| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | poimirlem28.1 | ⊢ ( 𝑝  =  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  𝐶 ) | 
						
							| 3 |  | poimirlem28.2 | ⊢ ( ( 𝜑  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  𝐵  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 4 |  | fzofi | ⊢ ( 0 ..^ 𝐾 )  ∈  Fin | 
						
							| 5 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 6 |  | mapfi | ⊢ ( ( ( 0 ..^ 𝐾 )  ∈  Fin  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 7 | 4 5 6 | mp2an | ⊢ ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin | 
						
							| 8 |  | mapfi | ⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 9 | 5 5 8 | mp2an | ⊢ ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin | 
						
							| 10 |  | f1of | ⊢ ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) | 
						
							| 11 | 10 | ss2abi | ⊢ { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ⊆  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } | 
						
							| 12 |  | ovex | ⊢ ( 1 ... 𝑁 )  ∈  V | 
						
							| 13 | 12 12 | mapval | ⊢ ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) )  =  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } | 
						
							| 14 | 11 13 | sseqtrri | ⊢ { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ⊆  ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) ) | 
						
							| 15 |  | ssfi | ⊢ ( ( ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin  ∧  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ⊆  ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝑁 ) ) )  →  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ∈  Fin ) | 
						
							| 16 | 9 14 15 | mp2an | ⊢ { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ∈  Fin | 
						
							| 17 | 7 16 | pm3.2i | ⊢ ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin  ∧  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ∈  Fin ) | 
						
							| 18 |  | xpfi | ⊢ ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  Fin  ∧  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ∈  Fin )  →  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∈  Fin ) | 
						
							| 19 | 17 18 | mp1i | ⊢ ( 𝜑  →  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∈  Fin ) | 
						
							| 20 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 22 |  | snfi | ⊢ { 𝑥 }  ∈  Fin | 
						
							| 23 |  | fzfi | ⊢ ( 0 ... 𝑁 )  ∈  Fin | 
						
							| 24 |  | rabfi | ⊢ ( ( 0 ... 𝑁 )  ∈  Fin  →  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ∈  Fin ) | 
						
							| 25 | 23 24 | ax-mp | ⊢ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ∈  Fin | 
						
							| 26 |  | xpfi | ⊢ ( ( { 𝑥 }  ∈  Fin  ∧  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ∈  Fin )  →  ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∈  Fin ) | 
						
							| 27 | 22 25 26 | mp2an | ⊢ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∈  Fin | 
						
							| 28 |  | hashcl | ⊢ ( ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∈  Fin  →  ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  ∈  ℕ0 ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  ∈  ℕ0 | 
						
							| 30 | 29 | nn0zi | ⊢ ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  ∈  ℤ | 
						
							| 31 | 30 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  →  ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  ∈  ℤ ) | 
						
							| 32 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  →  𝑁  ∈  ℕ ) | 
						
							| 33 |  | nfv | ⊢ Ⅎ 𝑗 𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑘 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑘  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 34 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 | 
						
							| 35 | 34 | nfeq2 | ⊢ Ⅎ 𝑗 𝐵  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 | 
						
							| 36 | 33 35 | nfim | ⊢ Ⅎ 𝑗 ( 𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑘 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑘  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 1 ... 𝑗 )  =  ( 1 ... 𝑘 ) ) | 
						
							| 38 | 37 | imaeq2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  =  ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑘 ) ) ) | 
						
							| 39 | 38 | xpeq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑘 ) )  ×  { 1 } ) ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑗  +  1 ) ... 𝑁 )  =  ( ( 𝑘  +  1 ) ... 𝑁 ) ) | 
						
							| 42 | 41 | imaeq2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑘  +  1 ) ... 𝑁 ) ) ) | 
						
							| 43 | 42 | xpeq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑘  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 44 | 39 43 | uneq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑘 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑘  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑘 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑘  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 46 | 45 | eqeq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ↔  𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑘 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑘  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 47 |  | csbeq1a | ⊢ ( 𝑗  =  𝑘  →  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 48 | 47 | eqeq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝐵  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ↔  𝐵  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 49 | 46 48 | imbi12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 )  ↔  ( 𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑘 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑘  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 50 |  | nfv | ⊢ Ⅎ 𝑠 𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 51 |  | nfcsb1v | ⊢ Ⅎ 𝑠 ⦋ 𝑡  /  𝑠 ⦌ 𝐶 | 
						
							| 52 | 51 | nfeq2 | ⊢ Ⅎ 𝑠 𝐵  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 | 
						
							| 53 | 50 52 | nfim | ⊢ Ⅎ 𝑠 ( 𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 54 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( 1st  ‘ 𝑠 )  =  ( 1st  ‘ 𝑡 ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( 2nd  ‘ 𝑠 )  =  ( 2nd  ‘ 𝑡 ) ) | 
						
							| 56 | 55 | imaeq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  =  ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) ) ) | 
						
							| 57 | 56 | xpeq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) ) | 
						
							| 58 | 55 | imaeq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 59 | 58 | xpeq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 60 | 57 59 | uneq12d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 61 | 54 60 | oveq12d | ⊢ ( 𝑠  =  𝑡  →  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 62 | 61 | eqeq2d | ⊢ ( 𝑠  =  𝑡  →  ( 𝑝  =  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ↔  𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 63 |  | csbeq1a | ⊢ ( 𝑠  =  𝑡  →  𝐶  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 64 | 63 | eqeq2d | ⊢ ( 𝑠  =  𝑡  →  ( 𝐵  =  𝐶  ↔  𝐵  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 65 | 62 64 | imbi12d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑝  =  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  𝐶 )  ↔  ( 𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 66 | 53 65 2 | chvarfv | ⊢ ( 𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 67 | 36 49 66 | chvarfv | ⊢ ( 𝑝  =  ( ( 1st  ‘ 𝑡 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑡 )  “  ( 1 ... 𝑘 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑡 )  “  ( ( 𝑘  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 68 | 3 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  𝐵  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 69 |  | xp1st | ⊢ ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 1st  ‘ 𝑥 )  ∈  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 70 |  | elmapi | ⊢ ( ( 1st  ‘ 𝑥 )  ∈  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  →  ( 1st  ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 71 | 69 70 | syl | ⊢ ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 1st  ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 72 | 71 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  →  ( 1st  ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 73 |  | xp2nd | ⊢ ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 2nd  ‘ 𝑥 )  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) | 
						
							| 74 |  | fvex | ⊢ ( 2nd  ‘ 𝑥 )  ∈  V | 
						
							| 75 |  | f1oeq1 | ⊢ ( 𝑓  =  ( 2nd  ‘ 𝑥 )  →  ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ↔  ( 2nd  ‘ 𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) | 
						
							| 76 | 74 75 | elab | ⊢ ( ( 2nd  ‘ 𝑥 )  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ↔  ( 2nd  ‘ 𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 77 | 73 76 | sylib | ⊢ ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 2nd  ‘ 𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 78 | 77 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 79 |  | nfcv | ⊢ Ⅎ 𝑗 𝑁 | 
						
							| 80 |  | nfcv | ⊢ Ⅎ 𝑗 𝑥 | 
						
							| 81 | 80 34 | nfcsbw | ⊢ Ⅎ 𝑗 ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 | 
						
							| 82 | 79 81 | nfne | ⊢ Ⅎ 𝑗 𝑁  ≠  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 | 
						
							| 83 |  | nfcv | ⊢ Ⅎ 𝑡 𝐶 | 
						
							| 84 | 83 51 63 | cbvcsbw | ⊢ ⦋ 𝑥  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 | 
						
							| 85 | 47 | csbeq2dv | ⊢ ( 𝑗  =  𝑘  →  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 86 | 84 85 | eqtrid | ⊢ ( 𝑗  =  𝑘  →  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 87 | 86 | neeq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ↔  𝑁  ≠  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 88 | 82 87 | rspc | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  →  𝑁  ≠  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 89 | 88 | impcom | ⊢ ( ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑁  ≠  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 90 | 89 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑁  ≠  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 91 |  | 1st2nd2 | ⊢ ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  𝑥  =  〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) | 
						
