Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimirlem28.1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 ) |
3 |
|
poimirlem28.2 |
⊢ ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) |
4 |
|
fzofi |
⊢ ( 0 ..^ 𝐾 ) ∈ Fin |
5 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
6 |
|
mapfi |
⊢ ( ( ( 0 ..^ 𝐾 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ) |
7 |
4 5 6
|
mp2an |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin |
8 |
|
mapfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ) |
9 |
5 5 8
|
mp2an |
⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin |
10 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
11 |
10
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } |
12 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
13 |
12 12
|
mapval |
⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) } |
14 |
11 13
|
sseqtrri |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) |
15 |
|
ssfi |
⊢ ( ( ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝑁 ) ) ) → { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin ) |
16 |
9 14 15
|
mp2an |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin |
17 |
7 16
|
pm3.2i |
⊢ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin ) |
18 |
|
xpfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ Fin ∧ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ∈ Fin ) → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin ) |
19 |
17 18
|
mp1i |
⊢ ( 𝜑 → ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin ) |
20 |
|
2z |
⊢ 2 ∈ ℤ |
21 |
20
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
22 |
|
snfi |
⊢ { 𝑥 } ∈ Fin |
23 |
|
fzfi |
⊢ ( 0 ... 𝑁 ) ∈ Fin |
24 |
|
rabfi |
⊢ ( ( 0 ... 𝑁 ) ∈ Fin → { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ∈ Fin ) |
25 |
23 24
|
ax-mp |
⊢ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ∈ Fin |
26 |
|
xpfi |
⊢ ( ( { 𝑥 } ∈ Fin ∧ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ∈ Fin ) → ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∈ Fin ) |
27 |
22 25 26
|
mp2an |
⊢ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∈ Fin |
28 |
|
hashcl |
⊢ ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∈ Fin → ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ∈ ℕ0 ) |
29 |
27 28
|
ax-mp |
⊢ ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ∈ ℕ0 |
30 |
29
|
nn0zi |
⊢ ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ∈ ℤ |
31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ∈ ℤ ) |
32 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) → 𝑁 ∈ ℕ ) |
33 |
|
nfv |
⊢ Ⅎ 𝑗 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
34 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 |
35 |
34
|
nfeq2 |
⊢ Ⅎ 𝑗 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 |
36 |
33 35
|
nfim |
⊢ Ⅎ 𝑗 ( 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
37 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 1 ... 𝑗 ) = ( 1 ... 𝑘 ) ) |
38 |
37
|
imaeq2d |
⊢ ( 𝑗 = 𝑘 → ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑘 ) ) ) |
39 |
38
|
xpeq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ) |
40 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 + 1 ) = ( 𝑘 + 1 ) ) |
41 |
40
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑘 + 1 ) ... 𝑁 ) ) |
42 |
41
|
imaeq2d |
⊢ ( 𝑗 = 𝑘 → ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) ) |
43 |
42
|
xpeq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
44 |
39 43
|
uneq12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
45 |
44
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
46 |
45
|
eqeq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ↔ 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
47 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑘 → ⦋ 𝑡 / 𝑠 ⦌ 𝐶 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
48 |
47
|
eqeq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝐵 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ↔ 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
49 |
46 48
|
imbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ↔ ( 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) ) |
50 |
|
nfv |
⊢ Ⅎ 𝑠 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
51 |
|
nfcsb1v |
⊢ Ⅎ 𝑠 ⦋ 𝑡 / 𝑠 ⦌ 𝐶 |
52 |
51
|
nfeq2 |
⊢ Ⅎ 𝑠 𝐵 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 |
53 |
50 52
|
nfim |
⊢ Ⅎ 𝑠 ( 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
54 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 1st ‘ 𝑠 ) = ( 1st ‘ 𝑡 ) ) |
55 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 2nd ‘ 𝑠 ) = ( 2nd ‘ 𝑡 ) ) |
56 |
55
|
imaeq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) ) |
57 |
56
|
xpeq1d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
58 |
55
|
imaeq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
59 |
58
|
xpeq1d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
60 |
57 59
|
uneq12d |
⊢ ( 𝑠 = 𝑡 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
61 |
54 60
|
oveq12d |
⊢ ( 𝑠 = 𝑡 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
62 |
61
|
eqeq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ↔ 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
63 |
|
csbeq1a |
⊢ ( 𝑠 = 𝑡 → 𝐶 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
64 |
63
|
eqeq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝐵 = 𝐶 ↔ 𝐵 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
65 |
62 64
|
imbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 ) ↔ ( 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) ) |
66 |
53 65 2
|
chvarfv |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
67 |
36 49 66
|
