Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimirlem28.1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) |
3 |
|
poimirlem28.2 |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
4 |
|
poimirlem28.3 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n ) |
5 |
|
poimirlem28.4 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> B =/= ( n - 1 ) ) |
6 |
|
poimirlem28.5 |
|- ( ph -> K e. NN ) |
7 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
8 |
1
|
nnred |
|- ( ph -> N e. RR ) |
9 |
8
|
leidd |
|- ( ph -> N <_ N ) |
10 |
7 7 9
|
3jca |
|- ( ph -> ( N e. NN0 /\ N e. NN0 /\ N <_ N ) ) |
11 |
|
oveq2 |
|- ( k = 0 -> ( 1 ... k ) = ( 1 ... 0 ) ) |
12 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
13 |
11 12
|
eqtrdi |
|- ( k = 0 -> ( 1 ... k ) = (/) ) |
14 |
13
|
oveq2d |
|- ( k = 0 -> ( ( 0 ..^ K ) ^m ( 1 ... k ) ) = ( ( 0 ..^ K ) ^m (/) ) ) |
15 |
|
fzofi |
|- ( 0 ..^ K ) e. Fin |
16 |
|
map0e |
|- ( ( 0 ..^ K ) e. Fin -> ( ( 0 ..^ K ) ^m (/) ) = 1o ) |
17 |
15 16
|
ax-mp |
|- ( ( 0 ..^ K ) ^m (/) ) = 1o |
18 |
|
df1o2 |
|- 1o = { (/) } |
19 |
17 18
|
eqtri |
|- ( ( 0 ..^ K ) ^m (/) ) = { (/) } |
20 |
14 19
|
eqtrdi |
|- ( k = 0 -> ( ( 0 ..^ K ) ^m ( 1 ... k ) ) = { (/) } ) |
21 |
|
eqidd |
|- ( k = 0 -> f = f ) |
22 |
21 13 13
|
f1oeq123d |
|- ( k = 0 -> ( f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) <-> f : (/) -1-1-onto-> (/) ) ) |
23 |
|
eqid |
|- (/) = (/) |
24 |
|
f1o00 |
|- ( f : (/) -1-1-onto-> (/) <-> ( f = (/) /\ (/) = (/) ) ) |
25 |
23 24
|
mpbiran2 |
|- ( f : (/) -1-1-onto-> (/) <-> f = (/) ) |
26 |
22 25
|
bitrdi |
|- ( k = 0 -> ( f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) <-> f = (/) ) ) |
27 |
26
|
abbidv |
|- ( k = 0 -> { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } = { f | f = (/) } ) |
28 |
|
df-sn |
|- { (/) } = { f | f = (/) } |
29 |
27 28
|
eqtr4di |
|- ( k = 0 -> { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } = { (/) } ) |
30 |
20 29
|
xpeq12d |
|- ( k = 0 -> ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) = ( { (/) } X. { (/) } ) ) |
31 |
|
0ex |
|- (/) e. _V |
32 |
31 31
|
xpsn |
|- ( { (/) } X. { (/) } ) = { <. (/) , (/) >. } |
33 |
30 32
|
eqtr2di |
|- ( k = 0 -> { <. (/) , (/) >. } = ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) ) |
34 |
|
elsni |
|- ( s e. { <. (/) , (/) >. } -> s = <. (/) , (/) >. ) |
35 |
31 31
|
op1std |
|- ( s = <. (/) , (/) >. -> ( 1st ` s ) = (/) ) |
36 |
34 35
|
syl |
|- ( s e. { <. (/) , (/) >. } -> ( 1st ` s ) = (/) ) |
37 |
36
|
oveq1d |
|- ( s e. { <. (/) , (/) >. } -> ( ( 1st ` s ) oF + (/) ) = ( (/) oF + (/) ) ) |
38 |
|
f0 |
|- (/) : (/) --> (/) |
39 |
|
ffn |
|- ( (/) : (/) --> (/) -> (/) Fn (/) ) |
40 |
38 39
|
mp1i |
|- ( s e. { <. (/) , (/) >. } -> (/) Fn (/) ) |
41 |
31
|
a1i |
|- ( s e. { <. (/) , (/) >. } -> (/) e. _V ) |
42 |
|
inidm |
|- ( (/) i^i (/) ) = (/) |
43 |
|
0fv |
|- ( (/) ` n ) = (/) |
44 |
43
|
a1i |
|- ( ( s e. { <. (/) , (/) >. } /\ n e. (/) ) -> ( (/) ` n ) = (/) ) |
45 |
40 40 41 41 42 44 44
|
offval |
|- ( s e. { <. (/) , (/) >. } -> ( (/) oF + (/) ) = ( n e. (/) |-> ( (/) + (/) ) ) ) |
46 |
|
mpt0 |
|- ( n e. (/) |-> ( (/) + (/) ) ) = (/) |
47 |
45 46
|
eqtrdi |
|- ( s e. { <. (/) , (/) >. } -> ( (/) oF + (/) ) = (/) ) |
48 |
37 47
|
eqtrd |
|- ( s e. { <. (/) , (/) >. } -> ( ( 1st ` s ) oF + (/) ) = (/) ) |
49 |
48
|
uneq1d |
|- ( s e. { <. (/) , (/) >. } -> ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) = ( (/) u. ( ( 1 ... N ) X. { 0 } ) ) ) |
50 |
|
uncom |
|- ( (/) u. ( ( 1 ... N ) X. { 0 } ) ) = ( ( ( 1 ... N ) X. { 0 } ) u. (/) ) |
51 |
|
un0 |
|- ( ( ( 1 ... N ) X. { 0 } ) u. (/) ) = ( ( 1 ... N ) X. { 0 } ) |
52 |
50 51
|
eqtri |
|- ( (/) u. ( ( 1 ... N ) X. { 0 } ) ) = ( ( 1 ... N ) X. { 0 } ) |
53 |
49 52
|
eqtr2di |
|- ( s e. { <. (/) , (/) >. } -> ( ( 1 ... N ) X. { 0 } ) = ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) ) |
54 |
53
|
csbeq1d |
|- ( s e. { <. (/) , (/) >. } -> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) |
55 |
54
|
eqeq2d |
|- ( s e. { <. (/) , (/) >. } -> ( 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B <-> 0 = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
56 |
|
oveq2 |
|- ( k = 0 -> ( 0 ... k ) = ( 0 ... 0 ) ) |
57 |
|
0z |
|- 0 e. ZZ |
58 |
|
fzsn |
|- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
59 |
57 58
|
ax-mp |
|- ( 0 ... 0 ) = { 0 } |
60 |
56 59
|
eqtrdi |
|- ( k = 0 -> ( 0 ... k ) = { 0 } ) |
61 |
|
oveq2 |
|- ( k = 0 -> ( ( j + 1 ) ... k ) = ( ( j + 1 ) ... 0 ) ) |
62 |
61
|
imaeq2d |
|- ( k = 0 -> ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) = ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) ) |
63 |
62
|
xpeq1d |
|- ( k = 0 -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) = ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) |
64 |
63
|
uneq2d |
|- ( k = 0 -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) |
65 |
64
|
oveq2d |
|- ( k = 0 -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) ) |
66 |
|
oveq1 |
|- ( k = 0 -> ( k + 1 ) = ( 0 + 1 ) ) |
67 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
68 |
66 67
|
eqtrdi |
|- ( k = 0 -> ( k + 1 ) = 1 ) |
69 |
68
|
oveq1d |
|- ( k = 0 -> ( ( k + 1 ) ... N ) = ( 1 ... N ) ) |
70 |
69
|
xpeq1d |
|- ( k = 0 -> ( ( ( k + 1 ) ... N ) X. { 0 } ) = ( ( 1 ... N ) X. { 0 } ) ) |
71 |
65 70
|
uneq12d |
|- ( k = 0 -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) ) |
72 |
71
|
csbeq1d |
|- ( k = 0 -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) |
73 |
72
|
eqeq2d |
|- ( k = 0 -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
74 |
60 73
|
rexeqbidv |
|- ( k = 0 -> ( E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. { 0 } i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
75 |
|
c0ex |
|- 0 e. _V |
76 |
|
oveq2 |
|- ( j = 0 -> ( 1 ... j ) = ( 1 ... 0 ) ) |
77 |
76 12
|
eqtrdi |
|- ( j = 0 -> ( 1 ... j ) = (/) ) |
78 |
77
|
imaeq2d |
|- ( j = 0 -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` s ) " (/) ) ) |
79 |
|
ima0 |
|- ( ( 2nd ` s ) " (/) ) = (/) |
80 |
78 79
|
eqtrdi |
|- ( j = 0 -> ( ( 2nd ` s ) " ( 1 ... j ) ) = (/) ) |
81 |
80
|
xpeq1d |
|- ( j = 0 -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( (/) X. { 1 } ) ) |
82 |
|
0xp |
|- ( (/) X. { 1 } ) = (/) |
83 |
81 82
|
eqtrdi |
|- ( j = 0 -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = (/) ) |
84 |
|
oveq1 |
|- ( j = 0 -> ( j + 1 ) = ( 0 + 1 ) ) |
85 |
84 67
|
eqtrdi |
|- ( j = 0 -> ( j + 1 ) = 1 ) |
86 |
85
|
oveq1d |
|- ( j = 0 -> ( ( j + 1 ) ... 0 ) = ( 1 ... 0 ) ) |
87 |
86 12
|
eqtrdi |
|- ( j = 0 -> ( ( j + 1 ) ... 0 ) = (/) ) |
88 |
87
|
imaeq2d |
|- ( j = 0 -> ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) = ( ( 2nd ` s ) " (/) ) ) |
89 |
88 79
|
eqtrdi |
|- ( j = 0 -> ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) = (/) ) |
90 |
89
|
xpeq1d |
|- ( j = 0 -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) = ( (/) X. { 0 } ) ) |
91 |
|
0xp |
|- ( (/) X. { 0 } ) = (/) |
92 |
90 91
|
eqtrdi |
|- ( j = 0 -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) = (/) ) |
93 |
83 92
|
uneq12d |
|- ( j = 0 -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) = ( (/) u. (/) ) ) |
94 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
95 |
93 94
|
eqtrdi |
|- ( j = 0 -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) = (/) ) |
96 |
95
|
oveq2d |
|- ( j = 0 -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) = ( ( 1st ` s ) oF + (/) ) ) |
97 |
96
|
uneq1d |
|- ( j = 0 -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) ) |
98 |
97
|
csbeq1d |
