Metamath Proof Explorer


Theorem poimirlem26

Description: Lemma for poimir showing an even difference between the number of admissible faces and the number of admissible simplices. Equation (6) of Kulpa p. 548. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem28.1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 )
poimirlem28.2 ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
Assertion poimirlem26 ( 𝜑 → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem28.1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 )
3 poimirlem28.2 ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
4 fzofi ( 0 ..^ 𝐾 ) ∈ Fin
5 fzfi ( 1 ... 𝑁 ) ∈ Fin
6 mapfi ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin )
7 4 5 6 mp2an ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin
8 mapfi ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin )
9 5 5 8 mp2an ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin
10 f1of ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
11 10 ss2abi { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) }
12 ovex ( 1 ... 𝑁 ) ∈ V
13 12 12 mapval ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) = { 𝑓𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) }
14 11 13 sseqtrri { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) )
15 ssfi ( ( ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ) → { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin )
16 9 14 15 mp2an { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin
17 7 16 pm3.2i ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin )
18 xpfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin )
19 17 18 mp1i ( 𝜑 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin )
20 2z 2 ∈ ℤ
21 20 a1i ( 𝜑 → 2 ∈ ℤ )
22 snfi { 𝑥 } ∈ Fin
23 fzfi ( 0 ... 𝑁 ) ∈ Fin
24 rabfi ( ( 0 ... 𝑁 ) ∈ Fin → { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ∈ Fin )
25 23 24 ax-mp { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ∈ Fin
26 xpfi ( ( { 𝑥 } ∈ Fin ∧ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ∈ Fin ) → ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∈ Fin )
27 22 25 26 mp2an ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∈ Fin
28 hashcl ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∈ Fin → ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) ∈ ℕ0 )
29 27 28 ax-mp ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) ∈ ℕ0
30 29 nn0zi ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) ∈ ℤ
31 30 a1i ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) ∈ ℤ )
32 1 ad2antrr ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) → 𝑁 ∈ ℕ )
33 nfv 𝑗 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
34 nfcsb1v 𝑗 𝑘 / 𝑗 𝑡 / 𝑠 𝐶
35 34 nfeq2 𝑗 𝐵 = 𝑘 / 𝑗 𝑡 / 𝑠 𝐶
36 33 35 nfim 𝑗 ( 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
37 oveq2 ( 𝑗 = 𝑘 → ( 1 ... 𝑗 ) = ( 1 ... 𝑘 ) )
38 37 imaeq2d ( 𝑗 = 𝑘 → ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd𝑡 ) “ ( 1 ... 𝑘 ) ) )
39 38 xpeq1d ( 𝑗 = 𝑘 → ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) )
40 oveq1 ( 𝑗 = 𝑘 → ( 𝑗 + 1 ) = ( 𝑘 + 1 ) )
41 40 oveq1d ( 𝑗 = 𝑘 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑘 + 1 ) ... 𝑁 ) )
42 41 imaeq2d ( 𝑗 = 𝑘 → ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) )
43 42 xpeq1d ( 𝑗 = 𝑘 → ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) )
44 39 43 uneq12d ( 𝑗 = 𝑘 → ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
45 44 oveq2d ( 𝑗 = 𝑘 → ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
46 45 eqeq2d ( 𝑗 = 𝑘 → ( 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ↔ 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
47 csbeq1a ( 𝑗 = 𝑘 𝑡 / 𝑠 𝐶 = 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
48 47 eqeq2d ( 𝑗 = 𝑘 → ( 𝐵 = 𝑡 / 𝑠 𝐶𝐵 = 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ) )
49 46 48 imbi12d ( 𝑗 = 𝑘 → ( ( 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝑡 / 𝑠 𝐶 ) ↔ ( 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ) ) )
50 nfv 𝑠 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
51 nfcsb1v 𝑠 𝑡 / 𝑠 𝐶
52 51 nfeq2 𝑠 𝐵 = 𝑡 / 𝑠 𝐶
53 50 52 nfim 𝑠 ( 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝑡 / 𝑠 𝐶 )
54 fveq2 ( 𝑠 = 𝑡 → ( 1st𝑠 ) = ( 1st𝑡 ) )
55 fveq2 ( 𝑠 = 𝑡 → ( 2nd𝑠 ) = ( 2nd𝑡 ) )
56 55 imaeq1d ( 𝑠 = 𝑡 → ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) )
57 56 xpeq1d ( 𝑠 = 𝑡 → ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
58 55 imaeq1d ( 𝑠 = 𝑡 → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
59 58 xpeq1d ( 𝑠 = 𝑡 → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
60 57 59 uneq12d ( 𝑠 = 𝑡 → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
61 54 60 oveq12d ( 𝑠 = 𝑡 → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
62 61 eqeq2d ( 𝑠 = 𝑡 → ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ↔ 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
63 csbeq1a ( 𝑠 = 𝑡𝐶 = 𝑡 / 𝑠 𝐶 )
64 63 eqeq2d ( 𝑠 = 𝑡 → ( 𝐵 = 𝐶𝐵 = 𝑡 / 𝑠 𝐶 ) )
65 62 64 imbi12d ( 𝑠 = 𝑡 → ( ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 ) ↔ ( 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝑡 / 𝑠 𝐶 ) ) )
66 53 65 2 chvarfv ( 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝑡 / 𝑠 𝐶 )
67 36 49 66 chvarfv ( 𝑝 = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
68 3 ad4ant14 ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
69 xp1st ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st𝑥 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
70 elmapi ( ( 1st𝑥 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
71 69 70 syl ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
72 71 ad2antlr ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) → ( 1st𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
73 xp2nd ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd𝑥 ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
74 fvex ( 2nd𝑥 ) ∈ V
75 f1oeq1 ( 𝑓 = ( 2nd𝑥 ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
76 74 75 elab ( ( 2nd𝑥 ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
77 73 76 sylib ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
78 77 ad2antlr ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) → ( 2nd𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
79 nfcv 𝑗 𝑁
80 nfcv 𝑗 𝑥
81 80 34 nfcsbw 𝑗 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶
82 79 81 nfne 𝑗 𝑁 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶
83 nfcv 𝑡 𝐶
84 83 51 63 cbvcsbw 𝑥 / 𝑠 𝐶 = 𝑥 / 𝑡 𝑡 / 𝑠 𝐶
85 47 csbeq2dv ( 𝑗 = 𝑘 𝑥 / 𝑡 𝑡 / 𝑠 𝐶 = 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
86 84 85 syl5eq ( 𝑗 = 𝑘 𝑥 / 𝑠 𝐶 = 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
87 86 neeq2d ( 𝑗 = 𝑘 → ( 𝑁 𝑥 / 𝑠 𝐶𝑁 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ) )
88 82 87 rspc ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶𝑁 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ) )
89 88 impcom ( ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑁 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
90 89 adantll ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑁 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
91 1st2nd2 ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
92 91 csbeq1d ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
93 92 ad3antlr ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
94 90 93 neeqtrd ( ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
95 32 67 68 72 78 94 poimirlem25 ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 } ) )
96 nfv 𝑘 𝑖 = 𝑥 / 𝑠 𝐶
97 81 nfeq2 𝑗 𝑖 = 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶
98 86 eqeq2d ( 𝑗 = 𝑘 → ( 𝑖 = 𝑥 / 𝑠 𝐶𝑖 = 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ) )
99 96 97 98 cbvrexw ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ↔ ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 )
100 92 eqeq2d ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 𝑖 = 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶𝑖 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ) )
