = (/) ) |
| 45 |
40 40 41 41 42 44 44
|
offval |
|- ( s e. { <. (/) , (/) >. } -> ( (/) oF + (/) ) = ( n e. (/) |-> ( (/) + (/) ) ) ) |
| 46 |
|
mpt0 |
|- ( n e. (/) |-> ( (/) + (/) ) ) = (/) |
| 47 |
45 46
|
eqtrdi |
|- ( s e. { <. (/) , (/) >. } -> ( (/) oF + (/) ) = (/) ) |
| 48 |
37 47
|
eqtrd |
|- ( s e. { <. (/) , (/) >. } -> ( ( 1st ` s ) oF + (/) ) = (/) ) |
| 49 |
48
|
uneq1d |
|- ( s e. { <. (/) , (/) >. } -> ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) = ( (/) u. ( ( 1 ... N ) X. { 0 } ) ) ) |
| 50 |
|
uncom |
|- ( (/) u. ( ( 1 ... N ) X. { 0 } ) ) = ( ( ( 1 ... N ) X. { 0 } ) u. (/) ) |
| 51 |
|
un0 |
|- ( ( ( 1 ... N ) X. { 0 } ) u. (/) ) = ( ( 1 ... N ) X. { 0 } ) |
| 52 |
50 51
|
eqtri |
|- ( (/) u. ( ( 1 ... N ) X. { 0 } ) ) = ( ( 1 ... N ) X. { 0 } ) |
| 53 |
49 52
|
eqtr2di |
|- ( s e. { <. (/) , (/) >. } -> ( ( 1 ... N ) X. { 0 } ) = ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) ) |
| 54 |
53
|
csbeq1d |
|- ( s e. { <. (/) , (/) >. } -> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) |
| 55 |
54
|
eqeq2d |
|- ( s e. { <. (/) , (/) >. } -> ( 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B <-> 0 = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 56 |
|
oveq2 |
|- ( k = 0 -> ( 0 ... k ) = ( 0 ... 0 ) ) |
| 57 |
|
0z |
|- 0 e. ZZ |
| 58 |
|
fzsn |
|- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
| 59 |
57 58
|
ax-mp |
|- ( 0 ... 0 ) = { 0 } |
| 60 |
56 59
|
eqtrdi |
|- ( k = 0 -> ( 0 ... k ) = { 0 } ) |
| 61 |
|
oveq2 |
|- ( k = 0 -> ( ( j + 1 ) ... k ) = ( ( j + 1 ) ... 0 ) ) |
| 62 |
61
|
imaeq2d |
|- ( k = 0 -> ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) = ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) ) |
| 63 |
62
|
xpeq1d |
|- ( k = 0 -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) = ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) |
| 64 |
63
|
uneq2d |
|- ( k = 0 -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) |
| 65 |
64
|
oveq2d |
|- ( k = 0 -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) ) |
| 66 |
|
oveq1 |
|- ( k = 0 -> ( k + 1 ) = ( 0 + 1 ) ) |
| 67 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 68 |
66 67
|
eqtrdi |
|- ( k = 0 -> ( k + 1 ) = 1 ) |
| 69 |
68
|
oveq1d |
|- ( k = 0 -> ( ( k + 1 ) ... N ) = ( 1 ... N ) ) |
| 70 |
69
|
xpeq1d |
|- ( k = 0 -> ( ( ( k + 1 ) ... N ) X. { 0 } ) = ( ( 1 ... N ) X. { 0 } ) ) |
| 71 |
65 70
|
uneq12d |
|- ( k = 0 -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) ) |
| 72 |
71
|
csbeq1d |
|- ( k = 0 -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) |
| 73 |
72
|
eqeq2d |
|- ( k = 0 -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 74 |
60 73
|
rexeqbidv |
|- ( k = 0 -> ( E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. { 0 } i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 75 |
|
c0ex |
|- 0 e. _V |
| 76 |
|
oveq2 |
|- ( j = 0 -> ( 1 ... j ) = ( 1 ... 0 ) ) |
| 77 |
76 12
|
eqtrdi |
|- ( j = 0 -> ( 1 ... j ) = (/) ) |
| 78 |
77
|
imaeq2d |
|- ( j = 0 -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` s ) " (/) ) ) |
| 79 |
|
ima0 |
|- ( ( 2nd ` s ) " (/) ) = (/) |
| 80 |
78 79
|
eqtrdi |
|- ( j = 0 -> ( ( 2nd ` s ) " ( 1 ... j ) ) = (/) ) |
| 81 |
80
|
xpeq1d |
|- ( j = 0 -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( (/) X. { 1 } ) ) |
| 82 |
|
0xp |
|- ( (/) X. { 1 } ) = (/) |
| 83 |
81 82
|
eqtrdi |
|- ( j = 0 -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = (/) ) |
| 84 |
|
oveq1 |
|- ( j = 0 -> ( j + 1 ) = ( 0 + 1 ) ) |
| 85 |
84 67
|
eqtrdi |
|- ( j = 0 -> ( j + 1 ) = 1 ) |
| 86 |
85
|
oveq1d |
|- ( j = 0 -> ( ( j + 1 ) ... 0 ) = ( 1 ... 0 ) ) |
| 87 |
86 12
|
eqtrdi |
|- ( j = 0 -> ( ( j + 1 ) ... 0 ) = (/) ) |
| 88 |
87
|
imaeq2d |
|- ( j = 0 -> ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) = ( ( 2nd ` s ) " (/) ) ) |
| 89 |
88 79
|
eqtrdi |
|- ( j = 0 -> ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) = (/) ) |
| 90 |
89
|
xpeq1d |
|- ( j = 0 -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) = ( (/) X. { 0 } ) ) |
| 91 |
|
0xp |
|- ( (/) X. { 0 } ) = (/) |
| 92 |
90 91
|
eqtrdi |
|- ( j = 0 -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) = (/) ) |
| 93 |
83 92
|
uneq12d |
|- ( j = 0 -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) = ( (/) u. (/) ) ) |
| 94 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
| 95 |
93 94
|
eqtrdi |
|- ( j = 0 -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) = (/) ) |
| 96 |
95
|
oveq2d |
|- ( j = 0 -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) = ( ( 1st ` s ) oF + (/) ) ) |
| 97 |
96
|
uneq1d |
|- ( j = 0 -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) ) |
| 98 |
97
|
csbeq1d |
|- ( j = 0 -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) |
| 99 |
98
|
eqeq2d |
|- ( j = 0 -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 100 |
75 99
|
rexsn |
|- ( E. j e. { 0 } i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) |
| 101 |
74 100
|
bitrdi |
|- ( k = 0 -> ( E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 102 |
60 101
|
raleqbidv |
|- ( k = 0 -> ( A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. { 0 } i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 103 |
|
eqeq1 |
|- ( i = 0 -> ( i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B <-> 0 = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 104 |
75 103
|
ralsn |
|- ( A. i e. { 0 } i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B <-> 0 = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) |
| 105 |
102 104
|
bitr2di |
|- ( k = 0 -> ( 0 = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 106 |
55 105
|
sylan9bbr |
|- ( ( k = 0 /\ s e. { <. (/) , (/) >. } ) -> ( 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B <-> A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 107 |
33 106
|
rabeqbidva |
|- ( k = 0 -> { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) |
| 108 |
107
|
eqcomd |
|- ( k = 0 -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } = { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) |
| 109 |
108
|
fveq2d |
|- ( k = 0 -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) |
| 110 |
109
|
breq2d |
|- ( k = 0 -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) ) |
| 111 |
110
|
notbid |
|- ( k = 0 -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> -. 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) ) |
| 112 |
111
|
imbi2d |
|- ( k = 0 -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) <-> ( ph -> -. 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) ) ) |
| 113 |
|
oveq2 |
|- ( k = m -> ( 1 ... k ) = ( 1 ... m ) ) |
| 114 |
113
|
oveq2d |
|- ( k = m -> ( ( 0 ..^ K ) ^m ( 1 ... k ) ) = ( ( 0 ..^ K ) ^m ( 1 ... m ) ) ) |
| 115 |
|
eqidd |
|- ( k = m -> f = f ) |
| 116 |
115 113 113
|
f1oeq123d |
|- ( k = m -> ( f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) <-> f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) ) ) |
| 117 |
116
|
abbidv |