							| 92 | 91 | csbeq1d | ⊢ ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 93 | 92 | ad3antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 94 | 90 93 | neeqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑁  ≠  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 95 | 32 67 68 72 78 94 | poimirlem25 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 } ) ) | 
						
							| 96 |  | nfv | ⊢ Ⅎ 𝑘 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 | 
						
							| 97 | 81 | nfeq2 | ⊢ Ⅎ 𝑗 𝑖  =  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 | 
						
							| 98 | 86 | eqeq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 99 | 96 97 98 | cbvrexw | ⊢ ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 100 | 92 | eqeq2d | ⊢ ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 𝑖  =  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 101 | 100 | rexbidv | ⊢ ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( ∃ 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 102 | 99 101 | bitr2id | ⊢ ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( ∃ 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 103 | 102 | ralbidv | ⊢ ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 104 |  | iba | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 105 | 103 104 | sylan9bb | ⊢ ( ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 106 | 105 | rabbidv | ⊢ ( ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  →  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 }  =  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) | 
						
							| 107 | 106 | fveq2d | ⊢ ( ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  →  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 } )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 108 | 107 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  →  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  /  𝑡 ⦌ ⦋ 𝑘  /  𝑗 ⦌ ⦋ 𝑡  /  𝑠 ⦌ 𝐶 } )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 109 | 95 108 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 110 | 109 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 111 |  | dvds0 | ⊢ ( 2  ∈  ℤ  →  2  ∥  0 ) | 
						
							| 112 | 20 111 | ax-mp | ⊢ 2  ∥  0 | 
						
							| 113 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 114 | 112 113 | breqtrri | ⊢ 2  ∥  ( ♯ ‘ ∅ ) | 
						
							| 115 |  | simpr | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) | 
						
							| 116 | 115 | con3i | ⊢ ( ¬  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  →  ¬  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 117 | 116 | ralrimivw | ⊢ ( ¬  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  →  ∀ 𝑦  ∈  ( 0 ... 𝑁 ) ¬  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 118 |  | rabeq0 | ⊢ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  =  ∅  ↔  ∀ 𝑦  ∈  ( 0 ... 𝑁 ) ¬  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 119 | 117 118 | sylibr | ⊢ ( ¬  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  →  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  =  ∅ ) | 
						
							| 120 | 119 | fveq2d | ⊢ ( ¬  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  →  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 121 | 114 120 | breqtrrid | ⊢ ( ¬  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 122 | 110 121 | pm2.61d1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 123 |  | hashxp | ⊢ ( ( { 𝑥 }  ∈  Fin  ∧  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ∈  Fin )  →  ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ( ♯ ‘ { 𝑥 } )  ·  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 124 | 22 25 123 | mp2an | ⊢ ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ( ♯ ‘ { 𝑥 } )  ·  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 125 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 126 |  | hashsng | ⊢ ( 𝑥  ∈  V  →  ( ♯ ‘ { 𝑥 } )  =  1 ) | 
						
							| 127 | 125 126 | ax-mp | ⊢ ( ♯ ‘ { 𝑥 } )  =  1 | 
						
							| 128 | 127 | oveq1i | ⊢ ( ( ♯ ‘ { 𝑥 } )  ·  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( 1  ·  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 129 |  | hashcl | ⊢ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ∈  Fin  →  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∈  ℕ0 ) | 
						
							| 130 | 25 129 | ax-mp | ⊢ ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∈  ℕ0 | 
						
							| 131 | 130 | nn0cni | ⊢ ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∈  ℂ | 
						
							| 132 | 131 | mullidi | ⊢ ( 1  ·  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) | 
						
							| 133 | 124 128 132 | 3eqtri | ⊢ ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) | 
						
							| 134 | 122 133 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  →  2  ∥  ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 135 | 19 21 31 134 | fsumdvds | ⊢ ( 𝜑  →  2  ∥  Σ 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 136 | 7 16 18 | mp2an | ⊢ ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∈  Fin | 
						
							| 137 |  | xpfi | ⊢ ( ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∈  Fin  ∧  ( 0 ... 𝑁 )  ∈  Fin )  →  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 138 | 136 23 137 | mp2an | ⊢ ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∈  Fin | 
						
							| 139 |  | rabfi | ⊢ ( ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∈  Fin  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∈  Fin ) | 
						
							| 140 | 138 139 | ax-mp | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∈  Fin | 
						
							| 141 | 1 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 142 |  | npcan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 143 | 141 142 | syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 144 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 145 | 1 144 | syl | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 146 | 145 | nn0zd | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 147 |  | uzid | ⊢ ( ( 𝑁  −  1 )  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 148 |  | peano2uz | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 149 | 146 147 148 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 150 | 143 149 | eqeltrrd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 151 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 152 |  | ssralv | ⊢ ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... 𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 153 | 150 151 152 | 3syl | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 154 | 153 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 155 |  | raldifb | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( 𝑗  ∉  { ( 2nd  ‘ 𝑡 ) }  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ↔  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 156 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 157 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 158 | 157 | nfeq2 | ⊢ Ⅎ 𝑗 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 159 | 156 158 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 160 |  | nfv | ⊢ Ⅎ 𝑗 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) | 
						
							| 161 | 159 160 | nfan | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 162 |  | nnel | ⊢ ( ¬  𝑗  ∉  { ( 2nd  ‘ 𝑡 ) }  ↔  𝑗  ∈  { ( 2nd  ‘ 𝑡 ) } ) | 
						
							| 163 |  | velsn | ⊢ ( 𝑗  ∈  { ( 2nd  ‘ 𝑡 ) }  ↔  𝑗  =  ( 2nd  ‘ 𝑡 ) ) | 
						
							| 164 | 162 163 | bitri | ⊢ ( ¬  𝑗  ∉  { ( 2nd  ‘ 𝑡 ) }  ↔  𝑗  =  ( 2nd  ‘ 𝑡 ) ) | 
						
							| 165 |  | csbeq1a | ⊢ ( 𝑗  =  ( 2nd  ‘ 𝑡 )  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 166 | 165 | eqeq2d | ⊢ ( 𝑗  =  ( 2nd  ‘ 𝑡 )  →  ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 167 | 166 | biimparc | ⊢ ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  𝑗  =  ( 2nd  ‘ 𝑡 ) )  →  𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 168 | 1 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 169 | 168 | ltm1d | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  <  𝑁 ) | 
						
							| 170 | 145 | nn0red | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 171 | 170 168 | ltnled | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  <  𝑁  ↔  ¬  𝑁  ≤  ( 𝑁  −  1 ) ) ) | 
						
							| 172 | 169 171 | mpbid | ⊢ ( 𝜑  →  ¬  𝑁  ≤  ( 𝑁  −  1 ) ) | 
						
							| 173 |  | elfzle2 | ⊢ ( 𝑁  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑁  ≤  ( 𝑁  −  1 ) ) | 
						
							| 174 | 172 173 | nsyl | ⊢ ( 𝜑  →  ¬  𝑁  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 175 |  | eleq1 | ⊢ ( 𝑖  =  𝑁  →  ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  𝑁  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 176 | 175 | notbid | ⊢ ( 𝑖  =  𝑁  →  ( ¬  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ¬  𝑁  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 177 | 174 176 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑖  =  𝑁  →  ¬  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 178 | 177 | con2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ¬  𝑖  =  𝑁 ) ) | 
						
							| 179 | 178 | imp | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ¬  𝑖  =  𝑁 ) | 
						