chvarfv |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑘 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑘 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
68 |
3
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) |
69 |
|
xp1st |
⊢ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ 𝑥 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
70 |
|
elmapi |
⊢ ( ( 1st ‘ 𝑥 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
71 |
69 70
|
syl |
⊢ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
72 |
71
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) → ( 1st ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
73 |
|
xp2nd |
⊢ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ 𝑥 ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
74 |
|
fvex |
⊢ ( 2nd ‘ 𝑥 ) ∈ V |
75 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 2nd ‘ 𝑥 ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ 𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
76 |
74 75
|
elab |
⊢ ( ( 2nd ‘ 𝑥 ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ 𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
77 |
73 76
|
sylib |
⊢ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ 𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
78 |
77
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
79 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑁 |
80 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
81 |
80 34
|
nfcsbw |
⊢ Ⅎ 𝑗 ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 |
82 |
79 81
|
nfne |
⊢ Ⅎ 𝑗 𝑁 ≠ ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 |
83 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐶 |
84 |
83 51 63
|
cbvcsbw |
⊢ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 = ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 |
85 |
47
|
csbeq2dv |
⊢ ( 𝑗 = 𝑘 → ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 = ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
86 |
84 85
|
syl5eq |
⊢ ( 𝑗 = 𝑘 → ⦋ 𝑥 / 𝑠 ⦌ 𝐶 = ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
87 |
86
|
neeq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ↔ 𝑁 ≠ ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
88 |
82 87
|
rspc |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 → 𝑁 ≠ ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
89 |
88
|
impcom |
⊢ ( ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ≠ ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
90 |
89
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ≠ ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
91 |
|
1st2nd2 |
⊢ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
92 |
91
|
csbeq1d |
⊢ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
93 |
92
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
94 |
90 93
|
neeqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ≠ ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
95 |
32 67 68 72 78 94
|
poimirlem25 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 } ) ) |
96 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 |
97 |
81
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑖 = ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 |
98 |
86
|
eqeq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
99 |
96 97 98
|
cbvrexw |
⊢ ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
100 |
92
|
eqeq2d |
⊢ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 𝑖 = ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
101 |
100
|
rexbidv |
⊢ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
102 |
99 101
|
bitr2id |
⊢ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) |
103 |
102
|
ralbidv |
⊢ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) |
104 |
|
iba |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) |
105 |
103 104
|
sylan9bb |
⊢ ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) |
106 |
105
|
rabbidv |
⊢ ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) → { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 } = { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) |
107 |
106
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) → ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 } ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) |
108 |
107
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) → ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 / 𝑡 ⦌ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 } ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) |
109 |
95 108
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) |
110 |
109
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ) |
111 |
|
dvds0 |
⊢ ( 2 ∈ ℤ → 2 ∥ 0 ) |
112 |
20 111
|
ax-mp |
⊢ 2 ∥ 0 |
113 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
114 |
112 113
|
breqtrri |
⊢ 2 ∥ ( ♯ ‘ ∅ ) |
115 |
|
simpr |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) |
116 |
115
|
con3i |
⊢ ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 → ¬ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) |
117 |
116
|
ralrimivw |
⊢ ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 → ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ¬ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) |
118 |
|
rabeq0 |
⊢ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } = ∅ ↔ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ¬ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) |
119 |
117 118
|
sylibr |
⊢ ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 → { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } = ∅ ) |
120 |
119
|
fveq2d |
⊢ ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 → ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) = ( ♯ ‘ ∅ ) ) |