|- ( k = m -> { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } = { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) |
| 118 |
114 117
|
xpeq12d |
|- ( k = m -> ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) = ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) ) |
| 119 |
|
oveq2 |
|- ( k = m -> ( 0 ... k ) = ( 0 ... m ) ) |
| 120 |
|
oveq2 |
|- ( k = m -> ( ( j + 1 ) ... k ) = ( ( j + 1 ) ... m ) ) |
| 121 |
120
|
imaeq2d |
|- ( k = m -> ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) = ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) ) |
| 122 |
121
|
xpeq1d |
|- ( k = m -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) = ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) |
| 123 |
122
|
uneq2d |
|- ( k = m -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) |
| 124 |
123
|
oveq2d |
|- ( k = m -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) ) |
| 125 |
|
oveq1 |
|- ( k = m -> ( k + 1 ) = ( m + 1 ) ) |
| 126 |
125
|
oveq1d |
|- ( k = m -> ( ( k + 1 ) ... N ) = ( ( m + 1 ) ... N ) ) |
| 127 |
126
|
xpeq1d |
|- ( k = m -> ( ( ( k + 1 ) ... N ) X. { 0 } ) = ( ( ( m + 1 ) ... N ) X. { 0 } ) ) |
| 128 |
124 127
|
uneq12d |
|- ( k = m -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) ) |
| 129 |
128
|
csbeq1d |
|- ( k = m -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 130 |
129
|
eqeq2d |
|- ( k = m -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 131 |
119 130
|
rexeqbidv |
|- ( k = m -> ( E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 132 |
119 131
|
raleqbidv |
|- ( k = m -> ( A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 133 |
118 132
|
rabeqbidv |
|- ( k = m -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) |
| 134 |
133
|
fveq2d |
|- ( k = m -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) |
| 135 |
134
|
breq2d |
|- ( k = m -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 136 |
135
|
notbid |
|- ( k = m -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 137 |
136
|
imbi2d |
|- ( k = m -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) <-> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
| 138 |
|
oveq2 |
|- ( k = ( m + 1 ) -> ( 1 ... k ) = ( 1 ... ( m + 1 ) ) ) |
| 139 |
138
|
oveq2d |
|- ( k = ( m + 1 ) -> ( ( 0 ..^ K ) ^m ( 1 ... k ) ) = ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) ) |
| 140 |
|
eqidd |
|- ( k = ( m + 1 ) -> f = f ) |
| 141 |
140 138 138
|
f1oeq123d |
|- ( k = ( m + 1 ) -> ( f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) <-> f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) ) ) |
| 142 |
141
|
abbidv |
|- ( k = ( m + 1 ) -> { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } = { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) |
| 143 |
139 142
|
xpeq12d |
|- ( k = ( m + 1 ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) = ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) ) |
| 144 |
|
oveq2 |
|- ( k = ( m + 1 ) -> ( 0 ... k ) = ( 0 ... ( m + 1 ) ) ) |
| 145 |
|
oveq2 |
|- ( k = ( m + 1 ) -> ( ( j + 1 ) ... k ) = ( ( j + 1 ) ... ( m + 1 ) ) ) |
| 146 |
145
|
imaeq2d |
|- ( k = ( m + 1 ) -> ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) = ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) ) |
| 147 |
146
|
xpeq1d |
|- ( k = ( m + 1 ) -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) = ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) |
| 148 |
147
|
uneq2d |
|- ( k = ( m + 1 ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) |
| 149 |
148
|
oveq2d |
|- ( k = ( m + 1 ) -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) ) |
| 150 |
|
oveq1 |
|- ( k = ( m + 1 ) -> ( k + 1 ) = ( ( m + 1 ) + 1 ) ) |
| 151 |
150
|
oveq1d |
|- ( k = ( m + 1 ) -> ( ( k + 1 ) ... N ) = ( ( ( m + 1 ) + 1 ) ... N ) ) |
| 152 |
151
|
xpeq1d |
|- ( k = ( m + 1 ) -> ( ( ( k + 1 ) ... N ) X. { 0 } ) = ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
| 153 |
149 152
|
uneq12d |
|- ( k = ( m + 1 ) -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 154 |
153
|
csbeq1d |
|- ( k = ( m + 1 ) -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 155 |
154
|
eqeq2d |
|- ( k = ( m + 1 ) -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 156 |
144 155
|
rexeqbidv |
|- ( k = ( m + 1 ) -> ( E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 157 |
144 156
|
raleqbidv |
|- ( k = ( m + 1 ) -> ( A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 158 |
143 157
|
rabeqbidv |
|- ( k = ( m + 1 ) -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) |
| 159 |
158
|
fveq2d |
|- ( k = ( m + 1 ) -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) |
| 160 |
159
|
breq2d |
|- ( k = ( m + 1 ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 161 |
160
|
notbid |
|- ( k = ( m + 1 ) -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 162 |
161
|
imbi2d |
|- ( k = ( m + 1 ) -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) <-> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
| 163 |
|
oveq2 |
|- ( k = N -> ( 1 ... k ) = ( 1 ... N ) ) |
| 164 |
163
|
oveq2d |
|- ( k = N -> ( ( 0 ..^ K ) ^m ( 1 ... k ) ) = ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 165 |
|
eqidd |
|- ( k = N -> f = f ) |
| 166 |
165 163 163
|
f1oeq123d |
|- ( k = N -> ( f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) <-> f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 167 |
166
|
abbidv |
|- ( k = N -> { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } = { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 168 |
164 167
|
xpeq12d |
|- ( k = N -> ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) = ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 169 |
|
oveq2 |
|- ( k = N -> ( 0 ... k ) = ( 0 ... N ) ) |
| 170 |
|
oveq2 |
|- ( k = N -> ( ( j + 1 ) ... k ) = ( ( j + 1 ) ... N ) ) |
| 171 |
170
|
imaeq2d |
|- ( k = N -> ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) = ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) |
| 172 |
171
|
xpeq1d |
|- ( k = N -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) = ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 173 |
172
|
uneq2d |
|- ( k = N -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 174 |
173
|
oveq2d |
|- ( k = N -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 175 |
|
oveq1 |
|- ( k = N -> ( k + 1 ) = ( N + 1 ) ) |
| 176 |
175
|
oveq1d |
|- ( k = N -> ( ( k + 1 ) ... N ) = ( ( N + 1 ) ... N ) ) |
| 177 |
176
|
xpeq1d |
|- ( k = N -> ( ( ( k + 1 ) ... N ) X. { 0 } ) = ( ( ( N + 1 ) ... N ) X. { 0 } ) ) |
| 178 |
174 177
|
uneq12d |
|- ( k = N -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) ) |
| 179 |
178
|
csbeq1d |
|- ( k = N -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 180 |
179
|
eqeq2d |
|- ( k = N -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 181 |
169 180
|
rexeqbidv |
|- ( k = N -> ( E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 182 |
169 181
|
raleqbidv |
|- ( k = N -> ( A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 183 |