							| 180 |  | eqeq2 | ⊢ ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( 𝑖  =  𝑁  ↔  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 181 | 180 | notbid | ⊢ ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( ¬  𝑖  =  𝑁  ↔  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 182 | 179 181 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 183 | 167 182 | syl5 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  𝑗  =  ( 2nd  ‘ 𝑡 ) )  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 184 | 183 | expdimp | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( 𝑗  =  ( 2nd  ‘ 𝑡 )  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 185 | 184 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑗  =  ( 2nd  ‘ 𝑡 )  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 186 | 164 185 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ¬  𝑗  ∉  { ( 2nd  ‘ 𝑡 ) }  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 187 |  | idd | ⊢ ( ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 188 | 186 187 | jad | ⊢ ( ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝑗  ∉  { ( 2nd  ‘ 𝑡 ) }  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 189 | 188 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑗  ∉  { ( 2nd  ‘ 𝑡 ) }  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 190 | 161 189 | ralimdaa | ⊢ ( ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( 𝑗  ∉  { ( 2nd  ‘ 𝑡 ) }  →  ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 191 | 155 190 | biimtrrid | ⊢ ( ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 192 | 191 | con3d | ⊢ ( ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ¬  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ¬  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 193 |  | dfrex2 | ⊢ ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ¬  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 194 |  | dfrex2 | ⊢ ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ¬  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ¬  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 195 | 192 193 194 | 3imtr4g | ⊢ ( ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 196 | 195 | ralimdva | ⊢ ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 197 | 154 196 | syld | ⊢ ( ( 𝜑  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 198 | 197 | expimpd | ⊢ ( 𝜑  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 199 | 198 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 200 | 199 | ss2rabdv | ⊢ ( 𝜑  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ⊆  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } ) | 
						
							| 201 |  | hashssdif | ⊢ ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∈  Fin  ∧  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ⊆  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  →  ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 202 | 140 200 201 | sylancr | ⊢ ( 𝜑  →  ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 203 |  | xp2nd | ⊢ ( 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 204 |  | df-ne | ⊢ ( 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ¬  𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 205 | 204 | ralbii | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ¬  𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 206 |  | ralnex | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ¬  𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ¬  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 207 | 205 206 | bitri | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ¬  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 208 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 209 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 210 | 208 209 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 211 | 143 210 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 212 |  | fzsplit2 | ⊢ ( ( ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) )  →  ( 0 ... 𝑁 )  =  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 213 | 211 150 212 | syl2anc | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  =  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 214 | 143 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 )  =  ( 𝑁 ... 𝑁 ) ) | 
						
							| 215 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 216 |  | fzsn | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁 ... 𝑁 )  =  { 𝑁 } ) | 
						
							| 217 | 215 216 | syl | ⊢ ( 𝜑  →  ( 𝑁 ... 𝑁 )  =  { 𝑁 } ) | 
						
							| 218 | 214 217 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 )  =  { 𝑁 } ) | 
						
							| 219 | 218 | uneq2d | ⊢ ( 𝜑  →  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  =  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ) | 
						
							| 220 | 213 219 | eqtrd | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  =  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ) | 
						
							| 221 | 220 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 222 |  | ralunb | ⊢ ( ∀ 𝑖  ∈  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  { 𝑁 } ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 223 |  | difss | ⊢ ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ⊆  ( 0 ... 𝑁 ) | 
						
							| 224 |  | ssrexv | ⊢ ( ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ⊆  ( 0 ... 𝑁 )  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 225 | 223 224 | ax-mp | ⊢ ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 226 | 225 | ralimi | ⊢ ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 227 | 226 | biantrurd | ⊢ ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( ∀ 𝑖  ∈  { 𝑁 } ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  { 𝑁 } ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 228 | 222 227 | bitr4id | ⊢ ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( ∀ 𝑖  ∈  ( ( 0 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  { 𝑁 } ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 229 | 221 228 | sylan9bb | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  { 𝑁 } ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 230 | 229 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  { 𝑁 } ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 231 |  | nn0fz0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 232 | 208 231 | sylib | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 233 | 232 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 234 |  | eqeq1 | ⊢ ( 𝑖  =  𝑁  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 235 | 234 | rexbidv | ⊢ ( 𝑖  =  𝑁  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 236 | 235 | rspcva | ⊢ ( ( 𝑁  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 237 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 238 |  | nfcv | ⊢ Ⅎ 𝑗 ( 0 ... ( 𝑁  −  1 ) ) | 
						
							| 239 |  | nfre1 | ⊢ Ⅎ 𝑗 ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 240 | 238 239 | nfralw | ⊢ Ⅎ 𝑗 ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 241 | 237 240 | nfan | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 242 |  | eleq1 | ⊢ ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( 𝑁  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 243 | 242 | notbid | ⊢ ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( ¬  𝑁  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ¬  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 244 | 174 243 | syl5ibcom | ⊢ ( 𝜑  →  ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ¬  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 245 | 244 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ¬  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 246 |  | eldifsn | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ↔  ( 𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑗  ≠  ( 2nd  ‘ 𝑡 ) ) ) | 
						
							| 247 |  | diffi | ⊢ ( ( 0 ... 𝑁 )  ∈  Fin  →  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∈  Fin ) | 
						
							| 248 | 23 247 | ax-mp | ⊢ ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∈  Fin | 
						
							| 249 |  | ssrab2 | ⊢ { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ⊆  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) | 
						
							| 250 |  | ssdomg | ⊢ ( ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∈  Fin  →  ( { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ⊆  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  →  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ≼  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ) ) | 
						
							| 251 | 248 249 250 | mp2 | ⊢ { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ≼  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) | 
						
							| 252 |  | hashdifsn | ⊢ ( ( ( 0 ... 𝑁 )  ∈  Fin  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  →  ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  =  ( ( ♯ ‘ ( 0 ... 𝑁 ) )  −  1 ) ) | 
						
							| 253 | 23 252 | mpan | ⊢ ( ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 )  →  ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  =  ( ( ♯ ‘ ( 0 ... 𝑁 ) )  −  1 ) ) | 
						
							| 254 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 255 | 141 254 254 | addsubd | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 256 |  | hashfz0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ♯ ‘ ( 0 ... 𝑁 ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 257 | 208 256 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... 𝑁 ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 258 | 257 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 0 ... 𝑁 ) )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 259 |  | hashfz0 | ⊢ ( ( 𝑁  −  1 )  ∈  ℕ0  →  ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) )  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 260 | 145 259 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) )  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 261 | 255 258 260 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 0 ... 𝑁 ) )  −  1 )  =  ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 262 | 253 261 | sylan9eqr | ⊢ ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  →  ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  =  ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 263 |  | fzfi | ⊢ ( 0 ... ( 𝑁  −  1 ) )  ∈  Fin | 
						
							| 264 |  | hashen | ⊢ ( ( ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∈  Fin  ∧  ( 0 ... ( 𝑁  −  1 ) )  ∈  Fin )  →  ( ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  =  ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) )  ↔  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ≈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 265 | 248 263 264 | mp2an | ⊢ ( ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  =  ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) )  ↔  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ≈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 266 | 262 265 | sylib | ⊢ ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ≈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 267 |  | rabfi | ⊢ ( ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∈  Fin  →  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∈  Fin ) | 
						
							| 268 | 248 267 | ax-mp | ⊢ { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∈  Fin | 
						
							| 269 |  | eleq1 | ⊢ ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 270 | 269 | biimpac | ⊢ ( ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 271 |  | rabid | ⊢ ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↔  ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∧  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 272 | 271 | simplbi2com | ⊢ ( ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  →  𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ) ) | 
						
							| 273 | 270 272 | syl | ⊢ ( ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  →  𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ) ) | 
						
							| 274 | 273 | impancom | ⊢ ( ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ) ) | 
						
							| 275 | 274 | ancrd | ⊢ ( ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 276 | 275 | expimpd | ⊢ ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 277 | 276 | reximdv2 | ⊢ ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∃ 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 278 | 271 | simplbi | ⊢ ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  →  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ) | 
						
							| 279 | 274 | pm4.71rd | ⊢ ( ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 280 |  | df-mpt | ⊢ ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  =  { 〈 𝑘 ,  𝑖 〉  ∣  ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } | 
						
							| 281 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 282 |  | nfrab1 | ⊢ Ⅎ 𝑗 { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } | 
						