121 |
114 120
|
breqtrrid |
⊢ ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) |
122 |
110 121
|
pm2.61d1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) |
123 |
|
hashxp |
⊢ ( ( { 𝑥 } ∈ Fin ∧ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ∈ Fin ) → ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑥 } ) · ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ) |
124 |
22 25 123
|
mp2an |
⊢ ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑥 } ) · ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) |
125 |
|
vex |
⊢ 𝑥 ∈ V |
126 |
|
hashsng |
⊢ ( 𝑥 ∈ V → ( ♯ ‘ { 𝑥 } ) = 1 ) |
127 |
125 126
|
ax-mp |
⊢ ( ♯ ‘ { 𝑥 } ) = 1 |
128 |
127
|
oveq1i |
⊢ ( ( ♯ ‘ { 𝑥 } ) · ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) = ( 1 · ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) |
129 |
|
hashcl |
⊢ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ∈ Fin → ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∈ ℕ0 ) |
130 |
25 129
|
ax-mp |
⊢ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∈ ℕ0 |
131 |
130
|
nn0cni |
⊢ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∈ ℂ |
132 |
131
|
mulid2i |
⊢ ( 1 · ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) |
133 |
124 128 132
|
3eqtri |
⊢ ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) |
134 |
122 133
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → 2 ∥ ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ) |
135 |
19 21 31 134
|
fsumdvds |
⊢ ( 𝜑 → 2 ∥ Σ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ) |
136 |
7 16 18
|
mp2an |
⊢ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin |
137 |
|
xpfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin ∧ ( 0 ... 𝑁 ) ∈ Fin ) → ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin ) |
138 |
136 23 137
|
mp2an |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin |
139 |
|
rabfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∈ Fin ) |
140 |
138 139
|
ax-mp |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∈ Fin |
141 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
142 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
143 |
141 142
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
144 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
145 |
1 144
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
146 |
145
|
nn0zd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
147 |
|
uzid |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
148 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
149 |
146 147 148
|
3syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
150 |
143 149
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
151 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
152 |
|
ssralv |
⊢ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
153 |
150 151 152
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
154 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
155 |
|
raldifb |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑗 ∉ { ( 2nd ‘ 𝑡 ) } → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ↔ ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
156 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
157 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
158 |
157
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
159 |
156 158
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
160 |
|
nfv |
⊢ Ⅎ 𝑗 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) |
161 |
159 160
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
162 |
|
nnel |
⊢ ( ¬ 𝑗 ∉ { ( 2nd ‘ 𝑡 ) } ↔ 𝑗 ∈ { ( 2nd ‘ 𝑡 ) } ) |
163 |
|
velsn |
⊢ ( 𝑗 ∈ { ( 2nd ‘ 𝑡 ) } ↔ 𝑗 = ( 2nd ‘ 𝑡 ) ) |
164 |
162 163
|
bitri |
⊢ ( ¬ 𝑗 ∉ { ( 2nd ‘ 𝑡 ) } ↔ 𝑗 = ( 2nd ‘ 𝑡 ) ) |
165 |
|
csbeq1a |
⊢ ( 𝑗 = ( 2nd ‘ 𝑡 ) → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
166 |
165
|
eqeq2d |
⊢ ( 𝑗 = ( 2nd ‘ 𝑡 ) → ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
167 |
166
|
biimparc |
⊢ ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ 𝑗 = ( 2nd ‘ 𝑡 ) ) → 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
168 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
169 |
168
|
ltm1d |
⊢ ( 𝜑 → ( 𝑁 − 1 ) < 𝑁 ) |
170 |
145
|
nn0red |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ ) |
171 |
170 168
|
ltnled |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) < 𝑁 ↔ ¬ 𝑁 ≤ ( 𝑁 − 1 ) ) ) |
172 |
169 171
|
mpbid |
⊢ ( 𝜑 → ¬ 𝑁 ≤ ( 𝑁 − 1 ) ) |
173 |
|
elfzle2 |
⊢ ( 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑁 ≤ ( 𝑁 − 1 ) ) |
174 |
172 173
|
nsyl |
⊢ ( 𝜑 → ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
175 |
|
eleq1 |
⊢ ( 𝑖 = 𝑁 → ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
176 |
175
|
notbid |
⊢ ( 𝑖 = 𝑁 → ( ¬ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
177 |
174 176
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑖 = 𝑁 → ¬ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
178 |
177
|
con2d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ¬ 𝑖 = 𝑁 ) ) |
179 |
178
|
imp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑖 = 𝑁 ) |
180 |
|
eqeq2 |
⊢ ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( 𝑖 = 𝑁 ↔ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
181 |
180
|
notbid |
⊢ ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( ¬ 𝑖 = 𝑁 ↔ ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
182 |
179 181
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
183 |
167 182
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ 𝑗 = ( 2nd ‘ 𝑡 ) ) → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
184 |
183
|