101 100 rexbidv ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ↔ ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ) )
102 99 101 bitr2id ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ) )
103 102 ralbidv ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ) )
104 iba ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) )
105 103 104 sylan9bb ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) )
106 105 rabbidv ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) → { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 } = { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } )
107 106 fveq2d ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) → ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 } ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) )
108 107 adantll ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) → ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ / 𝑡 𝑘 / 𝑗 𝑡 / 𝑠 𝐶 } ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) )
109 95 108 breqtrd ( ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) )
110 109 ex ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) )
111 dvds0 ( 2 ∈ ℤ → 2 ∥ 0 )
112 20 111 ax-mp 2 ∥ 0
113 hash0 ( ♯ ‘ ∅ ) = 0
114 112 113 breqtrri 2 ∥ ( ♯ ‘ ∅ )
115 simpr ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 )
116 115 con3i ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 → ¬ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) )
117 116 ralrimivw ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 → ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ¬ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) )
118 rabeq0 ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } = ∅ ↔ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ¬ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) )
119 117 118 sylibr ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 → { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } = ∅ )
120 119 fveq2d ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 → ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) = ( ♯ ‘ ∅ ) )
121 114 120 breqtrrid ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) )
122 110 121 pm2.61d1 ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) )
123 hashxp ( ( { 𝑥 } ∈ Fin ∧ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ∈ Fin ) → ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑥 } ) · ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) )
124 22 25 123 mp2an ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑥 } ) · ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) )
125 vex 𝑥 ∈ V
126 hashsng ( 𝑥 ∈ V → ( ♯ ‘ { 𝑥 } ) = 1 )
127 125 126 ax-mp ( ♯ ‘ { 𝑥 } ) = 1
128 127 oveq1i ( ( ♯ ‘ { 𝑥 } ) · ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) = ( 1 · ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) )
129 hashcl ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ∈ Fin → ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∈ ℕ0 )
130 25 129 ax-mp ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∈ ℕ0
131 130 nn0cni ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∈ ℂ
132 131 mulid2i ( 1 · ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } )
133 124 128 132 3eqtri ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } )
134 122 133 breqtrrdi ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → 2 ∥ ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) )
135 19 21 31 134 fsumdvds ( 𝜑 → 2 ∥ Σ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) )
136 7 16 18 mp2an ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin
137 xpfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin ∧ ( 0 ... 𝑁 ) ∈ Fin ) → ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin )
138 136 23 137 mp2an ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin
139 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∈ Fin )
140 138 139 ax-mp { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∈ Fin
141 1 nncnd ( 𝜑𝑁 ∈ ℂ )
142 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
143 141 142 syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
144 nnm1nn0 ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 )
145 1 144 syl ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 )
146 145 nn0zd ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ )
147 uzid ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
148 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
149 146 147 148 3syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
150 143 149 eqeltrrd ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
151 fzss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) )
152 ssralv ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
153 150 151 152 3syl ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
154 153 adantr ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
155 raldifb ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑗 ∉ { ( 2nd𝑡 ) } → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ↔ ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 )
156 nfv 𝑗 𝜑
157 nfcsb1v 𝑗 ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶
158 157 nfeq2 𝑗 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶
159 156 158 nfan 𝑗 ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
160 nfv 𝑗 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) )
161 159 160 nfan 𝑗 ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
162 nnel ( ¬ 𝑗 ∉ { ( 2nd𝑡 ) } ↔ 𝑗 ∈ { ( 2nd𝑡 ) } )
163 velsn ( 𝑗 ∈ { ( 2nd𝑡 ) } ↔ 𝑗 = ( 2nd𝑡 ) )
164 162 163 bitri ( ¬ 𝑗 ∉ { ( 2nd𝑡 ) } ↔ 𝑗 = ( 2nd𝑡 ) )
165 csbeq1a ( 𝑗 = ( 2nd𝑡 ) → ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
166 165 eqeq2d ( 𝑗 = ( 2nd𝑡 ) → ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) )
167 166 biimparc ( ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶𝑗 = ( 2nd𝑡 ) ) → 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 )
168 1 nnred ( 𝜑𝑁 ∈ ℝ )
169 168 ltm1d ( 𝜑 → ( 𝑁 − 1 ) < 𝑁 )
170 145 nn0red ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ )
171 170 168 ltnled ( 𝜑 → ( ( 𝑁 − 1 ) < 𝑁 ↔ ¬ 𝑁 ≤ ( 𝑁 − 1 ) ) )
172 169 171 mpbid ( 𝜑 → ¬ 𝑁 ≤ ( 𝑁 − 1 ) )
173 elfzle2 ( 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑁 ≤ ( 𝑁 − 1 ) )
174 172 173 nsyl ( 𝜑 → ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
175 eleq1 ( 𝑖 = 𝑁 → ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
176 175 notbid ( 𝑖 = 𝑁 → ( ¬ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
177 174 176 syl5ibrcom ( 𝜑 → ( 𝑖 = 𝑁 → ¬ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
178 177 con2d ( 𝜑 → ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ¬ 𝑖 = 𝑁 ) )
179 178 imp ( ( 𝜑𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑖 = 𝑁 )
180 eqeq2 ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 → ( 𝑖 = 𝑁𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
181 180 notbid ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 → ( ¬ 𝑖 = 𝑁 ↔ ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
182 179 181 syl5ibcom ( ( 𝜑𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
183 167 182 syl5 ( ( 𝜑𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶𝑗 = ( 2nd𝑡 ) ) → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
184 183 expdimp ( ( ( 𝜑𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) → ( 𝑗 = ( 2nd𝑡 ) → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
185 184 an32s ( ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 = ( 2nd𝑡 ) → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
186 164 185 syl5bi ( ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ¬ 𝑗 ∉ { ( 2nd𝑡 ) } → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
187 idd ( ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
188 186 187 jad ( ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 ∉ { ( 2nd𝑡 ) } → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