							| 283 | 282 | nfcri | ⊢ Ⅎ 𝑗 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } | 
						
							| 284 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 285 | 284 | nfeq2 | ⊢ Ⅎ 𝑗 𝑖  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 286 | 283 285 | nfan | ⊢ Ⅎ 𝑗 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 287 |  | eleq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↔  𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ) ) | 
						
							| 288 |  | csbeq1a | ⊢ ( 𝑗  =  𝑘  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 289 | 288 | eqeq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 290 | 287 289 | anbi12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ↔  ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 291 | 281 286 290 | cbvopab1 | ⊢ { 〈 𝑗 ,  𝑖 〉  ∣  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  =  { 〈 𝑘 ,  𝑖 〉  ∣  ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } | 
						
							| 292 | 280 291 | eqtr4i | ⊢ ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  =  { 〈 𝑗 ,  𝑖 〉  ∣  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } | 
						
							| 293 | 292 | breqi | ⊢ ( 𝑗 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖  ↔  𝑗 { 〈 𝑗 ,  𝑖 〉  ∣  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } 𝑖 ) | 
						
							| 294 |  | df-br | ⊢ ( 𝑗 { 〈 𝑗 ,  𝑖 〉  ∣  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } 𝑖  ↔  〈 𝑗 ,  𝑖 〉  ∈  { 〈 𝑗 ,  𝑖 〉  ∣  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) | 
						
							| 295 |  | opabidw | ⊢ ( 〈 𝑗 ,  𝑖 〉  ∈  { 〈 𝑗 ,  𝑖 〉  ∣  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ↔  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 296 | 293 294 295 | 3bitri | ⊢ ( 𝑗 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖  ↔  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∧  𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 297 | 279 296 | bitr4di | ⊢ ( ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑗 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 ) ) | 
						
							| 298 | 278 297 | sylan2 | ⊢ ( ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } )  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑗 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 ) ) | 
						
							| 299 | 298 | rexbidva | ⊢ ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( ∃ 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑗 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 ) ) | 
						
							| 300 |  | nfcv | ⊢ Ⅎ 𝑝 { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } | 
						
							| 301 |  | nfv | ⊢ Ⅎ 𝑝 𝑗 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 | 
						
							| 302 |  | nfcv | ⊢ Ⅎ 𝑗 𝑝 | 
						
							| 303 | 282 284 | nfmpt | ⊢ Ⅎ 𝑗 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 304 |  | nfcv | ⊢ Ⅎ 𝑗 𝑖 | 
						
							| 305 | 302 303 304 | nfbr | ⊢ Ⅎ 𝑗 𝑝 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 | 
						
							| 306 |  | breq1 | ⊢ ( 𝑗  =  𝑝  →  ( 𝑗 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖  ↔  𝑝 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 ) ) | 
						
							| 307 | 282 300 301 305 306 | cbvrexfw | ⊢ ( ∃ 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑗 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖  ↔  ∃ 𝑝  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑝 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 ) | 
						
							| 308 | 299 307 | bitrdi | ⊢ ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( ∃ 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑝  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑝 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 ) ) | 
						
							| 309 | 277 308 | sylibd | ⊢ ( 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∃ 𝑝  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑝 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 ) ) | 
						
							| 310 | 309 | ralimia | ⊢ ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑝 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 ) | 
						
							| 311 |  | eqid | ⊢ ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  =  ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 312 |  | nfcv | ⊢ Ⅎ 𝑗 𝑘 | 
						
							| 313 |  | nfcv | ⊢ Ⅎ 𝑗 ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) | 
						
							| 314 | 284 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) | 
						
							| 315 | 288 | eleq1d | ⊢ ( 𝑗  =  𝑘  →  ( ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 316 | 312 313 314 315 | elrabf | ⊢ ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↔  ( 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∧  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 317 | 316 | simprbi | ⊢ ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  →  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 318 | 311 317 | fmpti | ⊢ ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) : { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ⟶ ( 0 ... ( 𝑁  −  1 ) ) | 
						
							| 319 | 310 318 | jctil | ⊢ ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) : { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ⟶ ( 0 ... ( 𝑁  −  1 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑝 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 ) ) | 
						
							| 320 |  | dffo4 | ⊢ ( ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) : { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } –onto→ ( 0 ... ( 𝑁  −  1 ) )  ↔  ( ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) : { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ⟶ ( 0 ... ( 𝑁  −  1 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑝  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } 𝑝 ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) 𝑖 ) ) | 
						
							| 321 | 319 320 | sylibr | ⊢ ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) : { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } –onto→ ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 322 |  | fodomfi | ⊢ ( ( { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ∈  Fin  ∧  ( 𝑘  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↦  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) : { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } –onto→ ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ≼  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ) | 
						
							| 323 | 268 321 322 | sylancr | ⊢ ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( 0 ... ( 𝑁  −  1 ) )  ≼  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ) | 
						
							| 324 |  | endomtr | ⊢ ( ( ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ≈  ( 0 ... ( 𝑁  −  1 ) )  ∧  ( 0 ... ( 𝑁  −  1 ) )  ≼  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } )  →  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ≼  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ) | 
						
							| 325 | 266 323 324 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ≼  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ) | 
						
							| 326 |  | sbth | ⊢ ( ( { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ≼  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∧  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ≼  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } )  →  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ≈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ) | 
						
							| 327 | 251 325 326 | sylancr | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ≈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ) | 
						
							| 328 |  | fisseneq | ⊢ ( ( ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∈  Fin  ∧  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ⊆  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∧  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ≈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  →  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  =  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ) | 
						
							| 329 | 248 249 327 328 | mp3an12i | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  =  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ) | 
						
							| 330 | 329 | eleq2d | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  ↔  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) ) ) | 
						
							| 331 | 330 | biimpar | ⊢ ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  →  𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) } ) | 
						
							| 332 | 288 | equcoms | ⊢ ( 𝑘  =  𝑗  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 333 | 332 | eqcomd | ⊢ ( 𝑘  =  𝑗  →  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 334 | 333 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 335 | 334 317 | vtoclga | ⊢ ( 𝑗  ∈  { 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  ∣  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) }  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 336 | 331 335 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) )  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 337 | 246 336 | sylan2br | ⊢ ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  ( 𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑗  ≠  ( 2nd  ‘ 𝑡 ) ) )  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 338 | 337 | expr | ⊢ ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑗  ≠  ( 2nd  ‘ 𝑡 )  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 339 | 338 | necon1bd | ⊢ ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ¬  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑗  =  ( 2nd  ‘ 𝑡 ) ) ) | 
						
							| 340 | 245 339 | syld | ⊢ ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  𝑗  =  ( 2nd  ‘ 𝑡 ) ) ) | 
						
							| 341 | 340 | imp | ⊢ ( ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  𝑗  =  ( 2nd  ‘ 𝑡 ) ) | 
						
							| 342 | 341 165 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 343 |  | eqtr | ⊢ ( ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 344 | 343 | ex | ⊢ ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  ( ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 345 | 344 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 346 | 342 345 | mpd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 347 | 346 | exp31 | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 348 | 241 158 347 | rexlimd | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 349 | 236 348 | syl5 | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ( 𝑁  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 350 | 233 349 | mpand | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  →  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 351 | 350 | pm4.71rd | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 352 | 235 | ralsng | ⊢ ( 𝑁  ∈  ℕ  →  ( ∀ 𝑖  ∈  { 𝑁 } ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 353 | 1 352 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  { 𝑁 } ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 354 | 353 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑖  ∈  { 𝑁 } ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 355 | 230 351 354 | 3bitr3rd | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 356 | 355 | notbid | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ¬  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ¬  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 357 | 207 356 | bitrid | ⊢ ( ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ¬  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 358 | 357 | pm5.32da | ⊢ ( ( 𝜑  ∧  ( 2nd  ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 359 | 203 358 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 360 | 359 | rabbidva | ⊢ ( 𝜑  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  =  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) } ) | 
						