|- ( j = 0 -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) |
99 |
98
|
eqeq2d |
|- ( j = 0 -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
100 |
75 99
|
rexsn |
|- ( E. j e. { 0 } i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... 0 ) ) X. { 0 } ) ) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) |
101 |
74 100
|
bitrdi |
|- ( k = 0 -> ( E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
102 |
60 101
|
raleqbidv |
|- ( k = 0 -> ( A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. { 0 } i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
103 |
|
eqeq1 |
|- ( i = 0 -> ( i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B <-> 0 = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) ) |
104 |
75 103
|
ralsn |
|- ( A. i e. { 0 } i = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B <-> 0 = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B ) |
105 |
102 104
|
bitr2di |
|- ( k = 0 -> ( 0 = [_ ( ( ( 1st ` s ) oF + (/) ) u. ( ( 1 ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
106 |
55 105
|
sylan9bbr |
|- ( ( k = 0 /\ s e. { <. (/) , (/) >. } ) -> ( 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B <-> A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
107 |
33 106
|
rabeqbidva |
|- ( k = 0 -> { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) |
108 |
107
|
eqcomd |
|- ( k = 0 -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } = { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) |
109 |
108
|
fveq2d |
|- ( k = 0 -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) |
110 |
109
|
breq2d |
|- ( k = 0 -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) ) |
111 |
110
|
notbid |
|- ( k = 0 -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> -. 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) ) |
112 |
111
|
imbi2d |
|- ( k = 0 -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) <-> ( ph -> -. 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) ) ) |
113 |
|
oveq2 |
|- ( k = m -> ( 1 ... k ) = ( 1 ... m ) ) |
114 |
113
|
oveq2d |
|- ( k = m -> ( ( 0 ..^ K ) ^m ( 1 ... k ) ) = ( ( 0 ..^ K ) ^m ( 1 ... m ) ) ) |
115 |
|
eqidd |
|- ( k = m -> f = f ) |
116 |
115 113 113
|
f1oeq123d |
|- ( k = m -> ( f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) <-> f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) ) ) |
117 |
116
|
abbidv |
|- ( k = m -> { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } = { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) |
118 |
114 117
|
xpeq12d |
|- ( k = m -> ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) = ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) ) |
119 |
|
oveq2 |
|- ( k = m -> ( 0 ... k ) = ( 0 ... m ) ) |
120 |
|
oveq2 |
|- ( k = m -> ( ( j + 1 ) ... k ) = ( ( j + 1 ) ... m ) ) |
121 |
120
|
imaeq2d |
|- ( k = m -> ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) = ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) ) |
122 |
121
|
xpeq1d |
|- ( k = m -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) = ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) |
123 |
122
|
uneq2d |
|- ( k = m -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) |
124 |
123
|
oveq2d |
|- ( k = m -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) ) |
125 |
|
oveq1 |
|- ( k = m -> ( k + 1 ) = ( m + 1 ) ) |
126 |
125
|
oveq1d |
|- ( k = m -> ( ( k + 1 ) ... N ) = ( ( m + 1 ) ... N ) ) |
127 |
126
|
xpeq1d |
|- ( k = m -> ( ( ( k + 1 ) ... N ) X. { 0 } ) = ( ( ( m + 1 ) ... N ) X. { 0 } ) ) |
128 |
124 127
|
uneq12d |
|- ( k = m -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) ) |
129 |
128
|
csbeq1d |
|- ( k = m -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
130 |
129
|
eqeq2d |
|- ( k = m -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
131 |
119 130
|
rexeqbidv |
|- ( k = m -> ( E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
132 |
119 131
|
raleqbidv |
|- ( k = m -> ( A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
133 |
118 132
|
rabeqbidv |
|- ( k = m -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) |
134 |
133
|
fveq2d |
|- ( k = m -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) |
135 |
134
|
breq2d |
|- ( k = m -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
136 |
135
|
notbid |
|- ( k = m -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
137 |
136
|
imbi2d |
|- ( k = m -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) <-> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
138 |
|
oveq2 |
|- ( k = ( m + 1 ) -> ( 1 ... k ) = ( 1 ... ( m + 1 ) ) ) |
139 |
138
|
oveq2d |
|- ( k = ( m + 1 ) -> ( ( 0 ..^ K ) ^m ( 1 ... k ) ) = ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) ) |
140 |
|
eqidd |
|- ( k = ( m + 1 ) -> f = f ) |
141 |
140 138 138
|
f1oeq123d |
|- ( k = ( m + 1 ) -> ( f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) <-> f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) ) ) |
142 |
141
|
abbidv |
|- ( k = ( m + 1 ) -> { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } = { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) |
143 |
139 142
|
xpeq12d |
|- ( k = ( m + 1 ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) = ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) ) |
144 |
|
oveq2 |
|- ( k = ( m + 1 ) -> ( 0 ... k ) = ( 0 ... ( m + 1 ) ) ) |
145 |
|
oveq2 |
|- ( k = ( m + 1 ) -> ( ( j + 1 ) ... k ) = ( ( j + 1 ) ... ( m + 1 ) ) ) |
146 |
145
|
imaeq2d |
|- ( k = ( m + 1 ) -> ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) = ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) ) |
147 |
146
|
xpeq1d |
|- ( k = ( m + 1 ) -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) = ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) |
148 |
147
|
uneq2d |
|- ( k = ( m + 1 ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) |
149 |
148
|
oveq2d |
|- ( k = ( m + 1 ) -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) ) |
150 |
|
oveq1 |
|- ( k = ( m + 1 ) -> ( k + 1 ) = ( ( m + 1 ) + 1 ) ) |
151 |
150
|
oveq1d |
|- ( k = ( m + 1 ) -> ( ( k + 1 ) ... N ) = ( ( ( m + 1 ) + 1 ) ... N ) ) |
152 |
151
|
xpeq1d |
|- ( k = ( m + 1 ) -> ( ( ( k + 1 ) ... N ) X. { 0 } ) = ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
153 |
149 152
|
uneq12d |
|- ( k = ( m + 1 ) -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
154 |
153
|
csbeq1d |
|- ( k = ( m + 1 ) -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
155 |
154
|
eqeq2d |
|- ( k = ( m + 1 ) -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
156 |
144 155
|
rexeqbidv |
|- ( k = ( m + 1 ) -> ( E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
157 |
144 156
|
raleqbidv |
|- ( k = ( m + 1 ) -> ( A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
158 |
143 157
|
rabeqbidv |
|- ( k = ( m + 1 ) -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) |
159 |
158
|
fveq2d |
|- ( k = ( m + 1 ) -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) |
160 |
159
|
breq2d |
|- ( k = ( m + 1 ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
161 |
160
|
notbid |
|- ( k = ( m + 1 ) -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
162 |
161
|
imbi2d |
|- ( k = ( m + 1 ) -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) <-> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
163 |
|
oveq2 |
|- ( k = N -> ( 1 ... k ) = ( 1 ... N ) ) |
164 |
163
|
oveq2d |
|- ( k = N -> ( ( 0 ..^ K ) ^m ( 1 ... k ) ) = ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
165 |
|
eqidd |
|- ( k = N -> f = f ) |
166 |
165 163 163
|
f1oeq123d |