189 188 adantr ( ( ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑗 ∉ { ( 2nd𝑡 ) } → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
190 161 189 ralimdaa ( ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑗 ∉ { ( 2nd𝑡 ) } → ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
191 155 190 syl5bir ( ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
192 191 con3d ( ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ¬ ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
193 dfrex2 ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 )
194 dfrex2 ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ¬ ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ¬ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 )
195 192 193 194 3imtr4g ( ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
196 195 ralimdva ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
197 154 196 syld ( ( 𝜑𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
198 197 expimpd ( 𝜑 → ( ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
199 198 adantr ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
200 199 ss2rabdv ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } )
201 hashssdif ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∈ Fin ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) )
202 140 200 201 sylancr ( 𝜑 → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) )
203 xp2nd ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) )
204 df-ne ( 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ↔ ¬ 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 )
205 204 ralbii ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 )
206 ralnex ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ¬ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 )
207 205 206 bitri ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ↔ ¬ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 )
208 1 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
209 nn0uz 0 = ( ℤ ‘ 0 )
210 208 209 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 0 ) )
211 143 210 eqeltrd ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ 0 ) )
212 fzsplit2 ( ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) ) → ( 0 ... 𝑁 ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
213 211 150 212 syl2anc ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
214 143 oveq1d ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑁 ... 𝑁 ) )
215 1 nnzd ( 𝜑𝑁 ∈ ℤ )
216 fzsn ( 𝑁 ∈ ℤ → ( 𝑁 ... 𝑁 ) = { 𝑁 } )
217 215 216 syl ( 𝜑 → ( 𝑁 ... 𝑁 ) = { 𝑁 } )
218 214 217 eqtrd ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = { 𝑁 } )
219 218 uneq2d ( 𝜑 → ( ( 0 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
220 213 219 eqtrd ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
221 220 raleqdv ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
222 ralunb ( ∀ 𝑖 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
223 difss ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ⊆ ( 0 ... 𝑁 )
224 ssrexv ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ⊆ ( 0 ... 𝑁 ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
225 223 224 ax-mp ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 )
226 225 ralimi ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 )
227 226 biantrurd ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ( ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
228 222 227 bitr4id ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ( ∀ 𝑖 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
229 221 228 sylan9bb ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
230 229 adantlr ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
231 nn0fz0 ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ... 𝑁 ) )
232 208 231 sylib ( 𝜑𝑁 ∈ ( 0 ... 𝑁 ) )
233 232 ad2antrr ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → 𝑁 ∈ ( 0 ... 𝑁 ) )
234 eqeq1 ( 𝑖 = 𝑁 → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
235 234 rexbidv ( 𝑖 = 𝑁 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
236 235 rspcva ( ( 𝑁 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 )
237 nfv 𝑗 ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) )
238 nfcv 𝑗 ( 0 ... ( 𝑁 − 1 ) )
239 nfre1 𝑗𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
240 238 239 nfralw 𝑗𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
241 237 240 nfan 𝑗 ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 )
242 eleq1 ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 → ( 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
243 242 notbid ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 → ( ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ¬ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
244 174 243 syl5ibcom ( 𝜑 → ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 → ¬ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
245 244 ad3antrrr ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 → ¬ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
246 eldifsn ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ↔ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ≠ ( 2nd𝑡 ) ) )
247 diffi ( ( 0 ... 𝑁 ) ∈ Fin → ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∈ Fin )
248 23 247 ax-mp ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∈ Fin
249 ssrab2 { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⊆ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } )
250 ssdomg ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∈ Fin → ( { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⊆ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≼ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) )
251 248 249 250 mp2 { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≼ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } )
252 hashdifsn ( ( ( 0 ... 𝑁 ) ∈ Fin ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) = ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) )
253 23 252 mpan ( ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) → ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) = ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) )
254 1cnd ( 𝜑 → 1 ∈ ℂ )
255 141 254 254 addsubd ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = ( ( 𝑁 − 1 ) + 1 ) )
256 hashfz0 ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ... 𝑁 ) ) = ( 𝑁 + 1 ) )
257 208 256 syl ( 𝜑 → ( ♯ ‘ ( 0 ... 𝑁 ) ) = ( 𝑁 + 1 ) )
258 257 oveq1d ( 𝜑 → ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) )
259 hashfz0 ( ( 𝑁 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) = ( ( 𝑁 − 1 ) + 1 ) )
260 145 259 syl ( 𝜑 → ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) = ( ( 𝑁 − 1 ) + 1 ) )
261 255 258 260 3eqtr4d ( 𝜑 → ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) = ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) )
262 253 261 sylan9eqr ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) = ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) )
263 fzfi ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin
264 hashen ( ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∈ Fin ∧ ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) → ( ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) = ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ≈ ( 0 ... ( 𝑁 − 1 ) ) ) )
265 248 263 264 mp2an ( ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) = ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ≈ ( 0 ... ( 𝑁 − 1 ) ) )
266 262 265 sylib ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ≈ ( 0 ... ( 𝑁 − 1 ) ) )
267 rabfi ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∈ Fin → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∈ Fin )
268 248 267 ax-mp { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∈ Fin
269 eleq1 ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