expdimp |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( 𝑗 = ( 2nd ‘ 𝑡 ) → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
185 |
184
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 = ( 2nd ‘ 𝑡 ) → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
186 |
164 185
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ¬ 𝑗 ∉ { ( 2nd ‘ 𝑡 ) } → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
187 |
|
idd |
⊢ ( ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
188 |
186 187
|
jad |
⊢ ( ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 ∉ { ( 2nd ‘ 𝑡 ) } → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
189 |
188
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑗 ∉ { ( 2nd ‘ 𝑡 ) } → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
190 |
161 189
|
ralimdaa |
⊢ ( ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑗 ∉ { ( 2nd ‘ 𝑡 ) } → ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
191 |
155 190
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
192 |
191
|
con3d |
⊢ ( ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ¬ ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
193 |
|
dfrex2 |
⊢ ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ¬ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
194 |
|
dfrex2 |
⊢ ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ¬ ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ¬ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
195 |
192 193 194
|
3imtr4g |
⊢ ( ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
196 |
195
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
197 |
154 196
|
syld |
⊢ ( ( 𝜑 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
198 |
197
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
199 |
198
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
200 |
199
|
ss2rabdv |
⊢ ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) |
201 |
|
hashssdif |
⊢ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∈ Fin ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) ) |
202 |
140 200 201
|
sylancr |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) ) |
203 |
|
xp2nd |
⊢ ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) |
204 |
|
df-ne |
⊢ ( 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ¬ 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
205 |
204
|
ralbii |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
206 |
|
ralnex |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ¬ 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ¬ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
207 |
205 206
|
bitri |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ¬ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
208 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
209 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
210 |
208 209
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
211 |
143 210
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
212 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) → ( 0 ... 𝑁 ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) |
213 |
211 150 212
|
syl2anc |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) |
214 |
143
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑁 ... 𝑁 ) ) |
215 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
216 |
|
fzsn |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ... 𝑁 ) = { 𝑁 } ) |
217 |
215 216
|
syl |
⊢ ( 𝜑 → ( 𝑁 ... 𝑁 ) = { 𝑁 } ) |
218 |
214 217
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = { 𝑁 } ) |
219 |
218
|
uneq2d |
⊢ ( 𝜑 → ( ( 0 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |
220 |
213 219
|
eqtrd |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |
221 |
220
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
222 |
|
ralunb |
⊢ ( ∀ 𝑖 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
223 |
|
difss |
⊢ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ⊆ ( 0 ... 𝑁 ) |
224 |
|
ssrexv |
⊢ ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ⊆ ( 0 ... 𝑁 ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
225 |
223 224
|
ax-mp |
⊢ ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
226 |
225
|
ralimi |
⊢ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
227 |
226
|
biantrurd |
⊢ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
228 |
222 227
|
bitr4id |
⊢ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( ∀ 𝑖 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
229 |
221 228
|
sylan9bb |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
230 |
229
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
231 |
|
nn0fz0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
232 |
208 231
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
233 |
232
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
234 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑁 → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
235 |
234
|
rexbidv |
⊢ ( 𝑖 = 𝑁 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
236 |
235
|
rspcva |
⊢ ( ( 𝑁 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
237 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) |
238 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 0 ... ( 𝑁 − 1 ) ) |
239 |
|
nfre1 |
⊢ Ⅎ 𝑗 ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
240 |
238 239
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
241 |
237 240
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
242 |
|
eleq1 |
⊢ ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
243 |
242
|
notbid |
⊢ ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( ¬ 𝑁 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ¬ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