|- ( k = N -> ( f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) <-> f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
167 |
166
|
abbidv |
|- ( k = N -> { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } = { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
168 |
164 167
|
xpeq12d |
|- ( k = N -> ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) = ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
169 |
|
oveq2 |
|- ( k = N -> ( 0 ... k ) = ( 0 ... N ) ) |
170 |
|
oveq2 |
|- ( k = N -> ( ( j + 1 ) ... k ) = ( ( j + 1 ) ... N ) ) |
171 |
170
|
imaeq2d |
|- ( k = N -> ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) = ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) |
172 |
171
|
xpeq1d |
|- ( k = N -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) = ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
173 |
172
|
uneq2d |
|- ( k = N -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
174 |
173
|
oveq2d |
|- ( k = N -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
175 |
|
oveq1 |
|- ( k = N -> ( k + 1 ) = ( N + 1 ) ) |
176 |
175
|
oveq1d |
|- ( k = N -> ( ( k + 1 ) ... N ) = ( ( N + 1 ) ... N ) ) |
177 |
176
|
xpeq1d |
|- ( k = N -> ( ( ( k + 1 ) ... N ) X. { 0 } ) = ( ( ( N + 1 ) ... N ) X. { 0 } ) ) |
178 |
174 177
|
uneq12d |
|- ( k = N -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) ) |
179 |
178
|
csbeq1d |
|- ( k = N -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
180 |
179
|
eqeq2d |
|- ( k = N -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
181 |
169 180
|
rexeqbidv |
|- ( k = N -> ( E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
182 |
169 181
|
raleqbidv |
|- ( k = N -> ( A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
183 |
168 182
|
rabeqbidv |
|- ( k = N -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) |
184 |
183
|
fveq2d |
|- ( k = N -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) |
185 |
184
|
breq2d |
|- ( k = N -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
186 |
185
|
notbid |
|- ( k = N -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
187 |
186
|
imbi2d |
|- ( k = N -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... k ) ) X. { f | f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) | A. i e. ( 0 ... k ) E. j e. ( 0 ... k ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... k ) ) X. { 0 } ) ) ) u. ( ( ( k + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) <-> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
188 |
|
n2dvds1 |
|- -. 2 || 1 |
189 |
|
opex |
|- <. (/) , (/) >. e. _V |
190 |
|
hashsng |
|- ( <. (/) , (/) >. e. _V -> ( # ` { <. (/) , (/) >. } ) = 1 ) |
191 |
189 190
|
ax-mp |
|- ( # ` { <. (/) , (/) >. } ) = 1 |
192 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
193 |
1 192
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
194 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
195 |
193 194
|
syl |
|- ( ph -> 1 e. ( 1 ... N ) ) |
196 |
6
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
197 |
|
0elfz |
|- ( K e. NN0 -> 0 e. ( 0 ... K ) ) |
198 |
|
fconst6g |
|- ( 0 e. ( 0 ... K ) -> ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) ) |
199 |
196 197 198
|
3syl |
|- ( ph -> ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) ) |
200 |
75
|
fvconst2 |
|- ( 1 e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) |
201 |
195 200
|
syl |
|- ( ph -> ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) |
202 |
195 199 201
|
3jca |
|- ( ph -> ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) |
203 |
|
nfv |
|- F/ p ( ph /\ ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) |
204 |
|
nfcsb1v |
|- F/_ p [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B |
205 |
204
|
nfeq1 |
|- F/ p [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 |
206 |
203 205
|
nfim |
|- F/ p ( ( ph /\ ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) -> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 ) |
207 |
|
ovex |
|- ( 1 ... N ) e. _V |
208 |
|
snex |
|- { 0 } e. _V |
209 |
207 208
|
xpex |
|- ( ( 1 ... N ) X. { 0 } ) e. _V |
210 |
|
feq1 |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) <-> ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
211 |
|
fveq1 |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( p ` 1 ) = ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) ) |
212 |
211
|
eqeq1d |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( ( p ` 1 ) = 0 <-> ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) |
213 |
210 212
|
3anbi23d |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) <-> ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) ) |
214 |
213
|
anbi2d |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) <-> ( ph /\ ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) ) ) |
215 |
|
csbeq1a |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> B = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B ) |
216 |
215
|
eqeq1d |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( B = 0 <-> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 ) ) |
217 |
214 216
|
imbi12d |
|- ( p = ( ( 1 ... N ) X. { 0 } ) -> ( ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) -> B = 0 ) <-> ( ( ph /\ ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) -> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 ) ) ) |
218 |
|
1ex |
|- 1 e. _V |
219 |
|
eleq1 |
|- ( n = 1 -> ( n e. ( 1 ... N ) <-> 1 e. ( 1 ... N ) ) ) |
220 |
|
fveqeq2 |
|- ( n = 1 -> ( ( p ` n ) = 0 <-> ( p ` 1 ) = 0 ) ) |
221 |
219 220
|
3anbi13d |
|- ( n = 1 -> ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) <-> ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) ) |
222 |
221
|
anbi2d |
|- ( n = 1 -> ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) <-> ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) ) ) |
223 |
|
breq2 |
|- ( n = 1 -> ( B < n <-> B < 1 ) ) |
224 |
222 223
|
imbi12d |
|- ( n = 1 -> ( ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n ) <-> ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) -> B < 1 ) ) ) |
225 |
218 224 4
|
vtocl |
|- ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) -> B < 1 ) |
226 |
|
elfznn0 |
|- ( B e. ( 0 ... N ) -> B e. NN0 ) |
227 |
|
nn0lt10b |
|- ( B e. NN0 -> ( B < 1 <-> B = 0 ) ) |
228 |
3 226 227
|
3syl |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> ( B < 1 <-> B = 0 ) ) |
229 |
228
|
3ad2antr2 |
|- ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) -> ( B < 1 <-> B = 0 ) ) |
230 |
225 229
|
mpbid |
|- ( ( ph /\ ( 1 e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` 1 ) = 0 ) ) -> B = 0 ) |
231 |
206 209 217 230
|
vtoclf |
|- ( ( ph /\ ( 1 e. ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( ( 1 ... N ) X. { 0 } ) ` 1 ) = 0 ) ) -> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 ) |
232 |
202 231
|
mpdan |
|- ( ph -> [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B = 0 ) |
233 |
232
|
eqcomd |
|- ( ph -> 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B ) |
234 |
233
|
ralrimivw |
|- ( ph -> A. s e. { <. (/) , (/) >. } 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B ) |
235 |
|
rabid2 |
|- ( { <. (/) , (/) >. } = { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } <-> A. s e. { <. (/) , (/) >. } 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B ) |
236 |
234 235
|
sylibr |
|- ( ph -> { <. (/) , (/) >. } = { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) |
237 |
236
|
fveq2d |
|- ( ph -> ( # ` { <. (/) , (/) >. } ) = ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) |
238 |
191 237
|
eqtr3id |
|- ( ph -> 1 = ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) |