270 269 biimpac ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
271 rabid ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↔ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∧ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
272 271 simplbi2com ( ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) → 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) )
273 270 272 syl ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) → 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) )
274 273 impancom ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) )
275 274 ancrd ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
276 275 expimpd ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
277 276 reximdv2 ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∃ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
278 271 simplbi ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } → 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) )
279 274 pm4.71rd ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
280 df-mpt ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) = { ⟨ 𝑘 , 𝑖 ⟩ ∣ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) }
281 nfv 𝑘 ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 )
282 nfrab1 𝑗 { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) }
283 282 nfcri 𝑗 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) }
284 nfcsb1v 𝑗 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶
285 284 nfeq2 𝑗 𝑖 = 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶
286 283 285 nfan 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
287 eleq1 ( 𝑗 = 𝑘 → ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↔ 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) )
288 csbeq1a ( 𝑗 = 𝑘 ( 1st𝑡 ) / 𝑠 𝐶 = 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
289 288 eqeq2d ( 𝑗 = 𝑘 → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑖 = 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) )
290 287 289 anbi12d ( 𝑗 = 𝑘 → ( ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ↔ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
291 281 286 290 cbvopab1 { ⟨ 𝑗 , 𝑖 ⟩ ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } = { ⟨ 𝑘 , 𝑖 ⟩ ∣ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) }
292 280 291 eqtr4i ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) = { ⟨ 𝑗 , 𝑖 ⟩ ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) }
293 292 breqi ( 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖𝑗 { ⟨ 𝑗 , 𝑖 ⟩ ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } 𝑖 )
294 df-br ( 𝑗 { ⟨ 𝑗 , 𝑖 ⟩ ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } 𝑖 ↔ ⟨ 𝑗 , 𝑖 ⟩ ∈ { ⟨ 𝑗 , 𝑖 ⟩ ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } )
295 opabidw ( ⟨ 𝑗 , 𝑖 ⟩ ∈ { ⟨ 𝑗 , 𝑖 ⟩ ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ↔ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
296 293 294 295 3bitri ( 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 ↔ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
297 279 296 bitr4di ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 ) )
298 278 297 sylan2 ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 ) )
299 298 rexbidva ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ∃ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 ) )
300 nfcv 𝑝 { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) }
301 nfv 𝑝 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖
302 nfcv 𝑗 𝑝
303 282 284 nfmpt 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
304 nfcv 𝑗 𝑖
305 302 303 304 nfbr 𝑗 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖
306 breq1 ( 𝑗 = 𝑝 → ( 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 ) )
307 282 300 301 305 306 cbvrexfw ( ∃ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 ↔ ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 )
308 299 307 bitrdi ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ∃ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 ) )
309 277 308 sylibd ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 ) )
310 309 ralimia ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 )
311 eqid ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) = ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
312 nfcv 𝑗 𝑘
313 nfcv 𝑗 ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } )
314 284 nfel1 𝑗 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) )
315 288 eleq1d ( 𝑗 = 𝑘 → ( ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
316 312 313 314 315 elrabf ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↔ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∧ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
317 316 simprbi ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } → 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
318 311 317 fmpti ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⟶ ( 0 ... ( 𝑁 − 1 ) )
319 310 318 jctil ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ( ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⟶ ( 0 ... ( 𝑁 − 1 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 ) )
320 dffo4 ( ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } –onto→ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⟶ ( 0 ... ( 𝑁 − 1 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) 𝑖 ) )
321 319 320 sylibr ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } –onto→ ( 0 ... ( 𝑁 − 1 ) ) )
322 fodomfi ( ( { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∈ Fin ∧ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } –onto→ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 0 ... ( 𝑁 − 1 ) ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } )
323 268 321 322 sylancr ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 → ( 0 ... ( 𝑁 − 1 ) ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } )
324 endomtr ( ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ≈ ( 0 ... ( 𝑁 − 1 ) ) ∧ ( 0 ... ( 𝑁 − 1 ) ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) → ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } )
325 266 323 324 syl2an ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } )
326 sbth ( ( { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≼ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∧ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) )
327 251 325 326 sylancr ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) )
328 fisseneq ( ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∈ Fin ∧ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⊆ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∧ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } = ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) )
329 248 249 327 328 mp3an12i ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } = ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) )
330 329 eleq2d ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↔ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) )
331 330 biimpar ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) → 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } )
332 288 equcoms ( 𝑘 = 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 = 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
333 332 eqcomd ( 𝑘 = 𝑗 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 = ( 1st𝑡 ) / 𝑠 𝐶 )
334 333 eleq1d ( 𝑘 = 𝑗 → ( 𝑘 / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
335 334 317 vtoclga ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ∣ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } → ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
336 331 335 syl ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) ) → ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
337 246 336 sylan2br ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ≠ ( 2nd𝑡 ) ) ) → ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