168 182
|
rabeqbidv |
|- ( k = N -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) |
| 184 |
183
|
fveq2d |
|- ( k = N -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) |
| 185 |
184
|
breq2d |
|- ( k = N -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 186 |
185
|
notbid |
|- ( k = N -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 187 |
186
|
imbi2d |
|- ( k = N -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) <-> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
| 188 |
|
n2dvds1 |
|- -. 2 || 1 |
| 189 |
|
opex |
|- <. (/) , (/) >. e. _V |
| 190 |
|
hashsng |
|- ( <. (/) , (/) >. e. _V -> ( # ` { <. (/) , (/) >. } ) = 1 ) |
| 191 |
189 190
|
ax-mp |
|- ( # ` { <. (/) , (/) >. } ) = 1 |
| 192 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 193 |
1 192
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 194 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
| 195 |
193 194
|
syl |
|- ( ph -> 1 e. ( 1 ... N ) ) |
| 196 |
6
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
| 197 |
|
0elfz |
|- ( K e. NN0 -> 0 e. ( 0 ... K ) ) |
| 198 |
|
fconst6g |
|- ( 0 e. ( 0 ... K ) -> ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 199 |
196 197 198
|
3syl |
|- ( ph -> ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 200 |
75
|
fvconst2 |
|- ( 1 e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) |
| 201 |
195 200
|
syl |
|- ( ph -> ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) |
| 202 |
195 199 201
|
3jca |
|- ( ph -> ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) |
| 203 |
|
nfv |
|- F/ p ( ph /\ ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) |
| 204 |
|
nfcsb1v |
|- F/_ p [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B |
| 205 |
204
|
nfeq1 |
|- F/ p [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 |
| 206 |
203 205
|
nfim |
|- F/ p ( ( ph /\ ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) -> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 ) |
| 207 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 208 |
|
snex |
|- { 0 } e. _V |
| 209 |
207 208
|
xpex |
|- ( ( 1 ... N ) X. { 0 } ) e. _V |
| 210 |
|
feq1 |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) <-> ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
| 211 |
|
fveq1 |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( p ` 1 ) = ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) ) |
| 212 |
211
|
eqeq1d |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( ( p ` 1 ) = 0 <-> ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) |
| 213 |
210 212
|
3anbi23d |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) <-> ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) ) |
| 214 |
213
|
anbi2d |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) <-> ( ph /\ ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) ) ) |
| 215 |
|
csbeq1a |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> B = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B ) |
| 216 |
215
|
eqeq1d |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( B = 0 <-> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 ) ) |
| 217 |
214 216
|
imbi12d |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) -> B = 0 ) <-> ( ( ph /\ ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) -> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 ) ) ) |
| 218 |
|
1ex |
|- 1 e. _V |
| 219 |
|
eleq1 |
|- ( n = 1 -> ( n e. ( 1 ... N ) <-> 1 e. ( 1 ... N ) ) ) |
| 220 |
|
fveqeq2 |
|- ( n = 1 -> ( ( p ` n ) = 0 <-> ( p ` 1 ) = 0 ) ) |
| 221 |
219 220
|
3anbi13d |
|- ( n = 1 -> ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) <-> ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) ) |
| 222 |
221
|
anbi2d |
|- ( n = 1 -> ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) <-> ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) ) ) |
| 223 |
|
breq2 |
|- ( n = 1 -> ( B < n <-> B < 1 ) ) |
| 224 |
222 223
|
imbi12d |
|- ( n = 1 -> ( ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n ) <-> ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) -> B < 1 ) ) ) |
| 225 |
218 224 4
|
vtocl |
|- ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) -> B < 1 ) |
| 226 |
|
elfznn0 |
|- ( B e. ( 0 ... N ) -> B e. NN0 ) |
| 227 |
|
nn0lt10b |
|- ( B e. NN0 -> ( B < 1 <-> B = 0 ) ) |
| 228 |
3 226 227
|
3syl |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( B < 1 <-> B = 0 ) ) |
| 229 |
228
|
3ad2antr2 |
|- ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) -> ( B < 1 <-> B = 0 ) ) |
| 230 |
225 229
|
mpbid |
|- ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) -> B = 0 ) |
| 231 |
206 209 217 230
|
vtoclf |
|- ( ( ph /\ ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) -> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 ) |
| 232 |
202 231
|
mpdan |
|- ( ph -> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 ) |
| 233 |
232
|
eqcomd |
|- ( ph -> 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B ) |
| 234 |
233
|
ralrimivw |
|- ( ph -> A. s e. { <. (/) , (/) >. } 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B ) |
| 235 |
|
rabid2 |
|- ( { <. (/) , (/) >. } = { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } <-> A. s e. { <. (/) , (/) >. } 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B ) |
| 236 |
234 235
|
sylibr |
|- ( ph -> { <. (/) , (/) >. } = { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) |
| 237 |
236
|
fveq2d |
|- ( ph -> ( # ` { <. (/) , (/) >. } ) = ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) |
| 238 |
191 237
|
eqtr3id |
|- ( ph -> 1 = ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) |
| 239 |
238
|
breq2d |
|- ( ph -> ( 2 || 1 <-> 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) ) |
| 240 |
188 239
|
mtbii |
|- ( ph -> -. 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) |
| 241 |
240
|
a1i |
|- ( N e. NN0 -> ( ph -> -. 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) ) |
| 242 |
|
2z |
|- 2 e. ZZ |
| 243 |
|
fzfi |
|- ( 1 ... ( m + 1 ) ) e. Fin |
| 244 |
|
mapfi |
|- ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... ( m + 1 ) ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) e. Fin ) |
| 245 |
15 243 244
|
mp2an |
|- ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) e. Fin |
| 246 |
|
ovex |
|- ( 1 ... ( m + 1 ) ) e. _V |
| 247 |
246 246
|
mapval |
|- ( ( 1 ... ( m + 1 ) ) ^m ( 1 ... ( m + 1 ) ) ) = { f | f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) } |
| 248 |
|
mapfi |
|- ( ( ( 1 ... ( m + 1 ) ) e. Fin /\ ( 1 ... ( m + 1 ) ) e. Fin ) -> ( ( 1 ... ( m + 1 ) ) ^m ( 1 ... ( m + 1 ) ) ) e. Fin ) |
| 249 |
243 243 248
|
mp2an |
|- ( ( 1 ... ( m + 1 ) ) ^m ( 1 ... ( m + 1 ) ) ) e. Fin |
| 250 |
247 249
|
eqeltrri |
|- { f | f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) } e. Fin |
| 251 |
|
f1of |
|- ( f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) -> f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) ) |
| 252 |
251
|
ss2abi |
|- { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } C_ { f | f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) } |
| 253 |
|
ssfi |
|- ( ( { f | f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) } e. Fin /\ { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } C_ { f | f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) } ) -> { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } e. Fin ) |
| 254 |
250 252 253
|
mp2an |
|- { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } e. Fin |
| 255 |
|
xpfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) e. Fin /\ { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin ) |
| 256 |
245 254 255
|
mp2an |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin |
| 257 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin ) |
| 258 |
|
hashcl |
|- ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. NN0 ) |
| 259 |
256 257 258
|
mp2b |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. NN0 |
| 260 |
259
|
nn0zi |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ |
| 261 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } e. Fin ) |
| 262 |
|
hashcl |
|- ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } e. Fin -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. NN0 ) |
| 263 |
256 261 262
|
mp2b |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. NN0 |
| 264 |
263
|
nn0zi |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. ZZ |
| 265 |
242 260 264
|
3pm3.2i |
|- ( 2 e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. ZZ ) |
| 266 |
|
nn0p1nn |
|- ( m e. NN0 -> ( m + 1 ) e. NN ) |
| 267 |
266
|
ad2antrl |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( m + 1 ) e. NN ) |
| 268 |
|
uneq1 |
|- ( q = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 269 |
268
|
csbeq1d |
|- ( q = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 270 |
75
|
fconst |
|- ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) : ( ( ( m + 1 ) + 1 ) ... N ) --> { 0 } |
| 271 |
270
|
jctr |
|- ( q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) -> ( q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) : ( ( ( m + 1 ) + 1 ) ... N ) --> { 0 } ) ) |
| 272 |
266
|
nnred |
|- ( m e. NN0 -> ( m + 1 ) e. RR ) |
| 273 |
272
|
ltp1d |
|- ( m e. NN0 -> ( m + 1 ) < ( ( m + 1 ) + 1 ) ) |
| 274 |
|
fzdisj |
|- ( ( m + 1 ) < ( ( m + 1 ) + 1 ) -> ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) ) |
| 275 |
273 274
|
syl |
|- ( m e. NN0 -> ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) ) |
| 276 |
|
fun |
|- ( ( ( q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) : ( ( ( m + 1 ) + 1 ) ... N ) --> { 0 } ) /\ ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) ) |
| 277 |
271 275 276
|
syl2anr |
|- ( ( m e. NN0 /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) ) |
| 278 |
277
|
adantlr |
|- ( ( ( m e. NN0 /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) ) |
| 279 |
278
|
adantl |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) ) |
| 280 |
266
|
peano2nnd |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) e. NN ) |
| 281 |
280 192
|
eleqtrdi |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 282 |
281
|
ad2antrl |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( ( m + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 283 |
|
nn0z |
|- ( m e. NN0 -> m e. ZZ ) |
| 284 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 285 |
|
zltp1le |
|- ( ( m e. ZZ /\ N e. ZZ ) -> ( m < N <-> ( m + 1 ) <_ N ) ) |
| 286 |
283 284 285
|
syl2anr |
|- ( ( ph /\ m e. NN0 ) -> ( m < N <-> ( m + 1 ) <_ N ) ) |
| 287 |
286
|
biimpa |
|- ( ( ( ph /\ m e. NN0 ) /\ m < N ) -> ( m + 1 ) <_ N ) |
| 288 |
287
|
anasss |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( m + 1 ) <_ N ) |
| 289 |
283
|
peano2zd |
|- ( m e. NN0 -> ( m + 1 ) e. ZZ ) |
| 290 |
289
|
adantr |
|- ( ( m e. NN0 /\ m < N ) -> ( m + 1 ) e. ZZ ) |
| 291 |
|
eluz |
|- ( ( ( m + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( m + 1 ) ) <-> ( m + 1 ) <_ N ) ) |
| 292 |
290 284 291
|
syl2anr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( N e. ( ZZ>= ` ( m + 1 ) ) <-> ( m + 1 ) <_ N ) ) |
| 293 |
288 292
|
mpbird |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> N e. ( ZZ>= ` ( m + 1 ) ) ) |
| 294 |
|
fzsplit2 |
|- ( ( ( ( m + 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( m + 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) ) |
| 295 |
282 293 294
|
syl2anc |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 1 ... N ) = ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) ) |
| 296 |
295
|
eqcomd |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) = ( 1 ... N ) ) |
| 297 |
196 197
|
syl |
|- ( ph -> 0 e. ( 0 ... K ) ) |
| 298 |
297
|
snssd |
|- ( ph -> { 0 } C_ ( 0 ... K ) ) |
| 299 |
|
ssequn2 |
|- ( { 0 } C_ ( 0 ... K ) <-> ( ( 0 ... K ) u. { 0 } ) = ( 0 ... K ) ) |
| 300 |
298 299
|
sylib |
|- ( ph -> ( ( 0 ... K ) u. { 0 } ) = ( 0 ... K ) ) |
| 301 |
300
|
adantr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( ( 0 ... K ) u. { 0 } ) = ( 0 ... K ) ) |
| 302 |
296 301
|
feq23d |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) <-> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
| 303 |
302
|
adantrr |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) <-> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
| 304 |
279 303
|
mpbid |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 305 |
|
nfv |
|- F/ p ( ph /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 306 |
|
nfcsb1v |
|- F/_ p [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B |
| 307 |
306
|
nfel1 |
|- F/ p [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) |
| 308 |
305 307
|
nfim |
|- F/ p ( ( ph /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
| 309 |
|
vex |
|- q e. _V |
| 310 |
|
ovex |
|- ( ( ( m + 1 ) + 1 ) ... N ) e. _V |
| 311 |
310 208
|
xpex |
|- ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) e. _V |
| 312 |
309 311
|
unex |
|- ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) e. _V |
| 313 |
|
feq1 |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) <-> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
| 314 |
313
|
anbi2d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) <-> ( ph /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) ) |
| 315 |
|
csbeq1a |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> B = [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 316 |
315
|
eleq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( B e. ( 0 ... N ) <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) ) |
| 317 |
314 316
|
imbi12d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) <-> ( ( ph /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) ) ) |
| 318 |
308 312 317 3
|
vtoclf |
|- ( ( ph /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
| 319 |
304 318
|
syldan |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
| 320 |
319
|
anassrs |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