239 |
238
|
breq2d |
|- ( ph -> ( 2 || 1 <-> 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) ) |
240 |
188 239
|
mtbii |
|- ( ph -> -. 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) |
241 |
240
|
a1i |
|- ( N e. NN0 -> ( ph -> -. 2 || ( # ` { s e. { <. (/) , (/) >. } | 0 = [_ ( ( 1 ... N ) X. { 0 } ) / p ]_ B } ) ) ) |
242 |
|
2z |
|- 2 e. ZZ |
243 |
|
fzfi |
|- ( 1 ... ( m + 1 ) ) e. Fin |
244 |
|
mapfi |
|- ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... ( m + 1 ) ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) e. Fin ) |
245 |
15 243 244
|
mp2an |
|- ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) e. Fin |
246 |
|
ovex |
|- ( 1 ... ( m + 1 ) ) e. _V |
247 |
246 246
|
mapval |
|- ( ( 1 ... ( m + 1 ) ) ^m ( 1 ... ( m + 1 ) ) ) = { f | f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) } |
248 |
|
mapfi |
|- ( ( ( 1 ... ( m + 1 ) ) e. Fin /\ ( 1 ... ( m + 1 ) ) e. Fin ) -> ( ( 1 ... ( m + 1 ) ) ^m ( 1 ... ( m + 1 ) ) ) e. Fin ) |
249 |
243 243 248
|
mp2an |
|- ( ( 1 ... ( m + 1 ) ) ^m ( 1 ... ( m + 1 ) ) ) e. Fin |
250 |
247 249
|
eqeltrri |
|- { f | f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) } e. Fin |
251 |
|
f1of |
|- ( f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) -> f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) ) |
252 |
251
|
ss2abi |
|- { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } C_ { f | f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) } |
253 |
|
ssfi |
|- ( ( { f | f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) } e. Fin /\ { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } C_ { f | f : ( 1 ... ( m + 1 ) ) --> ( 1 ... ( m + 1 ) ) } ) -> { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } e. Fin ) |
254 |
250 252 253
|
mp2an |
|- { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } e. Fin |
255 |
|
xpfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) e. Fin /\ { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin ) |
256 |
245 254 255
|
mp2an |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin |
257 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin ) |
258 |
|
hashcl |
|- ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. NN0 ) |
259 |
256 257 258
|
mp2b |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. NN0 |
260 |
259
|
nn0zi |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ |
261 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } e. Fin ) |
262 |
|
hashcl |
|- ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } e. Fin -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. NN0 ) |
263 |
256 261 262
|
mp2b |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. NN0 |
264 |
263
|
nn0zi |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. ZZ |
265 |
242 260 264
|
3pm3.2i |
|- ( 2 e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. ZZ ) |
266 |
|
nn0p1nn |
|- ( m e. NN0 -> ( m + 1 ) e. NN ) |
267 |
266
|
ad2antrl |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( m + 1 ) e. NN ) |
268 |
|
uneq1 |
|- ( q = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
269 |
268
|
csbeq1d |
|- ( q = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
270 |
75
|
fconst |
|- ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) : ( ( ( m + 1 ) + 1 ) ... N ) --> { 0 } |
271 |
270
|
jctr |
|- ( q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) -> ( q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) : ( ( ( m + 1 ) + 1 ) ... N ) --> { 0 } ) ) |
272 |
266
|
nnred |
|- ( m e. NN0 -> ( m + 1 ) e. RR ) |
273 |
272
|
ltp1d |
|- ( m e. NN0 -> ( m + 1 ) < ( ( m + 1 ) + 1 ) ) |
274 |
|
fzdisj |
|- ( ( m + 1 ) < ( ( m + 1 ) + 1 ) -> ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) ) |
275 |
273 274
|
syl |
|- ( m e. NN0 -> ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) ) |
276 |
|
fun |
|- ( ( ( q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) : ( ( ( m + 1 ) + 1 ) ... N ) --> { 0 } ) /\ ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) ) |
277 |
271 275 276
|
syl2anr |
|- ( ( m e. NN0 /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) ) |
278 |
277
|
adantlr |
|- ( ( ( m e. NN0 /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) ) |
279 |
278
|
adantl |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) ) |
280 |
266
|
peano2nnd |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) e. NN ) |
281 |
280 192
|
eleqtrdi |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
282 |
281
|
ad2antrl |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( ( m + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
283 |
|
nn0z |
|- ( m e. NN0 -> m e. ZZ ) |
284 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
285 |
|
zltp1le |
|- ( ( m e. ZZ /\ N e. ZZ ) -> ( m < N <-> ( m + 1 ) <_ N ) ) |
286 |
283 284 285
|
syl2anr |
|- ( ( ph /\ m e. NN0 ) -> ( m < N <-> ( m + 1 ) <_ N ) ) |
287 |
286
|
biimpa |
|- ( ( ( ph /\ m e. NN0 ) /\ m < N ) -> ( m + 1 ) <_ N ) |
288 |
287
|
anasss |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( m + 1 ) <_ N ) |
289 |
283
|
peano2zd |
|- ( m e. NN0 -> ( m + 1 ) e. ZZ ) |
290 |
289
|
adantr |
|- ( ( m e. NN0 /\ m < N ) -> ( m + 1 ) e. ZZ ) |
291 |
|
eluz |
|- ( ( ( m + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( m + 1 ) ) <-> ( m + 1 ) <_ N ) ) |
292 |
290 284 291
|
syl2anr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( N e. ( ZZ>= ` ( m + 1 ) ) <-> ( m + 1 ) <_ N ) ) |
293 |
288 292
|
mpbird |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> N e. ( ZZ>= ` ( m + 1 ) ) ) |
294 |
|
fzsplit2 |
|- ( ( ( ( m + 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( m + 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) ) |
295 |
282 293 294
|
syl2anc |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 1 ... N ) = ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) ) |
296 |
295
|
eqcomd |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) = ( 1 ... N ) ) |
297 |
196 197
|
syl |
|- ( ph -> 0 e. ( 0 ... K ) ) |
298 |
297
|
snssd |
|- ( ph -> { 0 } C_ ( 0 ... K ) ) |
299 |
|
ssequn2 |
|- ( { 0 } C_ ( 0 ... K ) <-> ( ( 0 ... K ) u. { 0 } ) = ( 0 ... K ) ) |
300 |
298 299
|
sylib |
|- ( ph -> ( ( 0 ... K ) u. { 0 } ) = ( 0 ... K ) ) |
301 |
300
|
adantr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( ( 0 ... K ) u. { 0 } ) = ( 0 ... K ) ) |
302 |
296 301
|
feq23d |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) <-> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
303 |
302
|
adantrr |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( ( 1 ... ( m + 1 ) ) u. ( ( ( m + 1 ) + 1 ) ... N ) ) --> ( ( 0 ... K ) u. { 0 } ) <-> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
304 |
279 303
|
mpbid |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
305 |
|
nfv |
|- F/ p ( ph /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
306 |
|
nfcsb1v |
|- F/_ p [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B |
307 |
306
|
nfel1 |
|- F/ p [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) |
308 |
305 307
|
nfim |
|- F/ p ( ( ph /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
309 |
|
vex |
|- q e. _V |
310 |
|
ovex |
|- ( ( ( m + 1 ) + 1 ) ... N ) e. _V |
311 |
310 208
|
xpex |
|- ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) e. _V |
312 |
309 311
|
unex |
|- ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) e. _V |
313 |
|
feq1 |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) <-> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
314 |
313
|
anbi2d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) <-> ( ph /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) ) |