338 337 expr ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑗 ≠ ( 2nd𝑡 ) → ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
339 338 necon1bd ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ¬ ( 1st𝑡 ) / 𝑠 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 = ( 2nd𝑡 ) ) )
340 245 339 syld ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶𝑗 = ( 2nd𝑡 ) ) )
341 340 imp ( ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ) → 𝑗 = ( 2nd𝑡 ) )
342 341 165 syl ( ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
343 eqtr ( ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) → 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
344 343 ex ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 → ( ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) )
345 344 adantl ( ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) )
346 342 345 mpd ( ( ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ) → 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
347 346 exp31 ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
348 241 158 347 rexlimd ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) )
349 236 348 syl5 ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ( 𝑁 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) )
350 233 349 mpand ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) )
351 350 pm4.71rd ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
352 235 ralsng ( 𝑁 ∈ ℕ → ( ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
353 1 352 syl ( 𝜑 → ( ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
354 353 ad2antrr ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ) )
355 230 351 354 3bitr3rd ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
356 355 notbid ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ¬ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ¬ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
357 207 356 syl5bb ( ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ↔ ¬ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) )
358 357 pm5.32da ( ( 𝜑 ∧ ( 2nd𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) ) )
359 203 358 sylan2 ( ( 𝜑𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) ) )
360 359 rabbidva ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) } )
361 nfv 𝑦 𝑡 = ⟨ 𝑥 , 𝑘
362 nfv 𝑦 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
363 nfrab1 𝑦 { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) }
364 363 nfcri 𝑦 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) }
365 362 364 nfan 𝑦 ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } )
366 361 365 nfan 𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑘 ⟩ ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) )
367 nfv 𝑘 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) )
368 opeq2 ( 𝑘 = 𝑦 → ⟨ 𝑥 , 𝑘 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ )
369 368 eqeq2d ( 𝑘 = 𝑦 → ( 𝑡 = ⟨ 𝑥 , 𝑘 ⟩ ↔ 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ) )
370 eleq1 ( 𝑘 = 𝑦 → ( 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ↔ 𝑦 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) )
371 rabid ( 𝑦 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ↔ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) )
372 370 371 bitrdi ( 𝑘 = 𝑦 → ( 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ↔ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) ) )
373 372 anbi2d ( 𝑘 = 𝑦 → ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ↔ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) ) ) )
374 3anass ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) ↔ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) ) )
375 373 374 bitr4di ( 𝑘 = 𝑦 → ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ↔ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) ) )
376 369 375 anbi12d ( 𝑘 = 𝑦 → ( ( 𝑡 = ⟨ 𝑥 , 𝑘 ⟩ ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) ↔ ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) ) ) )
377 366 367 376 cbvexv1 ( ∃ 𝑘 ( 𝑡 = ⟨ 𝑥 , 𝑘 ⟩ ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) ↔ ∃ 𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) ) )
378 377 exbii ( ∃ 𝑥𝑘 ( 𝑡 = ⟨ 𝑥 , 𝑘 ⟩ ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) ↔ ∃ 𝑥𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) ) )
379 eliunxp ( 𝑡 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ↔ ∃ 𝑥𝑘 ( 𝑡 = ⟨ 𝑥 , 𝑘 ⟩ ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) )
380 elopab ( 𝑡 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) } ↔ ∃ 𝑥𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) ) )
381 378 379 380 3bitr4i ( 𝑡 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ↔ 𝑡 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) } )
382 381 eqriv 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) }
383 vex 𝑦 ∈ V
384 125 383 op2ndd ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑡 ) = 𝑦 )
385 384 sneqd ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → { ( 2nd𝑡 ) } = { 𝑦 } )
386 385 difeq2d ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) = ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) )
387 125 383 op1std ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑡 ) = 𝑥 )
388 387 csbeq1d ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑡 ) / 𝑠 𝐶 = 𝑥 / 𝑠 𝐶 )
389 388 eqeq2d ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑖 = 𝑥 / 𝑠 𝐶 ) )
390 386 389 rexeqbidv ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ) )
391 390 ralbidv ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ) )
392 388 neeq2d ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑁 ( 1st𝑡 ) / 𝑠 𝐶𝑁 𝑥 / 𝑠 𝐶 ) )
393 392 ralbidv ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) )
394 391 393 anbi12d ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) )
395 394 rabxp { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ) }
396 382 395 eqtr4i 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ( 1st𝑡 ) / 𝑠 𝐶 ) }
397 difrab ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ∧ ¬ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ) }
398 360 396 397 3eqtr4g ( 𝜑 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) = ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) )
399 398 fveq2d ( 𝜑 → ( ♯ ‘ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) = ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) )
400 27 a1i ( ( 𝜑𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∈ Fin )
401 inxp ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∩ ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) ) = ( ( { 𝑥 } ∩ { 𝑡 } ) × ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ∩ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) )
402 df-ne ( 𝑥𝑡 ↔ ¬ 𝑥 = 𝑡 )
403 disjsn2 ( 𝑥𝑡 → ( { 𝑥 } ∩ { 𝑡 } ) = ∅ )
404 402 403 sylbir ( ¬ 𝑥 = 𝑡 → ( { 𝑥 } ∩ { 𝑡 } ) = ∅ )
405 404 xpeq1d ( ¬ 𝑥 = 𝑡 → ( ( { 𝑥 } ∩ { 𝑡 } ) × ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ∩ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) ) = ( ∅ × ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ∩ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) ) )
406 0xp ( ∅ × ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ∩ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) ) = ∅
407 405 406 eqtrdi ( ¬ 𝑥 = 𝑡 → ( ( { 𝑥 } ∩ { 𝑡 } ) × ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ∩ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) ) = ∅ )
408 401 407 syl5eq ( ¬ 𝑥 = 𝑡 → ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∩ ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) ) = ∅ )
409 408 orri ( 𝑥 = 𝑡 ∨ ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∩ ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) ) = ∅ )
410 409 rgen2w 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( 𝑥 = 𝑡 ∨ ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∩ ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) ) = ∅ )
411 sneq ( 𝑥 = 𝑡 → { 𝑥 } = { 𝑡 } )