							| 361 |  | nfv | ⊢ Ⅎ 𝑦 𝑡  =  〈 𝑥 ,  𝑘 〉 | 
						
							| 362 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) | 
						
							| 363 |  | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } | 
						
							| 364 | 363 | nfcri | ⊢ Ⅎ 𝑦 𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } | 
						
							| 365 | 362 364 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) | 
						
							| 366 | 361 365 | nfan | ⊢ Ⅎ 𝑦 ( 𝑡  =  〈 𝑥 ,  𝑘 〉  ∧  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 367 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑡  =  〈 𝑥 ,  𝑦 〉  ∧  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 368 |  | opeq2 | ⊢ ( 𝑘  =  𝑦  →  〈 𝑥 ,  𝑘 〉  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 369 | 368 | eqeq2d | ⊢ ( 𝑘  =  𝑦  →  ( 𝑡  =  〈 𝑥 ,  𝑘 〉  ↔  𝑡  =  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 370 |  | eleq1 | ⊢ ( 𝑘  =  𝑦  →  ( 𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ↔  𝑦  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 371 |  | rabid | ⊢ ( 𝑦  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ↔  ( 𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 372 | 370 371 | bitrdi | ⊢ ( 𝑘  =  𝑦  →  ( 𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ↔  ( 𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 373 | 372 | anbi2d | ⊢ ( 𝑘  =  𝑦  →  ( ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ↔  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( 𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) ) ) | 
						
							| 374 |  | 3anass | ⊢ ( ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) )  ↔  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( 𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 375 | 373 374 | bitr4di | ⊢ ( 𝑘  =  𝑦  →  ( ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ↔  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 376 | 369 375 | anbi12d | ⊢ ( 𝑘  =  𝑦  →  ( ( 𝑡  =  〈 𝑥 ,  𝑘 〉  ∧  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  ↔  ( 𝑡  =  〈 𝑥 ,  𝑦 〉  ∧  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) ) ) | 
						
							| 377 | 366 367 376 | cbvexv1 | ⊢ ( ∃ 𝑘 ( 𝑡  =  〈 𝑥 ,  𝑘 〉  ∧  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  ↔  ∃ 𝑦 ( 𝑡  =  〈 𝑥 ,  𝑦 〉  ∧  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 378 | 377 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑘 ( 𝑡  =  〈 𝑥 ,  𝑘 〉  ∧  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  ↔  ∃ 𝑥 ∃ 𝑦 ( 𝑡  =  〈 𝑥 ,  𝑦 〉  ∧  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 379 |  | eliunxp | ⊢ ( 𝑡  ∈  ∪  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ↔  ∃ 𝑥 ∃ 𝑘 ( 𝑡  =  〈 𝑥 ,  𝑘 〉  ∧  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑘  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 380 |  | elopab | ⊢ ( 𝑡  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) }  ↔  ∃ 𝑥 ∃ 𝑦 ( 𝑡  =  〈 𝑥 ,  𝑦 〉  ∧  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 381 | 378 379 380 | 3bitr4i | ⊢ ( 𝑡  ∈  ∪  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ↔  𝑡  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) } ) | 
						
							| 382 | 381 | eqriv | ⊢ ∪  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) } | 
						
							| 383 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 384 | 125 383 | op2ndd | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  ( 2nd  ‘ 𝑡 )  =  𝑦 ) | 
						
							| 385 | 384 | sneqd | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  { ( 2nd  ‘ 𝑡 ) }  =  { 𝑦 } ) | 
						
							| 386 | 385 | difeq2d | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) ) | 
						
							| 387 | 125 383 | op1std | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  ( 1st  ‘ 𝑡 )  =  𝑥 ) | 
						
							| 388 | 387 | csbeq1d | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) | 
						
							| 389 | 388 | eqeq2d | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 390 | 386 389 | rexeqbidv | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 391 | 390 | ralbidv | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 392 | 388 | neeq2d | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  ( 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 393 | 392 | ralbidv | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 394 | 391 393 | anbi12d | ⊢ ( 𝑡  =  〈 𝑥 ,  𝑦 〉  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 395 | 394 | rabxp | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑦  ∈  ( 0 ... 𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) ) } | 
						
							| 396 | 382 395 | eqtr4i | ⊢ ∪  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  =  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } | 
						
							| 397 |  | difrab | ⊢ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  =  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ¬  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) } | 
						
							| 398 | 360 396 397 | 3eqtr4g | ⊢ ( 𝜑  →  ∪  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  =  ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 399 | 398 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 400 | 27 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  →  ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∈  Fin ) | 
						
							| 401 |  | inxp | ⊢ ( ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∩  ( { 𝑡 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ( { 𝑥 }  ∩  { 𝑡 } )  ×  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ∩  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 402 |  | df-ne | ⊢ ( 𝑥  ≠  𝑡  ↔  ¬  𝑥  =  𝑡 ) | 
						
							| 403 |  | disjsn2 | ⊢ ( 𝑥  ≠  𝑡  →  ( { 𝑥 }  ∩  { 𝑡 } )  =  ∅ ) | 
						
							| 404 | 402 403 | sylbir | ⊢ ( ¬  𝑥  =  𝑡  →  ( { 𝑥 }  ∩  { 𝑡 } )  =  ∅ ) | 
						
							| 405 | 404 | xpeq1d | ⊢ ( ¬  𝑥  =  𝑡  →  ( ( { 𝑥 }  ∩  { 𝑡 } )  ×  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ∩  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ∅  ×  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ∩  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 406 |  | 0xp | ⊢ ( ∅  ×  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ∩  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) )  =  ∅ | 
						
							| 407 | 405 406 | eqtrdi | ⊢ ( ¬  𝑥  =  𝑡  →  ( ( { 𝑥 }  ∩  { 𝑡 } )  ×  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  ∩  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) )  =  ∅ ) | 
						
							| 408 | 401 407 | eqtrid | ⊢ ( ¬  𝑥  =  𝑡  →  ( ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∩  ( { 𝑡 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) )  =  ∅ ) | 
						
							| 409 | 408 | orri | ⊢ ( 𝑥  =  𝑡  ∨  ( ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∩  ( { 𝑡 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) )  =  ∅ ) | 
						
							| 410 | 409 | rgen2w | ⊢ ∀ 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑡  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( 𝑥  =  𝑡  ∨  ( ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∩  ( { 𝑡 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) )  =  ∅ ) | 
						
							| 411 |  | sneq | ⊢ ( 𝑥  =  𝑡  →  { 𝑥 }  =  { 𝑡 } ) | 
						
							| 412 |  | csbeq1 | ⊢ ( 𝑥  =  𝑡  →  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) | 
						
							| 413 | 412 | eqeq2d | ⊢ ( 𝑥  =  𝑡  →  ( 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 414 | 413 | rexbidv | ⊢ ( 𝑥  =  𝑡  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 415 | 414 | ralbidv | ⊢ ( 𝑥  =  𝑡  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 416 | 412 | neeq2d | ⊢ ( 𝑥  =  𝑡  →  ( 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ↔  𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 417 | 416 | ralbidv | ⊢ ( 𝑥  =  𝑡  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 418 | 415 417 | anbi12d | ⊢ ( 𝑥  =  𝑡  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 419 | 418 | rabbidv | ⊢ ( 𝑥  =  𝑡  →  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) }  =  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) | 
						
							| 420 | 411 419 | xpeq12d | ⊢ ( 𝑥  =  𝑡  →  ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  =  ( { 𝑡 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 421 | 420 | disjor | ⊢ ( Disj  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ↔  ∀ 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑡  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( 𝑥  =  𝑡  ∨  ( ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } )  ∩  ( { 𝑡 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑡  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑡  /  𝑠 ⦌ 𝐶 ) } ) )  =  ∅ ) ) | 
						
							| 422 | 410 421 | mpbir | ⊢ Disj  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) | 
						