315 |
|
csbeq1a |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> B = [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
316 |
315
|
eleq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( B e. ( 0 ... N ) <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) ) |
317 |
314 316
|
imbi12d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) <-> ( ( ph /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) ) ) |
318 |
308 312 317 3
|
vtoclf |
|- ( ( ph /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
319 |
304 318
|
syldan |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
320 |
319
|
anassrs |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
321 |
|
elfznn0 |
|- ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. NN0 ) |
322 |
320 321
|
syl |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. NN0 ) |
323 |
266
|
nnnn0d |
|- ( m e. NN0 -> ( m + 1 ) e. NN0 ) |
324 |
323
|
adantr |
|- ( ( m e. NN0 /\ m < N ) -> ( m + 1 ) e. NN0 ) |
325 |
324
|
ad2antlr |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> ( m + 1 ) e. NN0 ) |
326 |
|
leloe |
|- ( ( ( m + 1 ) e. RR /\ N e. RR ) -> ( ( m + 1 ) <_ N <-> ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
327 |
272 8 326
|
syl2anr |
|- ( ( ph /\ m e. NN0 ) -> ( ( m + 1 ) <_ N <-> ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
328 |
286 327
|
bitrd |
|- ( ( ph /\ m e. NN0 ) -> ( m < N <-> ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
329 |
328
|
biimpd |
|- ( ( ph /\ m e. NN0 ) -> ( m < N -> ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
330 |
329
|
imdistani |
|- ( ( ( ph /\ m e. NN0 ) /\ m < N ) -> ( ( ph /\ m e. NN0 ) /\ ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
331 |
330
|
anasss |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( ( ph /\ m e. NN0 ) /\ ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) ) |
332 |
|
simplll |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ph ) |
333 |
280
|
nnge1d |
|- ( m e. NN0 -> 1 <_ ( ( m + 1 ) + 1 ) ) |
334 |
333
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> 1 <_ ( ( m + 1 ) + 1 ) ) |
335 |
|
zltp1le |
|- ( ( ( m + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( m + 1 ) < N <-> ( ( m + 1 ) + 1 ) <_ N ) ) |
336 |
289 284 335
|
syl2anr |
|- ( ( ph /\ m e. NN0 ) -> ( ( m + 1 ) < N <-> ( ( m + 1 ) + 1 ) <_ N ) ) |
337 |
336
|
biimpa |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( ( m + 1 ) + 1 ) <_ N ) |
338 |
289
|
peano2zd |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) e. ZZ ) |
339 |
|
1z |
|- 1 e. ZZ |
340 |
|
elfz |
|- ( ( ( ( m + 1 ) + 1 ) e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( ( m + 1 ) + 1 ) /\ ( ( m + 1 ) + 1 ) <_ N ) ) ) |
341 |
339 340
|
mp3an2 |
|- ( ( ( ( m + 1 ) + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( ( m + 1 ) + 1 ) /\ ( ( m + 1 ) + 1 ) <_ N ) ) ) |
342 |
338 284 341
|
syl2anr |
|- ( ( ph /\ m e. NN0 ) -> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( ( m + 1 ) + 1 ) /\ ( ( m + 1 ) + 1 ) <_ N ) ) ) |
343 |
342
|
adantr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( ( m + 1 ) + 1 ) /\ ( ( m + 1 ) + 1 ) <_ N ) ) ) |
344 |
334 337 343
|
mpbir2and |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( ( m + 1 ) + 1 ) e. ( 1 ... N ) ) |
345 |
344
|
adantlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( m + 1 ) + 1 ) e. ( 1 ... N ) ) |
346 |
|
nn0re |
|- ( m e. NN0 -> m e. RR ) |
347 |
346
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> m e. RR ) |
348 |
272
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( m + 1 ) e. RR ) |
349 |
8
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> N e. RR ) |
350 |
346
|
ltp1d |
|- ( m e. NN0 -> m < ( m + 1 ) ) |
351 |
350
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> m < ( m + 1 ) ) |
352 |
|
simpr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( m + 1 ) < N ) |
353 |
347 348 349 351 352
|
lttrd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> m < N ) |
354 |
353
|
adantlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> m < N ) |
355 |
|
anass |
|- ( ( ( ph /\ m e. NN0 ) /\ m < N ) <-> ( ph /\ ( m e. NN0 /\ m < N ) ) ) |
356 |
304
|
anassrs |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
357 |
355 356
|
sylanb |
|- ( ( ( ( ph /\ m e. NN0 ) /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
358 |
357
|
an32s |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ m < N ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
359 |
354 358
|
syldan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
360 |
|
ffn |
|- ( q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) -> q Fn ( 1 ... ( m + 1 ) ) ) |
361 |
360
|
ad2antlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> q Fn ( 1 ... ( m + 1 ) ) ) |
362 |
275
|
ad3antlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) ) |
363 |
|
eluz |
|- ( ( ( ( m + 1 ) + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( ( m + 1 ) + 1 ) ) <-> ( ( m + 1 ) + 1 ) <_ N ) ) |
364 |
338 284 363
|
syl2anr |
|- ( ( ph /\ m e. NN0 ) -> ( N e. ( ZZ>= ` ( ( m + 1 ) + 1 ) ) <-> ( ( m + 1 ) + 1 ) <_ N ) ) |
365 |
364
|
adantr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( N e. ( ZZ>= ` ( ( m + 1 ) + 1 ) ) <-> ( ( m + 1 ) + 1 ) <_ N ) ) |
366 |
337 365
|
mpbird |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> N e. ( ZZ>= ` ( ( m + 1 ) + 1 ) ) ) |
367 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` ( ( m + 1 ) + 1 ) ) -> ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) ) |
368 |
366 367
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ ( m + 1 ) < N ) -> ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) ) |
369 |
368
|
adantlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) ) |
370 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) Fn ( ( ( m + 1 ) + 1 ) ... N ) ) |
371 |
75 370
|
ax-mp |
|- ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) Fn ( ( ( m + 1 ) + 1 ) ... N ) |
372 |
|
fvun2 |
|- ( ( q Fn ( 1 ... ( m + 1 ) ) /\ ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) Fn ( ( ( m + 1 ) + 1 ) ... N ) /\ ( ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) /\ ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = ( ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ` ( ( m + 1 ) + 1 ) ) ) |
373 |
371 372
|
mp3an2 |
|- ( ( q Fn ( 1 ... ( m + 1 ) ) /\ ( ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) /\ ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = ( ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ` ( ( m + 1 ) + 1 ) ) ) |
374 |
361 362 369 373
|
syl12anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = ( ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ` ( ( m + 1 ) + 1 ) ) ) |
375 |
75
|
fvconst2 |
|- ( ( ( m + 1 ) + 1 ) e. ( ( ( m + 1 ) + 1 ) ... N ) -> ( ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ` ( ( m + 1 ) + 1 ) ) = 0 ) |
376 |
369 375
|
syl |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ` ( ( m + 1 ) + 1 ) ) = 0 ) |
377 |
374 376
|
eqtrd |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) |
378 |
|
nfv |
|- F/ p ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) |
379 |
|
nfcv |
|- F/_ p < |
380 |
|
nfcv |
|- F/_ p ( ( m + 1 ) + 1 ) |
381 |
306 379 380
|
nfbr |
|- F/ p [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) |
382 |
378 381
|
nfim |
|- F/ p ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) |
383 |
|
fveq1 |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( p ` ( ( m + 1 ) + 1 ) ) = ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) ) |
384 |
383