| 321 |
|
elfznn0 |
|- ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. NN0 ) |
| 322 |
320 321
|
syl |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. NN0 ) |
| 323 |
266
|
nnnn0d |
|- ( m e. NN0 -> ( m + 1 ) e. NN0 ) |
| 324 |
323
|
adantr |
|- ( ( m e. NN0 /\ m < N ) -> ( m + 1 ) e. NN0 ) |
| 325 |
324
|
ad2antlr |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> ( m + 1 ) e. NN0 ) |
| 326 |
|
leloe |
|- ( ( ( m + 1 ) e. RR /\ N e. RR ) -> ( ( m + 1 ) <_ N <-> ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
| 327 |
272 8 326
|
syl2anr |
|- ( ( ph /\ m e. NN0 ) -> ( ( m + 1 ) <_ N <-> ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
| 328 |
286 327
|
bitrd |
|- ( ( ph /\ m e. NN0 ) -> ( m < N <-> ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
| 329 |
328
|
biimpd |
|- ( ( ph /\ m e. NN0 ) -> ( m < N -> ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
| 330 |
329
|
imdistani |
|- ( ( ( ph /\ m e. NN0 ) /\ m < N ) -> ( ( ph /\ m e. NN0 ) /\ ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
| 331 |
330
|
anasss |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( ( ph /\ m e. NN0 ) /\ ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
| 332 |
|
simplll |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ph ) |
| 333 |
280
|
nnge1d |
|- ( m e. NN0 -> 1 <_ ( ( m + 1 ) + 1 ) ) |
| 334 |
333
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> 1 <_ ( ( m + 1 ) + 1 ) ) |
| 335 |
|
zltp1le |
|- ( ( ( m + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( m + 1 ) < N <-> ( ( m + 1 ) + 1 ) <_ N ) ) |
| 336 |
289 284 335
|
syl2anr |
|- ( ( ph /\ m e. NN0 ) -> ( ( m + 1 ) < N <-> ( ( m + 1 ) + 1 ) <_ N ) ) |
| 337 |
336
|
biimpa |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( ( m + 1 ) + 1 ) <_ N ) |
| 338 |
289
|
peano2zd |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) e. ZZ ) |
| 339 |
|
1z |
|- 1 e. ZZ |
| 340 |
|
elfz |
|- ( ( ( ( m + 1 ) + 1 ) e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( ( m + 1 ) + 1 ) /\ ( ( m + 1 ) + 1 ) <_ N ) ) ) |
| 341 |
339 340
|
mp3an2 |
|- ( ( ( ( m + 1 ) + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( ( m + 1 ) + 1 ) /\ ( ( m + 1 ) + 1 ) <_ N ) ) ) |
| 342 |
338 284 341
|
syl2anr |
|- ( ( ph /\ m e. NN0 ) -> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( ( m + 1 ) + 1 ) /\ ( ( m + 1 ) + 1 ) <_ N ) ) ) |
| 343 |
342
|
adantr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( ( m + 1 ) + 1 ) /\ ( ( m + 1 ) + 1 ) <_ N ) ) ) |
| 344 |
334 337 343
|
mpbir2and |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( ( m + 1 ) + 1 ) e. ( 1 ... N ) ) |
| 345 |
344
|
adantlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( m + 1 ) + 1 ) e. ( 1 ... N ) ) |
| 346 |
|
nn0re |
|- ( m e. NN0 -> m e. RR ) |
| 347 |
346
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> m e. RR ) |
| 348 |
272
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( m + 1 ) e. RR ) |
| 349 |
8
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> N e. RR ) |
| 350 |
346
|
ltp1d |
|- ( m e. NN0 -> m < ( m + 1 ) ) |
| 351 |
350
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> m < ( m + 1 ) ) |
| 352 |
|
simpr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( m + 1 ) < N ) |
| 353 |
347 348 349 351 352
|
lttrd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> m < N ) |
| 354 |
353
|
adantlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> m < N ) |
| 355 |
|
anass |
|- ( ( ( ph /\ m e. NN0 ) /\ m < N ) <-> ( ph /\ ( m e. NN0 /\ m < N ) ) ) |
| 356 |
304
|
anassrs |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 357 |
355 356
|
sylanb |
|- ( ( ( ( ph /\ m e. NN0 ) /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 358 |
357
|
an32s |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ m < N ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 359 |
354 358
|
syldan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 360 |
|
ffn |
|- ( q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) -> q Fn ( 1 ... ( m + 1 ) ) ) |
| 361 |
360
|
ad2antlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> q Fn ( 1 ... ( m + 1 ) ) ) |
| 362 |
275
|
ad3antlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) ) |
| 363 |
|
eluz |
|- ( ( ( ( m + 1 ) + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( ( m + 1 ) + 1 ) ) <-> ( ( m + 1 ) + 1 ) <_ N ) ) |
| 364 |
338 284 363
|
syl2anr |
|- ( ( ph /\ m e. NN0 ) -> ( N e. ( ZZ>= ` ( ( m + 1 ) + 1 ) ) <-> ( ( m + 1 ) + 1 ) <_ N ) ) |
| 365 |
364
|
adantr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( N e. ( ZZ>= ` ( ( m + 1 ) + 1 ) ) <-> ( ( m + 1 ) + 1 ) <_ N ) ) |
| 366 |
337 365
|
mpbird |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> N e. ( ZZ>= ` ( ( m + 1 ) + 1 ) ) ) |
| 367 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` ( ( m + 1 ) + 1 ) ) -> ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) ) |
| 368 |
366 367
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) ) |
| 369 |
368
|
adantlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) ) |
| 370 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) Fn ( ( ( m + 1 ) + 1 ) ... N ) ) |
| 371 |
75 370
|
ax-mp |
|- ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) Fn ( ( ( m + 1 ) + 1 ) ... N ) |
| 372 |
|
fvun2 |
|- ( ( q Fn ( 1 ... ( m + 1 ) ) /\ ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) Fn ( ( ( m + 1 ) + 1 ) ... N ) /\ ( ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) /\ ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = ( ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ` ( ( m + 1 ) + 1 ) ) ) |
| 373 |
371 372
|
mp3an2 |
|- ( ( q Fn ( 1 ... ( m + 1 ) ) /\ ( ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) /\ ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = ( ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ` ( ( m + 1 ) + 1 ) ) ) |
| 374 |
361 362 369 373
|
syl12anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = ( ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ` ( ( m + 1 ) + 1 ) ) ) |
| 375 |
75
|
fvconst2 |
|- ( ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) -> ( ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ` ( ( m + 1 ) + 1 ) ) = 0 ) |
| 376 |
369 375
|
syl |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ` ( ( m + 1 ) + 1 ) ) = 0 ) |
| 377 |
374 376
|
eqtrd |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) |
| 378 |
|
nfv |
|- F/ p ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) |
| 379 |
|
nfcv |
|- F/_ p < |
| 380 |
|
nfcv |
|- F/_ p ( ( m + 1 ) + 1 ) |
| 381 |
306 379 380
|
nfbr |
|- F/ p [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) |
| 382 |
378 381
|
nfim |
|- F/ p ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) |
| 383 |
|
fveq1 |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( p ` ( ( m + 1 ) + 1 ) ) = ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) ) |
| 384 |
383
|