412 csbeq1 ( 𝑥 = 𝑡 𝑥 / 𝑠 𝐶 = 𝑡 / 𝑠 𝐶 )
413 412 eqeq2d ( 𝑥 = 𝑡 → ( 𝑖 = 𝑥 / 𝑠 𝐶𝑖 = 𝑡 / 𝑠 𝐶 ) )
414 413 rexbidv ( 𝑥 = 𝑡 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ) )
415 414 ralbidv ( 𝑥 = 𝑡 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ) )
416 412 neeq2d ( 𝑥 = 𝑡 → ( 𝑁 𝑥 / 𝑠 𝐶𝑁 𝑡 / 𝑠 𝐶 ) )
417 416 ralbidv ( 𝑥 = 𝑡 → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ↔ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) )
418 415 417 anbi12d ( 𝑥 = 𝑡 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) ) )
419 418 rabbidv ( 𝑥 = 𝑡 → { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } = { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } )
420 411 419 xpeq12d ( 𝑥 = 𝑡 → ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) = ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) )
421 420 disjor ( Disj 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ↔ ∀ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( 𝑥 = 𝑡 ∨ ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ∩ ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑡 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑡 / 𝑠 𝐶 ) } ) ) = ∅ ) )
422 410 421 mpbir Disj 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } )
423 422 a1i ( 𝜑Disj 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) )
424 19 400 423 hashiun ( 𝜑 → ( ♯ ‘ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) = Σ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) )
425 399 424 eqtr3d ( 𝜑 → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) = Σ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) )
426 fo1st 1st : V –onto→ V
427 fofun ( 1st : V –onto→ V → Fun 1st )
428 426 427 ax-mp Fun 1st
429 ssv { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ⊆ V
430 fof ( 1st : V –onto→ V → 1st : V ⟶ V )
431 426 430 ax-mp 1st : V ⟶ V
432 431 fdmi dom 1st = V
433 429 432 sseqtrri { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ⊆ dom 1st
434 fores ( ( Fun 1st ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ⊆ dom 1st ) → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) )
435 428 433 434 mp2an ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } )
436 fveq2 ( 𝑡 = 𝑥 → ( 2nd𝑡 ) = ( 2nd𝑥 ) )
437 436 csbeq1d ( 𝑡 = 𝑥 ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
438 fveq2 ( 𝑡 = 𝑥 → ( 1st𝑡 ) = ( 1st𝑥 ) )
439 438 csbeq1d ( 𝑡 = 𝑥 ( 1st𝑡 ) / 𝑠 𝐶 = ( 1st𝑥 ) / 𝑠 𝐶 )
440 439 csbeq2dv ( 𝑡 = 𝑥 ( 2nd𝑥 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 )
441 437 440 eqtrd ( 𝑡 = 𝑥 ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 )
442 441 eqeq2d ( 𝑡 = 𝑥 → ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) )
443 439 eqeq2d ( 𝑡 = 𝑥 → ( 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
444 443 rexbidv ( 𝑡 = 𝑥 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
445 444 ralbidv ( 𝑡 = 𝑥 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
446 442 445 anbi12d ( 𝑡 = 𝑥 → ( ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) ↔ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) )
447 446 rexrab ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑠 ↔ ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( 1st𝑥 ) = 𝑠 ) )
448 xp1st ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
449 448 anim1i ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) → ( ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
450 eleq1 ( ( 1st𝑥 ) = 𝑠 → ( ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ↔ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) )
451 csbeq1a ( 𝑠 = ( 1st𝑥 ) → 𝐶 = ( 1st𝑥 ) / 𝑠 𝐶 )
452 451 eqcoms ( ( 1st𝑥 ) = 𝑠𝐶 = ( 1st𝑥 ) / 𝑠 𝐶 )
453 452 eqcomd ( ( 1st𝑥 ) = 𝑠 ( 1st𝑥 ) / 𝑠 𝐶 = 𝐶 )
454 453 eqeq2d ( ( 1st𝑥 ) = 𝑠 → ( 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶𝑖 = 𝐶 ) )
455 454 rexbidv ( ( 1st𝑥 ) = 𝑠 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) )
456 455 ralbidv ( ( 1st𝑥 ) = 𝑠 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) )
457 450 456 anbi12d ( ( 1st𝑥 ) = 𝑠 → ( ( ( 1st𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) )
458 449 457 syl5ibcom ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) → ( ( 1st𝑥 ) = 𝑠 → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) )
459 458 adantrl ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) → ( ( 1st𝑥 ) = 𝑠 → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) )
460 459 expimpd ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( 1st𝑥 ) = 𝑠 ) → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) )
461 460 rexlimiv ( ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( 1st𝑥 ) = 𝑠 ) → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) )
462 simplr ( ( ( 𝜑𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
463 ovex ( 0 ... 𝑁 ) ∈ V
464 463 enref ( 0 ... 𝑁 ) ≈ ( 0 ... 𝑁 )
465 phpreu ( ( ( 0 ... 𝑁 ) ∈ Fin ∧ ( 0 ... 𝑁 ) ≈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) )
466 23 464 465 mp2an ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 )
467 466 biimpi ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 )
468 eqeq1 ( 𝑖 = 𝑁 → ( 𝑖 = 𝐶𝑁 = 𝐶 ) )
469 468 reubidv ( 𝑖 = 𝑁 → ( ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ↔ ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) )
470 469 rspcva ( ( 𝑁 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 )
471 232 467 470 syl2an ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 )
472 riotacl ( ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 → ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ ( 0 ... 𝑁 ) )
473 471 472 syl ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ ( 0 ... 𝑁 ) )
474 473 adantlr ( ( ( 𝜑𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ ( 0 ... 𝑁 ) )
475 opelxpi ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ ( 0 ... 𝑁 ) ) → ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
476 462 474 475 syl2anc ( ( ( 𝜑𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
477 riotasbc ( ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶[ ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ] 𝑁 = 𝐶 )
478 471 477 syl ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → [ ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ] 𝑁 = 𝐶 )
479 riotaex ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ V
480 sbceq2g ( ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ V → ( [ ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ] 𝑁 = 𝐶𝑁 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 ) )
481 479 480 ax-mp ( [ ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ] 𝑁 = 𝐶𝑁 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 )
482 478 481 sylib ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → 𝑁 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 )
483 482 expcom ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 → ( 𝜑𝑁 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 ) )
484 483 imdistanri ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ( 𝑁 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) )
485 484 adantlr ( ( ( 𝜑𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ( 𝑁 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) )
486 vex 𝑠 ∈ V
487 486 479 op2ndd ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( 2nd𝑥 ) = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) )
488 487 csbeq1d ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( 2nd𝑥 ) / 𝑗 𝐶 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 )
489 nfcv 𝑗 𝑠
490 nfriota1 𝑗 ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 )
491 489 490 nfop 𝑗𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩
492 491 nfeq2 𝑗 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩
493 486 479 op1std ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( 1st𝑥 ) = 𝑠 )
494 493 eqcomd ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → 𝑠 = ( 1st𝑥 ) )
495 494 451 syl ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → 𝐶 = ( 1st𝑥 ) / 𝑠 𝐶 )