|
eqeq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( p ` ( ( m + 1 ) + 1 ) ) = 0 <-> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) |
385 |
313 384
|
3anbi23d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) <-> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) ) |
386 |
385
|
anbi2d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) <-> ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) ) ) |
387 |
315
|
breq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( B < ( ( m + 1 ) + 1 ) <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) ) |
388 |
386 387
|
imbi12d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> B < ( ( m + 1 ) + 1 ) ) <-> ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) ) ) |
389 |
|
ovex |
|- ( ( m + 1 ) + 1 ) e. _V |
390 |
|
eleq1 |
|- ( n = ( ( m + 1 ) + 1 ) -> ( n e. ( 1 ... N ) <-> ( ( m + 1 ) + 1 ) e. ( 1 ... N ) ) ) |
391 |
|
fveqeq2 |
|- ( n = ( ( m + 1 ) + 1 ) -> ( ( p ` n ) = 0 <-> ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) |
392 |
390 391
|
3anbi13d |
|- ( n = ( ( m + 1 ) + 1 ) -> ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) <-> ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) ) |
393 |
392
|
anbi2d |
|- ( n = ( ( m + 1 ) + 1 ) -> ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) <-> ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) ) ) |
394 |
|
breq2 |
|- ( n = ( ( m + 1 ) + 1 ) -> ( B < n <-> B < ( ( m + 1 ) + 1 ) ) ) |
395 |
393 394
|
imbi12d |
|- ( n = ( ( m + 1 ) + 1 ) -> ( ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n ) <-> ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> B < ( ( m + 1 ) + 1 ) ) ) ) |
396 |
389 395 4
|
vtocl |
|- ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> B < ( ( m + 1 ) + 1 ) ) |
397 |
382 312 388 396
|
vtoclf |
|- ( ( ph /\ ( ( ( m + 1 ) + 1 ) e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` ( ( m + 1 ) + 1 ) ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) |
398 |
332 345 359 377 397
|
syl13anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) |
399 |
355 320
|
sylanb |
|- ( ( ( ( ph /\ m e. NN0 ) /\ m < N ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
400 |
399
|
an32s |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ m < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) ) |
401 |
400
|
elfzelzd |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ m < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ZZ ) |
402 |
354 401
|
syldan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ZZ ) |
403 |
289
|
ad3antlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( m + 1 ) e. ZZ ) |
404 |
|
zleltp1 |
|- ( ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ZZ /\ ( m + 1 ) e. ZZ ) -> ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) ) |
405 |
402 403 404
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < ( ( m + 1 ) + 1 ) ) ) |
406 |
398 405
|
mpbird |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) |
407 |
350
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> m < ( m + 1 ) ) |
408 |
|
breq2 |
|- ( ( m + 1 ) = N -> ( m < ( m + 1 ) <-> m < N ) ) |
409 |
408
|
biimpac |
|- ( ( m < ( m + 1 ) /\ ( m + 1 ) = N ) -> m < N ) |
410 |
407 409
|
sylan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) = N ) -> m < N ) |
411 |
|
elfzle2 |
|- ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ N ) |
412 |
400 411
|
syl |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ m < N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ N ) |
413 |
410 412
|
syldan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) = N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ N ) |
414 |
|
simpr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) = N ) -> ( m + 1 ) = N ) |
415 |
413 414
|
breqtrrd |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( m + 1 ) = N ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) |
416 |
406 415
|
jaodan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) /\ ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) |
417 |
416
|
an32s |
|- ( ( ( ( ph /\ m e. NN0 ) /\ ( ( m + 1 ) < N \/ ( m + 1 ) = N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) |
418 |
331 417
|
sylan |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) |
419 |
|
elfz2nn0 |
|- ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... ( m + 1 ) ) <-> ( [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. NN0 /\ ( m + 1 ) e. NN0 /\ [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <_ ( m + 1 ) ) ) |
420 |
322 325 418 419
|
syl3anbrc |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B e. ( 0 ... ( m + 1 ) ) ) |
421 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( m + 1 ) ) -> ( 1 ... ( m + 1 ) ) C_ ( 1 ... N ) ) |
422 |
293 421
|
syl |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 1 ... ( m + 1 ) ) C_ ( 1 ... N ) ) |
423 |
422
|
sselda |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ n e. ( 1 ... ( m + 1 ) ) ) -> n e. ( 1 ... N ) ) |
424 |
423
|
3ad2antr1 |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> n e. ( 1 ... N ) ) |
425 |
356
|
3ad2antr2 |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
426 |
360
|
ad2antll |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> q Fn ( 1 ... ( m + 1 ) ) ) |
427 |
275
|
ad2antlr |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) ) |
428 |
|
simprl |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> n e. ( 1 ... ( m + 1 ) ) ) |
429 |
|
fvun1 |
|- ( ( q Fn ( 1 ... ( m + 1 ) ) /\ ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) Fn ( ( ( m + 1 ) + 1 ) ... N ) /\ ( ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) /\ n e. ( 1 ... ( m + 1 ) ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
430 |
371 429
|
mp3an2 |
|- ( ( q Fn ( 1 ... ( m + 1 ) ) /\ ( ( ( 1 ... ( m + 1 ) ) i^i ( ( ( m + 1 ) + 1 ) ... N ) ) = (/) /\ n e. ( 1 ... ( m + 1 ) ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
431 |
426 427 428 430
|
syl12anc |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
432 |
431
|
adantlrr |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
433 |
432
|
3adantr3 |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
434 |
|
simpr3 |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> ( q ` n ) = 0 ) |
435 |
433 434
|
eqtrd |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) |
436 |
424 425 435
|
3jca |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) |
437 |
|
nfv |
|- F/ p ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) |
438 |
|
nfcv |
|- F/_ p n |
439 |
306 379 438
|
nfbr |
|- F/ p [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n |
440 |
437 439
|
nfim |
|- F/ p ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) |
441 |
|
fveq1 |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( p ` n ) = ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) ) |
442 |
441
|
eqeq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( p ` n ) = 0 <-> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) |
443 |
313 442
|
3anbi23d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) <-> ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) ) |
444 |
443
|
anbi2d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) <-> ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) ) ) |
445 |
315
|
breq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( B < n <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) ) |
446 |
444 445
|
imbi12d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = 0 ) ) -> B < n ) <-> ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) ) ) |
447 |
440 312 446 4
|