244 |
174 243
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ¬ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
245 |
244
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ¬ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
246 |
|
eldifsn |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ↔ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ≠ ( 2nd ‘ 𝑡 ) ) ) |
247 |
|
diffi |
⊢ ( ( 0 ... 𝑁 ) ∈ Fin → ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∈ Fin ) |
248 |
23 247
|
ax-mp |
⊢ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∈ Fin |
249 |
|
ssrab2 |
⊢ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⊆ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) |
250 |
|
ssdomg |
⊢ ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∈ Fin → ( { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⊆ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≼ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) ) |
251 |
248 249 250
|
mp2 |
⊢ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≼ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) |
252 |
|
hashdifsn |
⊢ ( ( ( 0 ... 𝑁 ) ∈ Fin ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) = ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) ) |
253 |
23 252
|
mpan |
⊢ ( ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) → ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) = ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) ) |
254 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
255 |
141 254 254
|
addsubd |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = ( ( 𝑁 − 1 ) + 1 ) ) |
256 |
|
hashfz0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ... 𝑁 ) ) = ( 𝑁 + 1 ) ) |
257 |
208 256
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝑁 ) ) = ( 𝑁 + 1 ) ) |
258 |
257
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
259 |
|
hashfz0 |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) = ( ( 𝑁 − 1 ) + 1 ) ) |
260 |
145 259
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) = ( ( 𝑁 − 1 ) + 1 ) ) |
261 |
255 258 260
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) = ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
262 |
253 261
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) = ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
263 |
|
fzfi |
⊢ ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin |
264 |
|
hashen |
⊢ ( ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∈ Fin ∧ ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) → ( ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) = ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ≈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
265 |
248 263 264
|
mp2an |
⊢ ( ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) = ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ≈ ( 0 ... ( 𝑁 − 1 ) ) ) |
266 |
262 265
|
sylib |
⊢ ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ≈ ( 0 ... ( 𝑁 − 1 ) ) ) |
267 |
|
rabfi |
⊢ ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∈ Fin → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∈ Fin ) |
268 |
248 267
|
ax-mp |
⊢ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∈ Fin |
269 |
|
eleq1 |
⊢ ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
270 |
269
|
biimpac |
⊢ ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
271 |
|
rabid |
⊢ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↔ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∧ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
272 |
271
|
simplbi2com |
⊢ ( ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) → 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) ) |
273 |
270 272
|
syl |
⊢ ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) → 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) ) |
274 |
273
|
impancom |
⊢ ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) ) |
275 |
274
|
ancrd |
⊢ ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
276 |
275
|
expimpd |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
277 |
276
|
reximdv2 |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
278 |
271
|
simplbi |
⊢ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } → 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) |
279 |
274
|
pm4.71rd |
⊢ ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
280 |
|
df-mpt |
⊢ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) = { 〈 𝑘 , 𝑖 〉 ∣ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } |
281 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
282 |
|
nfrab1 |
⊢ Ⅎ 𝑗 { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } |
283 |
282
|
nfcri |
⊢ Ⅎ 𝑗 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } |
284 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
285 |
284
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑖 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
286 |
283 285
|
nfan |
⊢ Ⅎ 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
287 |
|
eleq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↔ 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) ) |
288 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑘 → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
289 |
288
|
eqeq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
290 |
287 289
|
anbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ↔ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
291 |
281 286 290
|
cbvopab1 |
⊢ { 〈 𝑗 , 𝑖 〉 ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } = { 〈 𝑘 , 𝑖 〉 ∣ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } |
292 |
280 291
|
eqtr4i |