496 492 495 csbeq2d ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( 2nd𝑥 ) / 𝑗 𝐶 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 )
497 488 496 eqtr3d ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 )
498 497 eqeq2d ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( 𝑁 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) )
499 495 eqeq2d ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( 𝑖 = 𝐶𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
500 492 499 rexbid ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
501 500 ralbidv ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
502 498 501 anbi12d ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( ( 𝑁 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ↔ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) )
503 493 biantrud ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ↔ ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( 1st𝑥 ) = 𝑠 ) ) )
504 502 503 bitr2d ( 𝑥 = ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ → ( ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( 1st𝑥 ) = 𝑠 ) ↔ ( 𝑁 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) )
505 504 rspcev ( ( ⟨ 𝑠 , ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ( 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( 1st𝑥 ) = 𝑠 ) )
506 476 485 505 syl2anc ( ( ( 𝜑𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( 1st𝑥 ) = 𝑠 ) )
507 506 expl ( 𝜑 → ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( 1st𝑥 ) = 𝑠 ) ) )
508 461 507 impbid2 ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( 1st𝑥 ) = 𝑠 ) ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) )
509 447 508 syl5bb ( 𝜑 → ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑠 ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) )
510 509 abbidv ( 𝜑 → { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) } )
511 dfimafn ( ( Fun 1st ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ⊆ dom 1st ) → ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑦 } )
512 428 433 511 mp2an ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑦 }
513 nfcv 𝑠 ( 2nd𝑡 )
514 nfcsb1v 𝑠 ( 1st𝑡 ) / 𝑠 𝐶
515 513 514 nfcsbw 𝑠 ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶
516 515 nfeq2 𝑠 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶
517 nfcv 𝑠 ( 0 ... 𝑁 )
518 514 nfeq2 𝑠 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
519 517 518 nfrex 𝑠𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
520 517 519 nfralw 𝑠𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶
521 516 520 nfan 𝑠 ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 )
522 nfcv 𝑠 ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) )
523 521 522 nfrabw 𝑠 { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) }
524 nfv 𝑠 ( 1st𝑥 ) = 𝑦
525 523 524 nfrex 𝑠𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑦
526 nfv 𝑦𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑠
527 eqeq2 ( 𝑦 = 𝑠 → ( ( 1st𝑥 ) = 𝑦 ↔ ( 1st𝑥 ) = 𝑠 ) )
528 527 rexbidv ( 𝑦 = 𝑠 → ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑠 ) )
529 525 526 528 cbvabw { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑦 } = { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑠 }
530 512 529 eqtri ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) = { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( 1st𝑥 ) = 𝑠 }
531 df-rab { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = { 𝑠 ∣ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) }
532 510 530 531 3eqtr4g ( 𝜑 → ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } )
533 foeq3 ( ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ↔ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) )
534 532 533 syl ( 𝜑 → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ↔ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) )
535 435 534 mpbii ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } )
536 fof ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } )
537 535 536 syl ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } )
538 fvres ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑥 ) = ( 1st𝑥 ) )
539 fvres ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑦 ) = ( 1st𝑦 ) )
540 538 539 eqeqan12d ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑦 ) ↔ ( 1st𝑥 ) = ( 1st𝑦 ) ) )
541 540 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑦 ) ↔ ( 1st𝑥 ) = ( 1st𝑦 ) ) )
542 446 elrab ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ↔ ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) )
543 xp2nd ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) )
544 543 anim1i ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) → ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) )
545 542 544 sylbi ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } → ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) )
546 simpl ( ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
547 546 a1i ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) → 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ) )
548 547 ss2rabi { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 }
549 548 sseli ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } → 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 } )
550 fveq2 ( 𝑡 = 𝑦 → ( 2nd𝑡 ) = ( 2nd𝑦 ) )
551 550 csbeq1d ( 𝑡 = 𝑦 ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 )
552 fveq2 ( 𝑡 = 𝑦 → ( 1st𝑡 ) = ( 1st𝑦 ) )
553 552 csbeq1d ( 𝑡 = 𝑦 ( 1st𝑡 ) / 𝑠 𝐶 = ( 1st𝑦 ) / 𝑠 𝐶 )
554 553 csbeq2dv ( 𝑡 = 𝑦 ( 2nd𝑦 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 )
555 551 554 eqtrd ( 𝑡 = 𝑦 ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 )
556 555 eqeq2d ( 𝑡 = 𝑦 → ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) )
557 556 elrab ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 } ↔ ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) )
558 xp2nd ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) )
559 558 anim1i ( ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) → ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) )
560 557 559 sylbi ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 } → ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) )
561 549 560 syl ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } → ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) )
562 545 561 anim12i ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) → ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) ∧ ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) )
563 an4 ( ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ↔ ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) )
564 563 anbi2i ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ) )
565 anass ( ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ↔ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) )
566 ancom ( ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ) )
567 565 566 bitr3i ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ) )
568 567 anbi1i ( ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) ∧ ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ↔ ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ) ∧ ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) )
569 anass ( ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ) ∧ ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ) )
570 568 569 bitri ( ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) ∧ ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ∧ ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ) )
571 anass ( ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ) )
572 564 570 571 3bitr4i ( ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) ∧ ( ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ↔ ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) )
573 562 572 sylib ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) )