vtoclf |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) |
448 |
447
|
adantlr |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) |
449 |
436 448
|
syldan |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = 0 ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B < n ) |
450 |
|
simp1 |
|- ( ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) -> n e. ( 1 ... ( m + 1 ) ) ) |
451 |
423
|
anasss |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ n e. ( 1 ... ( m + 1 ) ) ) ) -> n e. ( 1 ... N ) ) |
452 |
450 451
|
sylanr2 |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> n e. ( 1 ... N ) ) |
453 |
|
simp2 |
|- ( ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) -> q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) ) |
454 |
453 304
|
sylanr2 |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
455 |
431
|
3adantr3 |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = ( q ` n ) ) |
456 |
|
simpr3 |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) -> ( q ` n ) = K ) |
457 |
455 456
|
eqtrd |
|- ( ( ( ph /\ m e. NN0 ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) |
458 |
457
|
anasss |
|- ( ( ph /\ ( m e. NN0 /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) |
459 |
458
|
adantrlr |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) |
460 |
452 454 459
|
3jca |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) |
461 |
|
nfv |
|- F/ p ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) |
462 |
|
nfcv |
|- F/_ p ( n - 1 ) |
463 |
306 462
|
nfne |
|- F/ p [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) |
464 |
461 463
|
nfim |
|- F/ p ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) |
465 |
441
|
eqeq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( p ` n ) = K <-> ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) |
466 |
313 465
|
3anbi23d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) <-> ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) ) |
467 |
466
|
anbi2d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) <-> ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) ) ) |
468 |
315
|
neeq1d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( B =/= ( n - 1 ) <-> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) ) |
469 |
467 468
|
imbi12d |
|- ( p = ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) -> ( ( ( ph /\ ( n e. ( 1 ... N ) /\ p : ( 1 ... N ) --> ( 0 ... K ) /\ ( p ` n ) = K ) ) -> B =/= ( n - 1 ) ) <-> ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) ) ) |
470 |
464 312 469 5
|
vtoclf |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ ( ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) ` n ) = K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) |
471 |
460 470
|
syldan |
|- ( ( ph /\ ( ( m e. NN0 /\ m < N ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) |
472 |
471
|
anassrs |
|- ( ( ( ph /\ ( m e. NN0 /\ m < N ) ) /\ ( n e. ( 1 ... ( m + 1 ) ) /\ q : ( 1 ... ( m + 1 ) ) --> ( 0 ... K ) /\ ( q ` n ) = K ) ) -> [_ ( q u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B =/= ( n - 1 ) ) |
473 |
267 269 420 449 472
|
poimirlem27 |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) |
474 |
267 269 420
|
poimirlem26 |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
475 |
|
fzfi |
|- ( 0 ... ( m + 1 ) ) e. Fin |
476 |
|
xpfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin /\ ( 0 ... ( m + 1 ) ) e. Fin ) -> ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) e. Fin ) |
477 |
256 475 476
|
mp2an |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) e. Fin |
478 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin ) |
479 |
|
hashcl |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. NN0 ) |
480 |
477 478 479
|
mp2b |
|- ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. NN0 |
481 |
480
|
nn0zi |
|- ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ |
482 |
|
zsubcl |
|- ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. ZZ ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) e. ZZ ) |
483 |
481 264 482
|
mp2an |
|- ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) e. ZZ |
484 |
|
zsubcl |
|- ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) e. ZZ ) |
485 |
481 260 484
|
mp2an |
|- ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) e. ZZ |
486 |
|
dvds2sub |
|- ( ( 2 e. ZZ /\ ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) e. ZZ /\ ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) e. ZZ ) -> ( ( 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) /\ 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) -> 2 || ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) - ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) ) |
487 |
242 483 485 486
|
mp3an |
|- ( ( 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) /\ 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) -> 2 || ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) - ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
488 |
473 474 487
|
syl2anc |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> 2 || ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) - ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
489 |
480
|
nn0cni |
|- ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. CC |
490 |
263
|
nn0cni |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. CC |
491 |
259
|
nn0cni |
|- ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. CC |
492 |
|
nnncan1 |
|- ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. CC /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. CC /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. CC ) -> ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) - ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) = ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) |
493 |
489 490 491 492
|
mp3an |
|- ( ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) - ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) X. ( 0 ... ( m + 1 ) ) ) | A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( ( 0 ... ( m + 1 ) ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) = ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) |
494 |
488 493
|
breqtrdi |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> 2 || ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) |
495 |
|
dvdssub2 |
|- ( ( ( 2 e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) e. ZZ /\ ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) e. ZZ ) /\ 2 || ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) |
496 |
265 494 495
|
sylancr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) ) |
497 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
498 |
|
pncan1 |
|- ( m e. CC -> ( ( m + 1 ) - 1 ) = m ) |
499 |
497 498
|
syl |
|- ( m e. NN0 -> ( ( m + 1 ) - 1 ) = m ) |
500 |
499
|
oveq2d |
|- ( m e. NN0 -> ( 0 ... ( ( m + 1 ) - 1 ) ) = ( 0 ... m ) ) |
501 |
500
|
rexeqdv |
|- ( m e. NN0 -> ( E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
502 |
500 501
|
raleqbidv |
|- ( m e. NN0 -> ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
503 |
502
|
3anbi1d |
|- ( m e. NN0 -> ( ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) <-> ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) ) ) |
504 |
503
|
rabbidv |
|- ( m e. NN0 -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) |
505 |
504
|
fveq2d |
|- ( m e. NN0 -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) |
506 |
505
|
ad2antrl |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) |
507 |
1
|
adantr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> N e. NN ) |