⊢ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) = { 〈 𝑗 , 𝑖 〉 ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } |
293 |
292
|
breqi |
⊢ ( 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ↔ 𝑗 { 〈 𝑗 , 𝑖 〉 ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } 𝑖 ) |
294 |
|
df-br |
⊢ ( 𝑗 { 〈 𝑗 , 𝑖 〉 ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } 𝑖 ↔ 〈 𝑗 , 𝑖 〉 ∈ { 〈 𝑗 , 𝑖 〉 ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) |
295 |
|
opabidw |
⊢ ( 〈 𝑗 , 𝑖 〉 ∈ { 〈 𝑗 , 𝑖 〉 ∣ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ↔ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
296 |
293 294 295
|
3bitri |
⊢ ( 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ↔ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∧ 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
297 |
279 296
|
bitr4di |
⊢ ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ) ) |
298 |
278 297
|
sylan2 |
⊢ ( ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ) ) |
299 |
298
|
rexbidva |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ∃ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ) ) |
300 |
|
nfcv |
⊢ Ⅎ 𝑝 { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } |
301 |
|
nfv |
⊢ Ⅎ 𝑝 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 |
302 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑝 |
303 |
282 284
|
nfmpt |
⊢ Ⅎ 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
304 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑖 |
305 |
302 303 304
|
nfbr |
⊢ Ⅎ 𝑗 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 |
306 |
|
breq1 |
⊢ ( 𝑗 = 𝑝 → ( 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ↔ 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ) ) |
307 |
282 300 301 305 306
|
cbvrexfw |
⊢ ( ∃ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑗 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ↔ ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ) |
308 |
299 307
|
bitrdi |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ∃ 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ) ) |
309 |
277 308
|
sylibd |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ) ) |
310 |
309
|
ralimia |
⊢ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ) |
311 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) = ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
312 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑘 |
313 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) |
314 |
284
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) |
315 |
288
|
eleq1d |
⊢ ( 𝑗 = 𝑘 → ( ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
316 |
312 313 314 315
|
elrabf |
⊢ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↔ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∧ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
317 |
316
|
simprbi |
⊢ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } → ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
318 |
311 317
|
fmpti |
⊢ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⟶ ( 0 ... ( 𝑁 − 1 ) ) |
319 |
310 318
|
jctil |
⊢ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⟶ ( 0 ... ( 𝑁 − 1 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ) ) |
320 |
|
dffo4 |
⊢ ( ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } –onto→ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⟶ ( 0 ... ( 𝑁 − 1 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑝 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } 𝑝 ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) 𝑖 ) ) |
321 |
319 320
|
sylibr |
⊢ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } –onto→ ( 0 ... ( 𝑁 − 1 ) ) ) |
322 |
|
fodomfi |
⊢ ( ( { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ∈ Fin ∧ ( 𝑘 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↦ ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) : { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } –onto→ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 0 ... ( 𝑁 − 1 ) ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) |
323 |
268 321 322
|
sylancr |
⊢ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( 0 ... ( 𝑁 − 1 ) ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) |
324 |
|
endomtr |
⊢ ( ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ≈ ( 0 ... ( 𝑁 − 1 ) ) ∧ ( 0 ... ( 𝑁 − 1 ) ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) → ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) |
325 |
266 323 324
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) |
326 |
|
sbth |
⊢ ( ( { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≼ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∧ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ≼ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) |
327 |
251 325 326
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) |
328 |
|
fisseneq |
⊢ ( ( ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∈ Fin ∧ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ⊆ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∧ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ≈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } = ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) |
329 |
248 249 327 328
|
mp3an12i |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } = ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) |
330 |
329
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ↔ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) ) |
331 |
330
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) → 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } ) |
332 |
288
|
equcoms |