574 phpreu ( ( ( 0 ... 𝑁 ) ∈ Fin ∧ ( 0 ... 𝑁 ) ≈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
575 23 464 574 mp2an ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 )
576 reurmo ( ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 → ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 )
577 576 ralimi ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 )
578 575 577 sylbi ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 )
579 eqeq1 ( 𝑖 = 𝑁 → ( 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
580 579 rmobidv ( 𝑖 = 𝑁 → ( ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) )
581 580 rspcva ( ( 𝑁 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) → ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 )
582 232 578 581 syl2an ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) → ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 )
583 nfv 𝑘 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶
584 583 rmo3 ( ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ↔ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) → 𝑗 = 𝑘 ) )
585 582 584 sylib ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) → 𝑗 = 𝑘 ) )
586 nfcsb1v 𝑗 ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶
587 586 nfeq2 𝑗 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶
588 nfs1v 𝑗 [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶
589 587 588 nfan 𝑗 ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 )
590 nfv 𝑗 ( 2nd𝑥 ) = 𝑘
591 589 590 nfim 𝑗 ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = 𝑘 )
592 nfv 𝑘 ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) )
593 csbeq1a ( 𝑗 = ( 2nd𝑥 ) → ( 1st𝑥 ) / 𝑠 𝐶 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 )
594 593 eqeq2d ( 𝑗 = ( 2nd𝑥 ) → ( 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) )
595 594 anbi1d ( 𝑗 = ( 2nd𝑥 ) → ( ( 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) ↔ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) ) )
596 eqeq1 ( 𝑗 = ( 2nd𝑥 ) → ( 𝑗 = 𝑘 ↔ ( 2nd𝑥 ) = 𝑘 ) )
597 595 596 imbi12d ( 𝑗 = ( 2nd𝑥 ) → ( ( ( 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) → 𝑗 = 𝑘 ) ↔ ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = 𝑘 ) ) )
598 sbsbc ( [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶[ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 )
599 vex 𝑘 ∈ V
600 sbceq2g ( 𝑘 ∈ V → ( [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶𝑁 = 𝑘 / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) )
601 599 600 ax-mp ( [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶𝑁 = 𝑘 / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 )
602 598 601 bitri ( [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶𝑁 = 𝑘 / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 )
603 csbeq1 ( 𝑘 = ( 2nd𝑦 ) → 𝑘 / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 )
604 603 eqeq2d ( 𝑘 = ( 2nd𝑦 ) → ( 𝑁 = 𝑘 / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) )
605 602 604 syl5bb ( 𝑘 = ( 2nd𝑦 ) → ( [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) )
606 605 anbi2d ( 𝑘 = ( 2nd𝑦 ) → ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) ↔ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ) )
607 eqeq2 ( 𝑘 = ( 2nd𝑦 ) → ( ( 2nd𝑥 ) = 𝑘 ↔ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) )
608 606 607 imbi12d ( 𝑘 = ( 2nd𝑦 ) → ( ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = 𝑘 ) ↔ ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) )
609 591 592 597 608 rspc2 ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ( 1st𝑥 ) / 𝑠 𝐶 ) → 𝑗 = 𝑘 ) → ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) )
610 585 609 syl5com ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ) → ( ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) )
611 610 impr ( ( 𝜑 ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) ) )
612 csbeq1 ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( 1st𝑥 ) / 𝑠 𝐶 = ( 1st𝑦 ) / 𝑠 𝐶 )
613 612 csbeq2dv ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 )
614 613 eqeq2d ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( 𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) )
615 614 anbi2d ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) ↔ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) )
616 615 imbi1d ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ↔ ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) )
617 611 616 syl5ibcom ( ( 𝜑 ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) )
618 617 com23 ( ( 𝜑 ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) )
619 618 impr ( ( 𝜑 ∧ ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑥 ) / 𝑠 𝐶 ∧ ( ( 2nd𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ∧ ( 𝑁 = ( 2nd𝑥 ) / 𝑗 ( 1st𝑥 ) / 𝑠 𝐶𝑁 = ( 2nd𝑦 ) / 𝑗 ( 1st𝑦 ) / 𝑠 𝐶 ) ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) ) )
620 573 619 sylan2 ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) ) )
621 elrabi ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } → 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
622 elrabi ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } → 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
623 xpopth ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ↔ 𝑥 = 𝑦 ) )
624 623 biimpd ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) → 𝑥 = 𝑦 ) )
625 624 expd ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( ( 2nd𝑥 ) = ( 2nd𝑦 ) → 𝑥 = 𝑦 ) ) )
626 621 622 625 syl2an ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( ( 2nd𝑥 ) = ( 2nd𝑦 ) → 𝑥 = 𝑦 ) ) )
627 626 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → ( ( 2nd𝑥 ) = ( 2nd𝑦 ) → 𝑥 = 𝑦 ) ) )
628 620 627 mpdd ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) → ( ( 1st𝑥 ) = ( 1st𝑦 ) → 𝑥 = 𝑦 ) )
629 541 628 sylbid ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) )
630 629 ralrimivva ( 𝜑 → ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) )
631 dff13 ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ↔ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ∧ ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) )
632 537 630 631 sylanbrc ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } )
633 df-f1o ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ↔ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ∧ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) )
634 632 535 633 sylanbrc ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } )
635 rabfi ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∈ Fin )
636 138 635 ax-mp { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∈ Fin
637 636 elexi { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∈ V
638 637 f1oen ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } )
639 634 638 syl ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } )
640 rabfi ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ∈ Fin )
641 136 640 ax-mp { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ∈ Fin
642 hashen ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ∈ Fin ∧ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ∈ Fin ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ↔ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) )
643 636 641 642 mp2an ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ↔ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } )
644 639 643 sylibr ( 𝜑 → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) )
645 644 oveq2d ( 𝜑 → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ( 2nd𝑡 ) / 𝑗 ( 1st𝑡 ) / 𝑠 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) )
646 202 425 645 3eqtr3d ( 𝜑 → Σ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = 𝑥 / 𝑠 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 𝑥 / 𝑠 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) )
647 135 646 breqtrd ( 𝜑 → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd𝑡 ) } ) 𝑖 = ( 1st𝑡 ) / 𝑠 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) )