508 |
6
|
adantr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> K e. NN ) |
509 |
|
simprl |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> m e. NN0 ) |
510 |
|
simprr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> m < N ) |
511 |
507 508 509 510
|
poimirlem4 |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) |
512 |
|
fzfi |
|- ( 1 ... m ) e. Fin |
513 |
|
mapfi |
|- ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... m ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... m ) ) e. Fin ) |
514 |
15 512 513
|
mp2an |
|- ( ( 0 ..^ K ) ^m ( 1 ... m ) ) e. Fin |
515 |
|
ovex |
|- ( 1 ... m ) e. _V |
516 |
515 515
|
mapval |
|- ( ( 1 ... m ) ^m ( 1 ... m ) ) = { f | f : ( 1 ... m ) --> ( 1 ... m ) } |
517 |
|
mapfi |
|- ( ( ( 1 ... m ) e. Fin /\ ( 1 ... m ) e. Fin ) -> ( ( 1 ... m ) ^m ( 1 ... m ) ) e. Fin ) |
518 |
512 512 517
|
mp2an |
|- ( ( 1 ... m ) ^m ( 1 ... m ) ) e. Fin |
519 |
516 518
|
eqeltrri |
|- { f | f : ( 1 ... m ) --> ( 1 ... m ) } e. Fin |
520 |
|
f1of |
|- ( f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) -> f : ( 1 ... m ) --> ( 1 ... m ) ) |
521 |
520
|
ss2abi |
|- { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } C_ { f | f : ( 1 ... m ) --> ( 1 ... m ) } |
522 |
|
ssfi |
|- ( ( { f | f : ( 1 ... m ) --> ( 1 ... m ) } e. Fin /\ { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } C_ { f | f : ( 1 ... m ) --> ( 1 ... m ) } ) -> { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } e. Fin ) |
523 |
519 521 522
|
mp2an |
|- { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } e. Fin |
524 |
|
xpfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) e. Fin /\ { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) e. Fin ) |
525 |
514 523 524
|
mp2an |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) e. Fin |
526 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin ) |
527 |
525 526
|
ax-mp |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin |
528 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } e. Fin ) |
529 |
256 528
|
ax-mp |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } e. Fin |
530 |
|
hashen |
|- ( ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. Fin /\ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } e. Fin ) -> ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) <-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) |
531 |
527 529 530
|
mp2an |
|- ( ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) <-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) |
532 |
511 531
|
sylibr |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) ) |
533 |
506 532
|
eqtr4d |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) |
534 |
533
|
breq2d |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | ( A. i e. ( 0 ... ( ( m + 1 ) - 1 ) ) E. j e. ( 0 ... ( ( m + 1 ) - 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( m + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( m + 1 ) ) = ( m + 1 ) ) } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
535 |
496 534
|
bitrd |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
536 |
535
|
biimpd |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) -> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
537 |
536
|
con3d |
|- ( ( ph /\ ( m e. NN0 /\ m < N ) ) -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
538 |
537
|
expcom |
|- ( ( m e. NN0 /\ m < N ) -> ( ph -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
539 |
538
|
a2d |
|- ( ( m e. NN0 /\ m < N ) -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) -> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
540 |
539
|
3adant1 |
|- ( ( N e. NN0 /\ m e. NN0 /\ m < N ) -> ( ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... m ) ) X. { f | f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } ) | A. i e. ( 0 ... m ) E. j e. ( 0 ... m ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... m ) ) X. { 0 } ) ) ) u. ( ( ( m + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) -> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( m + 1 ) ) ) X. { f | f : ( 1 ... ( m + 1 ) ) -1-1-onto-> ( 1 ... ( m + 1 ) ) } ) | A. i e. ( 0 ... ( m + 1 ) ) E. j e. ( 0 ... ( m + 1 ) ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( m + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( m + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) ) |
541 |
112 137 162 187 241 540
|
fnn0ind |
|- ( ( N e. NN0 /\ N e. NN0 /\ N <_ N ) -> ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
542 |
10 541
|
mpcom |
|- ( ph -> -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) |
543 |
|
dvds0 |
|- ( 2 e. ZZ -> 2 || 0 ) |
544 |
242 543
|
ax-mp |
|- 2 || 0 |
545 |
|
hash0 |
|- ( # ` (/) ) = 0 |
546 |
544 545
|
breqtrri |
|- 2 || ( # ` (/) ) |
547 |
|
fveq2 |
|- ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } = (/) -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) = ( # ` (/) ) ) |
548 |
546 547
|
breqtrrid |
|- ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } = (/) -> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
549 |
8
|
ltp1d |
|- ( ph -> N < ( N + 1 ) ) |
550 |
284
|
peano2zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
551 |
|
fzn |
|- ( ( ( N + 1 ) e. ZZ /\ N e. ZZ ) -> ( N < ( N + 1 ) <-> ( ( N + 1 ) ... N ) = (/) ) ) |
552 |
550 284 551
|
syl2anc |
|- ( ph -> ( N < ( N + 1 ) <-> ( ( N + 1 ) ... N ) = (/) ) ) |
553 |
549 552
|
mpbid |
|- ( ph -> ( ( N + 1 ) ... N ) = (/) ) |
554 |
553
|
xpeq1d |
|- ( ph -> ( ( ( N + 1 ) ... N ) X. { 0 } ) = ( (/) X. { 0 } ) ) |
555 |
554 91
|
eqtrdi |
|- ( ph -> ( ( ( N + 1 ) ... N ) X. { 0 } ) = (/) ) |
556 |
555
|
uneq2d |
|- ( ph -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. (/) ) ) |
557 |
|
un0 |
|- ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. (/) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
558 |
556 557
|
eqtrdi |
|- ( ph -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
559 |
558
|
csbeq1d |
|- ( ph -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
560 |
|
ovex |
|- ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
561 |
560 2
|
csbie |
|- [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = C |
562 |
559 561
|
eqtrdi |
|- ( ph -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = C ) |
563 |
562
|
eqeq2d |
|- ( ph -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = C ) ) |
564 |
563
|
rexbidv |
|- ( ph -> ( E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... N ) i = C ) ) |
565 |
564
|
ralbidv |
|- ( ph -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) |
566 |
565
|
rabbidv |
|- ( ph -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
567 |
566
|
fveq2d |
|- ( ph -> ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
568 |
567
|
breq2d |
|- ( ph -> ( 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) <-> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) |
569 |
548 568
|
syl5ibr |
|- ( ph -> ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } = (/) -> 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) ) |
570 |
569
|
necon3bd |
|- ( ph -> ( -. 2 || ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) u. ( ( ( N + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } =/= (/) ) ) |
571 |
542 570
|
mpd |
|- ( ph -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } =/= (/) ) |
572 |
|
rabn0 |
|- ( { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } =/= (/) <-> E. s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) |
573 |
571 572
|
sylib |
|- ( ph -> E. s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) |