⊢ ( 𝑘 = 𝑗 → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
333 |
332
|
eqcomd |
⊢ ( 𝑘 = 𝑗 → ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
334 |
333
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
335 |
334 317
|
vtoclga |
⊢ ( 𝑗 ∈ { 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ∣ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) } → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
336 |
331 335
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) ) → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
337 |
246 336
|
sylan2br |
⊢ ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ≠ ( 2nd ‘ 𝑡 ) ) ) → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
338 |
337
|
expr |
⊢ ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑗 ≠ ( 2nd ‘ 𝑡 ) → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
339 |
338
|
necon1bd |
⊢ ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ¬ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 = ( 2nd ‘ 𝑡 ) ) ) |
340 |
245 339
|
syld |
⊢ ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → 𝑗 = ( 2nd ‘ 𝑡 ) ) ) |
341 |
340
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → 𝑗 = ( 2nd ‘ 𝑡 ) ) |
342 |
341 165
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
343 |
|
eqtr |
⊢ ( ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
344 |
343
|
ex |
⊢ ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → ( ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
345 |
344
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
346 |
342 345
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
347 |
346
|
exp31 |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
348 |
241 158 347
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
349 |
236 348
|
syl5 |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ( 𝑁 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
350 |
233 349
|
mpand |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 → 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
351 |
350
|
pm4.71rd |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
352 |
235
|
ralsng |
⊢ ( 𝑁 ∈ ℕ → ( ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
353 |
1 352
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
354 |
353
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑖 ∈ { 𝑁 } ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
355 |
230 351 354
|
3bitr3rd |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
356 |
355
|
notbid |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ¬ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ¬ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
357 |
207 356
|
syl5bb |
⊢ ( ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ¬ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) |
358 |
357
|
pm5.32da |
⊢ ( ( 𝜑 ∧ ( 2nd ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) ) |
359 |
203 358
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) ) ) |
360 |
359
|
rabbidva |
⊢ ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) } ) |
361 |
|
nfv |
⊢ Ⅎ 𝑦 𝑡 = 〈 𝑥 , 𝑘 〉 |
362 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
363 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } |
364 |
363
|
nfcri |
⊢ Ⅎ 𝑦 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } |
365 |
362 364
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) |
366 |
361 365
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑡 = 〈 𝑥 , 𝑘 〉 ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) |
367 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑡 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) |
368 |
|
opeq2 |
⊢ ( 𝑘 = 𝑦 → 〈 𝑥 , 𝑘 〉 = 〈 𝑥 , 𝑦 〉 ) |
369 |
368
|
eqeq2d |
⊢ ( 𝑘 = 𝑦 → ( 𝑡 = 〈 𝑥 , 𝑘 〉 ↔ 𝑡 = 〈 𝑥 , 𝑦 〉 ) ) |
370 |
|
eleq1 |
⊢ ( 𝑘 = 𝑦 → ( 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ↔ 𝑦 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) |
371 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ↔ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) |
372 |
370 371
|
bitrdi |
⊢ ( 𝑘 = 𝑦 → ( 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ↔ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) ) |
373 |
372
|
anbi2d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ↔ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) ) ) |
374 |
|
3anass |
⊢ ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ↔ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) ) |
375 |
373 374
|
bitr4di |
⊢ ( 𝑘 = 𝑦 → ( ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ↔ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) ) |
376 |
369 375
|
anbi12d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝑡 = 〈 𝑥 , 𝑘 〉 ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ↔ ( 𝑡 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) ) ) |
377 |
366 367 376
|
cbvexv1 |
⊢ ( ∃ 𝑘 ( 𝑡 = 〈 𝑥 , 𝑘 〉 ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ↔ ∃ 𝑦 ( 𝑡 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) ) |
378 |
377
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑘 ( 𝑡 = 〈 𝑥 , 𝑘 〉 ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑡 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) ) |
379 |
|
eliunxp |
⊢ ( 𝑡 ∈ ∪ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ↔ ∃ 𝑥 ∃ 𝑘 ( 𝑡 = 〈 𝑥 , 𝑘 〉 ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑘 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ) |
380 |
|
elopab |
⊢ ( 𝑡 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑡 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) ) |
381 |
378 379 380
|
3bitr4i |
⊢ ( 𝑡 ∈ ∪ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ↔ 𝑡 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) } ) |