eqeq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( p ` ( ( m + 1 ) + 1 ) ) = 0 <-> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) |
| 385 |
313 384
|
3anbi23d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) <-> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) ) |
| 386 |
385
|
anbi2d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) <-> ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) ) ) |
| 387 |
315
|
breq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( B < ( ( m + 1 ) + 1 ) <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) ) |
| 388 |
386 387
|
imbi12d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> B < ( ( m + 1 ) + 1 ) ) <-> ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) ) ) |
| 389 |
|
ovex |
|- ( ( m + 1 ) + 1 ) e. _V |
| 390 |
|
eleq1 |
|- ( n = ( ( m + 1 ) + 1 ) -> ( n e. ( 1 ... N ) <-> ( ( m + 1 ) + 1 ) e. ( 1 ... N ) ) ) |
| 391 |
|
fveqeq2 |
|- ( n = ( ( m + 1 ) + 1 ) -> ( ( p ` n ) = 0 <-> ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) |
| 392 |
390 391
|
3anbi13d |
|- ( n = ( ( m + 1 ) + 1 ) -> ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) <-> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) ) |
| 393 |
392
|
anbi2d |
|- ( n = ( ( m + 1 ) + 1 ) -> ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) <-> ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) ) ) |
| 394 |
|
breq2 |
|- ( n = ( ( m + 1 ) + 1 ) -> ( B < n <-> B < ( ( m + 1 ) + 1 ) ) ) |
| 395 |
393 394
|
imbi12d |
|- ( n = ( ( m + 1 ) + 1 ) -> ( ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n ) <-> ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> B < ( ( m + 1 ) + 1 ) ) ) ) |
| 396 |
389 395 4
|
vtocl |
|- ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> B < ( ( m + 1 ) + 1 ) ) |
| 397 |
382 312 388 396
|
vtoclf |
|- ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) |
| 398 |
332 345 359 377 397
|
syl13anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) |
| 399 |
355 320
|
sylanb |
|- ( ( ( ( ph /\ m e. NN0 ) /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
| 400 |
399
|
an32s |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ m < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
| 401 |
400
|
elfzelzd |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ m < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ZZ ) |
| 402 |
354 401
|
syldan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ZZ ) |
| 403 |
289
|
ad3antlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( m + 1 ) e. ZZ ) |
| 404 |
|
zleltp1 |
|- ( ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ZZ /\ ( m + 1 ) e. ZZ ) -> ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) ) |
| 405 |
402 403 404
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) ) |
| 406 |
398 405
|
mpbird |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) |
| 407 |
350
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> m < ( m + 1 ) ) |
| 408 |
|
breq2 |
|- ( ( m + 1 ) = N -> ( m < ( m + 1 ) <-> m < N ) ) |
| 409 |
408
|
biimpac |
|- ( ( m < ( m + 1 ) /\ ( m + 1 ) = N ) -> m < N ) |
| 410 |
407 409
|
sylan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) = N ) -> m < N ) |
| 411 |
|
elfzle2 |
|- ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ N ) |
| 412 |
400 411
|
syl |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ m < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ N ) |
| 413 |
410 412
|
syldan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) = N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ N ) |
| 414 |
|
simpr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) = N ) -> ( m + 1 ) = N ) |
| 415 |
413 414
|
breqtrrd |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) = N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) |
| 416 |
406 415
|
jaodan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) |
| 417 |
416
|
an32s |
|- ( ( ( ( ph /\ m e. NN0 ) /\ ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) |
| 418 |
331 417
|
sylan |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) |
| 419 |
|
elfz2nn0 |
|- ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... ( m + 1 ) ) <-> ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. NN0 /\ ( m + 1 ) e. NN0 /\ [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) ) |
| 420 |
322 325 418 419
|
syl3anbrc |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... ( m + 1 ) ) ) |
| 421 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( m + 1 ) ) -> ( 1 ... ( m + 1 ) ) C_ ( 1 ... N ) ) |
| 422 |
293 421
|
syl |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 1 ... ( m + 1 ) ) C_ ( 1 ... N ) ) |
| 423 |
422
|
sselda |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ n e. ( 1 ... ( m + 1 ) ) ) -> n e. ( 1 ... N ) ) |
| 424 |
423
|
3ad2antr1 |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> n e. ( 1 ... N ) ) |
| 425 |
356
|
3ad2antr2 |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 426 |
360
|
ad2antll |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> q Fn ( 1 ... ( m + 1 ) ) ) |
| 427 |
275
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) ) |
| 428 |
|
simprl |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> n e. ( 1 ... ( m + 1 ) ) ) |
| 429 |
|
fvun1 |
|- ( ( q Fn ( 1 ... ( m + 1 ) ) /\ ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) Fn ( ( ( m + 1 ) + 1 ) ... N ) /\ ( ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) /\ n e. ( 1 ... ( m + 1 ) ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
| 430 |
371 429
|
mp3an2 |
|- ( ( q Fn ( 1 ... ( m + 1 ) ) /\ ( ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) /\ n e. ( 1 ... ( m + 1 ) ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
| 431 |
426 427 428 430
|
syl12anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
| 432 |
431
|
adantlrr |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
| 433 |
432
|
3adantr3 |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
| 434 |
|
simpr3 |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> ( q ` n ) = 0 ) |
| 435 |
433 434
|
eqtrd |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) |
| 436 |
424 425 435
|
3jca |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) |
| 437 |
|
nfv |
|- F/ p ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) |
| 438 |
|
nfcv |
|- F/_ p n |
| 439 |
306 379 438
|
nfbr |
|- F/ p [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n |
| 440 |
437 439
|
nfim |
|- F/ p ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) |
| 441 |
|
fveq1 |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( p ` n ) = ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) ) |
| 442 |
441
|
eqeq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( p ` n ) = 0 <-> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) |
| 443 |
313 442
|
3anbi23d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) <-> ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) ) |
| 444 |
443
|
anbi2d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) <-> ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) ) ) |