							| 423 | 422 | a1i | ⊢ ( 𝜑  →  Disj  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 424 | 19 400 423 | hashiun | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  =  Σ 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 425 | 399 424 | eqtr3d | ⊢ ( 𝜑  →  ( ♯ ‘ ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) )  =  Σ 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) ) ) | 
						
							| 426 |  | fo1st | ⊢ 1st  : V –onto→ V | 
						
							| 427 |  | fofun | ⊢ ( 1st  : V –onto→ V  →  Fun  1st  ) | 
						
							| 428 | 426 427 | ax-mp | ⊢ Fun  1st | 
						
							| 429 |  | ssv | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ⊆  V | 
						
							| 430 |  | fof | ⊢ ( 1st  : V –onto→ V  →  1st  : V ⟶ V ) | 
						
							| 431 | 426 430 | ax-mp | ⊢ 1st  : V ⟶ V | 
						
							| 432 | 431 | fdmi | ⊢ dom  1st   =  V | 
						
							| 433 | 429 432 | sseqtrri | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ⊆  dom  1st | 
						
							| 434 |  | fores | ⊢ ( ( Fun  1st   ∧  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ⊆  dom  1st  )  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –onto→ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ) | 
						
							| 435 | 428 433 434 | mp2an | ⊢ ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –onto→ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) | 
						
							| 436 |  | fveq2 | ⊢ ( 𝑡  =  𝑥  →  ( 2nd  ‘ 𝑡 )  =  ( 2nd  ‘ 𝑥 ) ) | 
						
							| 437 | 436 | csbeq1d | ⊢ ( 𝑡  =  𝑥  →  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 438 |  | fveq2 | ⊢ ( 𝑡  =  𝑥  →  ( 1st  ‘ 𝑡 )  =  ( 1st  ‘ 𝑥 ) ) | 
						
							| 439 | 438 | csbeq1d | ⊢ ( 𝑡  =  𝑥  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 440 | 439 | csbeq2dv | ⊢ ( 𝑡  =  𝑥  →  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 441 | 437 440 | eqtrd | ⊢ ( 𝑡  =  𝑥  →  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 442 | 441 | eqeq2d | ⊢ ( 𝑡  =  𝑥  →  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 443 | 439 | eqeq2d | ⊢ ( 𝑡  =  𝑥  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 444 | 443 | rexbidv | ⊢ ( 𝑡  =  𝑥  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 445 | 444 | ralbidv | ⊢ ( 𝑡  =  𝑥  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 446 | 442 445 | anbi12d | ⊢ ( 𝑡  =  𝑥  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  ↔  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 447 | 446 | rexrab | ⊢ ( ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑠  ↔  ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 448 |  | xp1st | ⊢ ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( 1st  ‘ 𝑥 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) | 
						
							| 449 | 448 | anim1i | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( ( 1st  ‘ 𝑥 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 450 |  | eleq1 | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ( 1st  ‘ 𝑥 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ↔  𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ) | 
						
							| 451 |  | csbeq1a | ⊢ ( 𝑠  =  ( 1st  ‘ 𝑥 )  →  𝐶  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 452 | 451 | eqcoms | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  𝐶  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 453 | 452 | eqcomd | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  =  𝐶 ) | 
						
							| 454 | 453 | eqeq2d | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  𝐶 ) ) | 
						
							| 455 | 454 | rexbidv | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) | 
						
							| 456 | 455 | ralbidv | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) | 
						
							| 457 | 450 456 | anbi12d | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( ( ( 1st  ‘ 𝑥 )  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ↔  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) ) | 
						
							| 458 | 449 457 | syl5ibcom | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) ) | 
						
							| 459 | 458 | adantrl | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) )  →  ( ( 1st  ‘ 𝑥 )  =  𝑠  →  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) ) | 
						
							| 460 | 459 | expimpd | ⊢ ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 )  →  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) ) | 
						
							| 461 | 460 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 )  →  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) | 
						
							| 462 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) | 
						
							| 463 |  | ovex | ⊢ ( 0 ... 𝑁 )  ∈  V | 
						
							| 464 | 463 | enref | ⊢ ( 0 ... 𝑁 )  ≈  ( 0 ... 𝑁 ) | 
						
							| 465 |  | phpreu | ⊢ ( ( ( 0 ... 𝑁 )  ∈  Fin  ∧  ( 0 ... 𝑁 )  ≈  ( 0 ... 𝑁 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) | 
						
							| 466 | 23 464 465 | mp2an | ⊢ ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) | 
						
							| 467 | 466 | biimpi | ⊢ ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶  →  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) | 
						
							| 468 |  | eqeq1 | ⊢ ( 𝑖  =  𝑁  →  ( 𝑖  =  𝐶  ↔  𝑁  =  𝐶 ) ) | 
						
							| 469 | 468 | reubidv | ⊢ ( 𝑖  =  𝑁  →  ( ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶  ↔  ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) ) | 
						
							| 470 | 469 | rspcva | ⊢ ( ( 𝑁  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) | 
						
							| 471 | 232 467 470 | syl2an | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) | 
						
							| 472 |  | riotacl | ⊢ ( ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶  →  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 473 | 471 472 | syl | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 474 | 473 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 475 |  | opelxpi | ⊢ ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  ∈  ( 0 ... 𝑁 ) )  →  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ) | 
						
							| 476 | 462 474 475 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ) | 
						
							| 477 |  | riotasbc | ⊢ ( ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶  →  [ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ] 𝑁  =  𝐶 ) | 
						
							| 478 | 471 477 | syl | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  [ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ] 𝑁  =  𝐶 ) | 
						
							| 479 |  | riotaex | ⊢ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  ∈  V | 
						
							| 480 |  | sbceq2g | ⊢ ( ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  ∈  V  →  ( [ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ] 𝑁  =  𝐶  ↔  𝑁  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶 ) ) | 
						
							| 481 | 479 480 | ax-mp | ⊢ ( [ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ] 𝑁  =  𝐶  ↔  𝑁  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶 ) | 
						
							| 482 | 478 481 | sylib | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  𝑁  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶 ) | 
						
							| 483 | 482 | expcom | ⊢ ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶  →  ( 𝜑  →  𝑁  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶 ) ) | 
						
							| 484 | 483 | imdistanri | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  ( 𝑁  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) | 
						
							| 485 | 484 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  ( 𝑁  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) | 
						
							| 486 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 487 | 486 479 | op2ndd | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ( 2nd  ‘ 𝑥 )  =  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) ) | 
						
							| 488 | 487 | csbeq1d | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ 𝐶  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶 ) | 
						
							| 489 |  | nfcv | ⊢ Ⅎ 𝑗 𝑠 | 
						
							| 490 |  | nfriota1 | ⊢ Ⅎ 𝑗 ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) | 
						
							| 491 | 489 490 | nfop | ⊢ Ⅎ 𝑗 〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉 | 
						
							| 492 | 491 | nfeq2 | ⊢ Ⅎ 𝑗 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉 | 
						
							| 493 | 486 479 | op1std | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ( 1st  ‘ 𝑥 )  =  𝑠 ) | 
						
							| 494 | 493 | eqcomd | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  𝑠  =  ( 1st  ‘ 𝑥 ) ) | 
						
							| 495 | 494 451 | syl | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  𝐶  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 496 | 492 495 | csbeq2d | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 497 | 488 496 | eqtr3d | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 498 | 497 | eqeq2d | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ( 𝑁  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶  ↔  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 499 | 495 | eqeq2d | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ( 𝑖  =  𝐶  ↔  𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 500 | 492 499 | rexbid | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 501 | 500 | ralbidv | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 502 | 498 501 | anbi12d | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ( ( 𝑁  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  ↔  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 503 | 493 | biantrud | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ↔  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) ) | 
						
							| 504 | 502 503 | bitr2d | ⊢ ( 𝑥  =  〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  →  ( ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 )  ↔  ( 𝑁  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) ) | 
						
							| 505 | 504 | rspcev | ⊢ ( ( 〈 𝑠 ,  ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 ) 〉  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  =  ⦋ ( ℩ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  𝐶 )  /  𝑗 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) )  →  ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 506 | 476 485 505 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 507 | 506 | expl | ⊢ ( 𝜑  →  ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 )  →  ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) ) | 
						
							| 508 | 461 507 | impbid2 | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( 1st  ‘ 𝑥 )  =  𝑠 )  ↔  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) ) | 
						
							| 509 | 447 508 | bitrid | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑠  ↔  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) ) ) | 
						
							| 510 | 509 | abbidv | ⊢ ( 𝜑  →  { 𝑠  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑠 }  =  { 𝑠  ∣  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) } ) | 
						
							| 511 |  | dfimafn | ⊢ ( ( Fun  1st   ∧  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ⊆  dom  1st  )  →  ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  =  { 𝑦  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑦 } ) | 
						
							| 512 | 428 433 511 | mp2an | ⊢ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  =  { 𝑦  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑦 } | 
						
							| 513 |  | nfcv | ⊢ Ⅎ 𝑠 ( 2nd  ‘ 𝑡 ) | 
						
							| 514 |  | nfcsb1v | ⊢ Ⅎ 𝑠 ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 515 | 513 514 | nfcsbw | ⊢ Ⅎ 𝑠 ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 516 | 515 | nfeq2 | ⊢ Ⅎ 𝑠 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 517 |  | nfcv | ⊢ Ⅎ 𝑠 ( 0 ... 𝑁 ) | 
						
							| 518 | 514 | nfeq2 | ⊢ Ⅎ 𝑠 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 519 | 517 518 | nfrexw | ⊢ Ⅎ 𝑠 ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 520 | 517 519 | nfralw | ⊢ Ⅎ 𝑠 ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 | 
						
							| 521 | 516 520 | nfan | ⊢ Ⅎ 𝑠 ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 522 |  | nfcv | ⊢ Ⅎ 𝑠 ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) | 
						
							| 523 | 521 522 | nfrabw | ⊢ Ⅎ 𝑠 { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } | 
						
							| 524 |  | nfv | ⊢ Ⅎ 𝑠 ( 1st  ‘ 𝑥 )  =  𝑦 | 
						
							| 525 | 523 524 | nfrexw | ⊢ Ⅎ 𝑠 ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑦 | 
						
							| 526 |  | nfv | ⊢ Ⅎ 𝑦 ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑠 | 
						
							| 527 |  | eqeq2 | ⊢ ( 𝑦  =  𝑠  →  ( ( 1st  ‘ 𝑥 )  =  𝑦  ↔  ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 528 | 527 | rexbidv | ⊢ ( 𝑦  =  𝑠  →  ( ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑦  ↔  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑠 ) ) | 
						
							| 529 | 525 526 528 | cbvabw | ⊢ { 𝑦  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑦 }  =  { 𝑠  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑠 } | 
						
							| 530 | 512 529 | eqtri | ⊢ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  =  { 𝑠  ∣  ∃ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( 1st  ‘ 𝑥 )  =  𝑠 } | 
						
							| 531 |  | df-rab | ⊢ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  =  { 𝑠  ∣  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 ) } | 
						
							| 532 | 510 530 531 | 3eqtr4g | ⊢ ( 𝜑  →  ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  =  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) | 
						
							| 533 |  | foeq3 | ⊢ ( ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  =  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  →  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –onto→ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  ↔  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) ) | 
						
							| 534 | 532 533 | syl | ⊢ ( 𝜑  →  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –onto→ ( 1st   “  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  ↔  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) ) | 
						
							| 535 | 435 534 | mpbii | ⊢ ( 𝜑  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) | 
						
							| 536 |  | fof | ⊢ ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ⟶ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) | 
						
							| 537 | 535 536 | syl | ⊢ ( 𝜑  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ⟶ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) | 
						
							| 538 |  | fvres | ⊢ ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  →  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 )  =  ( 1st  ‘ 𝑥 ) ) | 
						
							| 539 |  | fvres | ⊢ ( 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  →  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 )  =  ( 1st  ‘ 𝑦 ) ) | 
						
							| 540 | 538 539 | eqeqan12d | ⊢ ( ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  →  ( ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 )  =  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 )  ↔  ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 ) ) ) | 
						
							| 541 | 540 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) )  →  ( ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 )  =  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 )  ↔  ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 ) ) ) | 
						
							| 542 | 446 | elrab | ⊢ ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ↔  ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 543 |  | xp2nd | ⊢ ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 544 | 543 | anim1i | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) )  →  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 545 | 542 544 | sylbi | ⊢ ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  →  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 546 |  | simpl | ⊢ ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 547 | 546 | a1i | ⊢ ( 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 )  →  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 548 | 547 | ss2rabi | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ⊆  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } | 
						
							| 549 | 548 | sseli | ⊢ ( 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  →  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } ) | 
						
							| 550 |  | fveq2 | ⊢ ( 𝑡  =  𝑦  →  ( 2nd  ‘ 𝑡 )  =  ( 2nd  ‘ 𝑦 ) ) | 
						
							| 551 | 550 | csbeq1d | ⊢ ( 𝑡  =  𝑦  →  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 552 |  | fveq2 | ⊢ ( 𝑡  =  𝑦  →  ( 1st  ‘ 𝑡 )  =  ( 1st  ‘ 𝑦 ) ) | 
						
							| 553 | 552 | csbeq1d | ⊢ ( 𝑡  =  𝑦  →  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 554 | 553 | csbeq2dv | ⊢ ( 𝑡  =  𝑦  →  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 555 | 551 554 | eqtrd | ⊢ ( 𝑡  =  𝑦  →  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 556 | 555 | eqeq2d | ⊢ ( 𝑡  =  𝑦  →  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 557 | 556 | elrab | ⊢ ( 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  ↔  ( 𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 558 |  | xp2nd | ⊢ ( 𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  →  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 559 | 558 | anim1i | ⊢ ( ( 𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 )  →  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 560 | 557 559 | sylbi | ⊢ ( 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 }  →  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 561 | 549 560 | syl | ⊢ ( 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  →  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 562 | 545 561 | anim12i | ⊢ ( ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  →  ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) )  ∧  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 563 |  | an4 | ⊢ ( ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) )  ↔  ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 564 | 563 | anbi2i | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 565 |  | anass | ⊢ ( ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ↔  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 566 |  | ancom | ⊢ ( ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 567 | 565 566 | bitr3i | ⊢ ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 568 | 567 | anbi1i | ⊢ ( ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) )  ∧  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) )  ↔  ( ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) )  ∧  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 569 |  | anass | ⊢ ( ( ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) )  ∧  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 570 | 568 569 | bitri | ⊢ ( ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) )  ∧  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ∧  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 571 |  | anass | ⊢ ( ( ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) ) )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) ) ) | 
						
							| 572 | 564 570 571 | 3bitr4i | ⊢ ( ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) )  ∧  ( ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 )  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) )  ↔  ( ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) ) )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 573 | 562 572 | sylib | ⊢ ( ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  →  ( ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) ) )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 574 |  | phpreu | ⊢ ( ( ( 0 ... 𝑁 )  ∈  Fin  ∧  ( 0 ... 𝑁 )  ≈  ( 0 ... 𝑁 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 575 | 23 464 574 | mp2an | ⊢ ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 576 |  | reurmo | ⊢ ( ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  →  ∃* 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 577 | 576 | ralimi | ⊢ ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃! 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃* 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 578 | 575 577 | sylbi | ⊢ ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃* 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 579 |  | eqeq1 | ⊢ ( 𝑖  =  𝑁  →  ( 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 580 | 579 | rmobidv | ⊢ ( 𝑖  =  𝑁  →  ( ∃* 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  ∃* 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 581 | 580 | rspcva | ⊢ ( ( 𝑁  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃* 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ∃* 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 582 | 232 578 581 | syl2an | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ∃* 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 583 |  | nfv | ⊢ Ⅎ 𝑘 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 | 
						