| 445 |
315
|
breq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( B < n <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) ) |
| 446 |
444 445
|
imbi12d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n ) <-> ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) ) ) |
| 447 |
440 312 446 4
|
vtoclf |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) |
| 448 |
447
|
adantlr |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) |
| 449 |
436 448
|
syldan |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) |
| 450 |
|
simp1 |
|- ( ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) -> n e. ( 1 ... ( m + 1 ) ) ) |
| 451 |
423
|
anasss |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ n e. ( 1 ... ( m + 1 ) ) ) ) -> n e. ( 1 ... N ) ) |
| 452 |
450 451
|
sylanr2 |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> n e. ( 1 ... N ) ) |
| 453 |
|
simp2 |
|- ( ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) -> q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) |
| 454 |
453 304
|
sylanr2 |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 455 |
431
|
3adantr3 |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
| 456 |
|
simpr3 |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) -> ( q ` n ) = K ) |
| 457 |
455 456
|
eqtrd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) |
| 458 |
457
|
anasss |
|- ( ( ph /\ ( m e. NN0 /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) |
| 459 |
458
|
adantrlr |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) |
| 460 |
452 454 459
|
3jca |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) |
| 461 |
|
nfv |
|- F/ p ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) |
| 462 |
|
nfcv |
|- F/_ p ( n - 1 ) |
| 463 |
306 462
|
nfne |
|- F/ p [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) |
| 464 |
461 463
|
nfim |
|- F/ p ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) |
| 465 |
441
|
eqeq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( p ` n ) = K <-> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) |
| 466 |
313 465
|
3anbi23d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) <-> ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) ) |
| 467 |
466
|
anbi2d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) <-> ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) ) ) |
| 468 |
315
|
neeq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( B =/= ( n - 1 ) <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) ) |
| 469 |
467 468
|
imbi12d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> B =/= ( n - 1 ) ) <-> ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) ) ) |
| 470 |
464 312 469 5
|
vtoclf |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) |
| 471 |
460 470
|
syldan |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) |
| 472 |
471
|
anassrs |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) |
| 473 |
267 269 420 449 472
|
poimirlem27 |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) |
| 474 |
267 269 420
|
poimirlem26 |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 475 |
|
fzfi |
|- ( 0 ... ( m + 1 ) ) e. Fin |
| 476 |
|
xpfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin /\ ( 0 ... ( m + 1 ) ) e. Fin ) -> ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) e. Fin ) |
| 477 |
256 475 476
|
mp2an |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) e. Fin |
| 478 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin ) |
| 479 |
|
hashcl |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. NN0 ) |
| 480 |
477 478 479
|
mp2b |
|- ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. NN0 |
| 481 |
480
|
nn0zi |
|- ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ |
| 482 |
|
zsubcl |
|- ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. ZZ ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) e. ZZ ) |
| 483 |
481 264 482
|
mp2an |
|- ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) e. ZZ |
| 484 |
|
zsubcl |
|- ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) e. ZZ ) |
| 485 |
481 260 484
|
mp2an |
|- ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) e. ZZ |
| 486 |
|
dvds2sub |
|- ( ( 2 e. ZZ /\ ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) e. ZZ /\ ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) e. ZZ ) -> ( ( 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) /\ 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) -> 2 || ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) - ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) ) |
| 487 |
242 483 485 486
|
mp3an |
|- ( ( 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) /\ 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) -> 2 || ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) - ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
| 488 |
473 474 487
|
syl2anc |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> 2 || ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) - ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
| 489 |
480
|
nn0cni |
|- ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. CC |
| 490 |
263
|
nn0cni |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. CC |
| 491 |
259
|
nn0cni |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. CC |
| 492 |
|
nnncan1 |
|- ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. CC /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. CC /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. CC ) -> ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) - ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) = ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) |
| 493 |
489 490 491 492
|
mp3an |
|- ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) - ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) = ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) |
| 494 |
488 493
|
breqtrdi |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> 2 || ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) |
| 495 |
|
dvdssub2 |
|- ( ( ( 2 e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. ZZ ) /\ 2 || ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) |
| 496 |
265 494 495
|
sylancr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) |
| 497 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
| 498 |
|
pncan1 |
|- ( m e. CC -> ( ( m + 1 ) - 1 ) = m ) |
| 499 |
497 498
|
syl |
|- ( m e. NN0 -> ( ( m + 1 ) - 1 ) = m ) |
| 500 |
499
|
oveq2d |
|- ( m e. NN0 -> ( 0 ... ( ( m + 1 ) - 1 ) ) = ( 0 ... m ) ) |
| 501 |
500
|
rexeqdv |
|- ( m e. NN0 -> ( E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 502 |
500 501
|
raleqbidv |
|- ( m e. NN0 -> ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 503 |
502
|
3anbi1d |
|- ( m e. NN0 -> ( ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) <-> ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) ) ) |
| 504 |
503
|
rabbidv |