							| 584 | 583 | rmo3 | ⊢ ( ∃* 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  𝑗  =  𝑘 ) ) | 
						
							| 585 | 582 584 | sylib | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  𝑗  =  𝑘 ) ) | 
						
							| 586 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 | 
						
							| 587 | 586 | nfeq2 | ⊢ Ⅎ 𝑗 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 | 
						
							| 588 |  | nfs1v | ⊢ Ⅎ 𝑗 [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 | 
						
							| 589 | 587 588 | nfan | ⊢ Ⅎ 𝑗 ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 590 |  | nfv | ⊢ Ⅎ 𝑗 ( 2nd  ‘ 𝑥 )  =  𝑘 | 
						
							| 591 | 589 590 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  𝑘 ) | 
						
							| 592 |  | nfv | ⊢ Ⅎ 𝑘 ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) | 
						
							| 593 |  | csbeq1a | ⊢ ( 𝑗  =  ( 2nd  ‘ 𝑥 )  →  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 594 | 593 | eqeq2d | ⊢ ( 𝑗  =  ( 2nd  ‘ 𝑥 )  →  ( 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 595 | 594 | anbi1d | ⊢ ( 𝑗  =  ( 2nd  ‘ 𝑥 )  →  ( ( 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ↔  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 596 |  | eqeq1 | ⊢ ( 𝑗  =  ( 2nd  ‘ 𝑥 )  →  ( 𝑗  =  𝑘  ↔  ( 2nd  ‘ 𝑥 )  =  𝑘 ) ) | 
						
							| 597 | 595 596 | imbi12d | ⊢ ( 𝑗  =  ( 2nd  ‘ 𝑥 )  →  ( ( ( 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  𝑗  =  𝑘 )  ↔  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  𝑘 ) ) ) | 
						
							| 598 |  | sbsbc | ⊢ ( [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 599 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 600 |  | sbceq2g | ⊢ ( 𝑘  ∈  V  →  ( [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 601 | 599 600 | ax-mp | ⊢ ( [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 602 | 598 601 | bitri | ⊢ ( [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 603 |  | csbeq1 | ⊢ ( 𝑘  =  ( 2nd  ‘ 𝑦 )  →  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 604 | 603 | eqeq2d | ⊢ ( 𝑘  =  ( 2nd  ‘ 𝑦 )  →  ( 𝑁  =  ⦋ 𝑘  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 605 | 602 604 | bitrid | ⊢ ( 𝑘  =  ( 2nd  ‘ 𝑦 )  →  ( [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 606 | 605 | anbi2d | ⊢ ( 𝑘  =  ( 2nd  ‘ 𝑦 )  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ↔  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 607 |  | eqeq2 | ⊢ ( 𝑘  =  ( 2nd  ‘ 𝑦 )  →  ( ( 2nd  ‘ 𝑥 )  =  𝑘  ↔  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) ) | 
						
							| 608 | 606 607 | imbi12d | ⊢ ( 𝑘  =  ( 2nd  ‘ 𝑦 )  →  ( ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  𝑘 )  ↔  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) ) ) | 
						
							| 609 | 591 592 597 608 | rspc2 | ⊢ ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  [ 𝑘  /  𝑗 ] 𝑁  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  𝑗  =  𝑘 )  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) ) ) | 
						
							| 610 | 585 609 | syl5com | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) ) ) | 
						
							| 611 | 610 | impr | ⊢ ( ( 𝜑  ∧  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) ) | 
						
							| 612 |  | csbeq1 | ⊢ ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 613 | 612 | csbeq2dv | ⊢ ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) | 
						
							| 614 | 613 | eqeq2d | ⊢ ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ↔  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 615 | 614 | anbi2d | ⊢ ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  ↔  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 616 | 615 | imbi1d | ⊢ ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ( ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) )  ↔  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) ) ) | 
						
							| 617 | 611 616 | syl5ibcom | ⊢ ( ( 𝜑  ∧  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) ) ) | 
						
							| 618 | 617 | com23 | ⊢ ( ( 𝜑  ∧  ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) ) ) | 
						
							| 619 | 618 | impr | ⊢ ( ( 𝜑  ∧  ( ( ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  ( ( 2nd  ‘ 𝑥 )  ∈  ( 0 ... 𝑁 )  ∧  ( 2nd  ‘ 𝑦 )  ∈  ( 0 ... 𝑁 ) ) )  ∧  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑥 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑥 )  /  𝑠 ⦌ 𝐶  ∧  𝑁  =  ⦋ ( 2nd  ‘ 𝑦 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑦 )  /  𝑠 ⦌ 𝐶 ) ) )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) ) | 
						
							| 620 | 573 619 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) ) ) | 
						
							| 621 |  | elrabi | ⊢ ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  →  𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ) | 
						
							| 622 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  →  𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) ) | 
						
							| 623 |  | xpopth | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  ∧  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 624 | 623 | biimpd | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  ∧  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 625 | 624 | expd | ⊢ ( ( 𝑥  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) ) )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ( ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 626 | 621 622 625 | syl2an | ⊢ ( ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ( ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 627 | 626 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  ( ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 628 | 620 627 | mpdd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) )  →  ( ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 629 | 541 628 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∧  𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) )  →  ( ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 )  =  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 630 | 629 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ∀ 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 )  =  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 631 |  | dff13 | ⊢ ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –1-1→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  ↔  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ⟶ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  ∧  ∀ 𝑥  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ∀ 𝑦  ∈  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ( ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 )  =  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 632 | 537 630 631 | sylanbrc | ⊢ ( 𝜑  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –1-1→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) | 
						
							| 633 |  | df-f1o | ⊢ ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –1-1-onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  ↔  ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –1-1→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  ∧  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) ) | 
						
							| 634 | 632 535 633 | sylanbrc | ⊢ ( 𝜑  →  ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –1-1-onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) | 
						
							| 635 |  | rabfi | ⊢ ( ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∈  Fin  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∈  Fin ) | 
						
							| 636 | 138 635 | ax-mp | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∈  Fin | 
						
							| 637 | 636 | elexi | ⊢ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∈  V | 
						
							| 638 | 637 | f1oen | ⊢ ( ( 1st   ↾  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) : { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } –1-1-onto→ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ≈  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) | 
						
							| 639 | 634 638 | syl | ⊢ ( 𝜑  →  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ≈  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) | 
						
							| 640 |  | rabfi | ⊢ ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∈  Fin  →  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  ∈  Fin ) | 
						
							| 641 | 136 640 | ax-mp | ⊢ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  ∈  Fin | 
						
							| 642 |  | hashen | ⊢ ( ( { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ∈  Fin  ∧  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 }  ∈  Fin )  →  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  =  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } )  ↔  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ≈  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) ) | 
						
							| 643 | 636 641 642 | mp2an | ⊢ ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  =  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } )  ↔  { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) }  ≈  { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) | 
						
							| 644 | 639 643 | sylibr | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } )  =  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) ) | 
						
							| 645 | 644 | oveq2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ( 𝑁  =  ⦋ ( 2nd  ‘ 𝑡 )  /  𝑗 ⦌ ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) ) ) | 
						
							| 646 | 202 425 645 | 3eqtr3d | ⊢ ( 𝜑  →  Σ 𝑥  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 }  ×  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 𝑥  /  𝑠 ⦌ 𝐶  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 𝑥  /  𝑠 ⦌ 𝐶 ) } ) )  =  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) ) ) | 
						
							| 647 | 135 646 | breqtrd | ⊢ ( 𝜑  →  2  ∥  ( ( ♯ ‘ { 𝑡  ∈  ( ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ×  ( 0 ... 𝑁 ) )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { ( 2nd  ‘ 𝑡 ) } ) 𝑖  =  ⦋ ( 1st  ‘ 𝑡 )  /  𝑠 ⦌ 𝐶 } )  −  ( ♯ ‘ { 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∣  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑖  =  𝐶 } ) ) ) |