|- ( m e. NN0 -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) |
| 505 |
504
|
fveq2d |
|- ( m e. NN0 -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) |
| 506 |
505
|
ad2antrl |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) |
| 507 |
1
|
adantr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> N e. NN ) |
| 508 |
6
|
adantr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> K e. NN ) |
| 509 |
|
simprl |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> m e. NN0 ) |
| 510 |
|
simprr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> m < N ) |
| 511 |
507 508 509 510
|
poimirlem4 |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) |
| 512 |
|
fzfi |
|- ( 1 ... m ) e. Fin |
| 513 |
|
mapfi |
|- ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... m ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... m ) ) e. Fin ) |
| 514 |
15 512 513
|
mp2an |
|- ( ( 0 ..^ K ) ^m ( 1 ... m ) ) e. Fin |
| 515 |
|
ovex |
|- ( 1 ... m ) e. _V |
| 516 |
515 515
|
mapval |
|- ( ( 1 ... m ) ^m ( 1 ... m ) ) = { f | f : ( 1 ... m ) --> ( 1 ... m ) } |
| 517 |
|
mapfi |
|- ( ( ( 1 ... m ) e. Fin /\ ( 1 ... m ) e. Fin ) -> ( ( 1 ... m ) ^m ( 1 ... m ) ) e. Fin ) |
| 518 |
512 512 517
|
mp2an |
|- ( ( 1 ... m ) ^m ( 1 ... m ) ) e. Fin |
| 519 |
516 518
|
eqeltrri |
|- { f | f : ( 1 ... m ) --> ( 1 ... m ) } e. Fin |
| 520 |
|
f1of |
|- ( f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) -> f : ( 1 ... m ) --> ( 1 ... m ) ) |
| 521 |
520
|
ss2abi |
|- { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } C_ { f | f : ( 1 ... m ) --> ( 1 ... m ) } |
| 522 |
|
ssfi |
|- ( ( { f | f : ( 1 ... m ) --> ( 1 ... m ) } e. Fin /\ { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } C_ { f | f : ( 1 ... m ) --> ( 1 ... m ) } ) -> { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } e. Fin ) |
| 523 |
519 521 522
|
mp2an |
|- { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } e. Fin |
| 524 |
|
xpfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) e. Fin /\ { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) e. Fin ) |
| 525 |
514 523 524
|
mp2an |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) e. Fin |
| 526 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin ) |
| 527 |
525 526
|
ax-mp |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin |
| 528 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } e. Fin ) |
| 529 |
256 528
|
ax-mp |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } e. Fin |
| 530 |
|
hashen |
|- ( ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin /\ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } e. Fin ) -> ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) <-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) |
| 531 |
527 529 530
|
mp2an |
|- ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) <-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) |
| 532 |
511 531
|
sylibr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) |
| 533 |
506 532
|
eqtr4d |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) |
| 534 |
533
|
breq2d |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 535 |
496 534
|
bitrd |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 536 |
535
|
biimpd |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) -> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 537 |
536
|
con3d |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 538 |
537
|
expcom |
|- ( ( m e. NN0 /\ m < N ) -> ( ph -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
| 539 |
538
|
a2d |
|- ( ( m e. NN0 /\ m < N ) -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) -> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
| 540 |
539
|
3adant1 |
|- ( ( N e. NN0 /\ m e. NN0 /\ m < N ) -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) -> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
| 541 |
112 137 162 187 241 540
|
fnn0ind |
|- ( ( N e. NN0 /\ N e. NN0 /\ N <_ N ) -> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 542 |
10 541
|
mpcom |
|- ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) |
| 543 |
|
dvds0 |
|- ( 2 e. ZZ -> 2 || 0 ) |
| 544 |
242 543
|
ax-mp |
|- 2 || 0 |
| 545 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 546 |
544 545
|
breqtrri |
|- 2 || ( # ` (/) ) |
| 547 |
|
fveq2 |
|- ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } = (/) -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) = ( # ` (/) ) ) |
| 548 |
546 547
|
breqtrrid |
|- ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } = (/) -> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
| 549 |
8
|
ltp1d |
|- ( ph -> N < ( N + 1 ) ) |
| 550 |
284
|
peano2zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
| 551 |
|
fzn |
|- ( ( ( N + 1 ) e. ZZ /\ N e. ZZ ) -> ( N < ( N + 1 ) <-> ( ( N + 1 ) ... N ) = (/) ) ) |
| 552 |
550 284 551
|
syl2anc |
|- ( ph -> ( N < ( N + 1 ) <-> ( ( N + 1 ) ... N ) = (/) ) ) |
| 553 |
549 552
|
mpbid |
|- ( ph -> ( ( N + 1 ) ... N ) = (/) ) |
| 554 |
553
|
xpeq1d |
|- ( ph -> ( ( ( N + 1 ) ... N ) X. { 0 } ) = ( (/) X. { 0 } ) ) |
| 555 |
554 91
|
eqtrdi |
|- ( ph -> ( ( ( N + 1 ) ... N ) X. { 0 } ) = (/) ) |
| 556 |
555
|
uneq2d |
|- ( ph -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. (/) ) ) |
| 557 |
|
un0 |
|- ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. (/) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 558 |
556 557
|
eqtrdi |
|- ( ph -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 559 |
558
|
csbeq1d |
|- ( ph -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
| 560 |
|
ovex |
|- ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 561 |
560 2
|
csbie |
|- [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = C |
| 562 |
559 561
|
eqtrdi |
|- ( ph -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = C ) |
| 563 |
562
|
eqeq2d |
|- ( ph -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = C ) ) |
| 564 |
563
|
rexbidv |
|- ( ph -> ( E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... N ) i = C ) ) |
| 565 |
564
|
ralbidv |
|- ( ph -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) |
| 566 |
565
|
rabbidv |
|- ( ph -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
| 567 |
566
|
fveq2d |
|- ( ph -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
| 568 |
567
|
breq2d |
|- ( ph -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) |
| 569 |
548 568
|
imbitrrid |
|- ( ph -> ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } = (/) -> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
| 570 |
569
|
necon3bd |
|- ( ph -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } =/= (/) ) ) |
| 571 |
542 570
|
mpd |
|- ( ph -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } =/= (/) ) |
| 572 |
|
rabn0 |
|- ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } =/= (/) <-> E. s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) |
| 573 |
571 572
|
sylib |
|- ( ph -> E. s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) |