382 |
381
|
eqriv |
⊢ ∪ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) } |
383 |
|
vex |
⊢ 𝑦 ∈ V |
384 |
125 383
|
op2ndd |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑡 ) = 𝑦 ) |
385 |
384
|
sneqd |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → { ( 2nd ‘ 𝑡 ) } = { 𝑦 } ) |
386 |
385
|
difeq2d |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) = ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) ) |
387 |
125 383
|
op1std |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑡 ) = 𝑥 ) |
388 |
387
|
csbeq1d |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) |
389 |
388
|
eqeq2d |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) |
390 |
386 389
|
rexeqbidv |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) |
391 |
390
|
ralbidv |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) |
392 |
388
|
neeq2d |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → ( 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) |
393 |
392
|
ralbidv |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) |
394 |
391 393
|
anbi12d |
⊢ ( 𝑡 = 〈 𝑥 , 𝑦 〉 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) ) |
395 |
394
|
rabxp |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑦 ∈ ( 0 ... 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ) } |
396 |
382 395
|
eqtr4i |
⊢ ∪ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } |
397 |
|
difrab |
⊢ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ¬ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) } |
398 |
360 396 397
|
3eqtr4g |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) = ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) |
399 |
398
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) = ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) ) |
400 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) → ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∈ Fin ) |
401 |
|
inxp |
⊢ ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∩ ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) = ( ( { 𝑥 } ∩ { 𝑡 } ) × ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ∩ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) |
402 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑡 ↔ ¬ 𝑥 = 𝑡 ) |
403 |
|
disjsn2 |
⊢ ( 𝑥 ≠ 𝑡 → ( { 𝑥 } ∩ { 𝑡 } ) = ∅ ) |
404 |
402 403
|
sylbir |
⊢ ( ¬ 𝑥 = 𝑡 → ( { 𝑥 } ∩ { 𝑡 } ) = ∅ ) |
405 |
404
|
xpeq1d |
⊢ ( ¬ 𝑥 = 𝑡 → ( ( { 𝑥 } ∩ { 𝑡 } ) × ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ∩ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) = ( ∅ × ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ∩ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) ) |
406 |
|
0xp |
⊢ ( ∅ × ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ∩ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) = ∅ |
407 |
405 406
|
eqtrdi |
⊢ ( ¬ 𝑥 = 𝑡 → ( ( { 𝑥 } ∩ { 𝑡 } ) × ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ∩ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) = ∅ ) |
408 |
401 407
|
syl5eq |
⊢ ( ¬ 𝑥 = 𝑡 → ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∩ ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) = ∅ ) |
409 |
408
|
orri |
⊢ ( 𝑥 = 𝑡 ∨ ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∩ ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) = ∅ ) |
410 |
409
|
rgen2w |
⊢ ∀ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( 𝑥 = 𝑡 ∨ ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∩ ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) = ∅ ) |
411 |
|
sneq |
⊢ ( 𝑥 = 𝑡 → { 𝑥 } = { 𝑡 } ) |
412 |
|
csbeq1 |
⊢ ( 𝑥 = 𝑡 → ⦋ 𝑥 / 𝑠 ⦌ 𝐶 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) |
413 |
412
|
eqeq2d |
⊢ ( 𝑥 = 𝑡 → ( 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
414 |
413
|
rexbidv |
⊢ ( 𝑥 = 𝑡 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
415 |
414
|
ralbidv |
⊢ ( 𝑥 = 𝑡 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
416 |
412
|
neeq2d |
⊢ ( 𝑥 = 𝑡 → ( 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ↔ 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
417 |
416
|
ralbidv |
⊢ ( 𝑥 = 𝑡 → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) |
418 |
415 417
|
anbi12d |
⊢ ( 𝑥 = 𝑡 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) ) ) |
419 |
418
|
rabbidv |
⊢ ( 𝑥 = 𝑡 → { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } = { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) |
420 |
411 419
|
xpeq12d |
⊢ ( 𝑥 = 𝑡 → ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) = ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) |
421 |
420
|
disjor |
⊢ ( Disj 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ↔ ∀ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∀ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( 𝑥 = 𝑡 ∨ ( ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ∩ ( { 𝑡 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑡 / 𝑠 ⦌ 𝐶 ) } ) ) = ∅ ) ) |
422 |
410 421
|
mpbir |
⊢ Disj 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) |
423 |
422
|
a1i |
⊢ ( 𝜑 → Disj 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) |
424 |
19 400 423
|
hashiun |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) = Σ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ) |
425 |
399 424
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) = Σ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) ) |
426 |
|
fo1st |
⊢ 1st : V –onto→ V |
427 |
|
fofun |
⊢ ( 1st : V –onto→ V → Fun 1st ) |
428 |
426 427
|
ax-mp |
⊢ Fun 1st |
429 |
|
ssv |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ⊆ V |
430 |
|
fof |
⊢ ( 1st : V –onto→ V → 1st : V ⟶ V ) |
431 |
426 430
|
ax-mp |
⊢ 1st : V ⟶ V |
432 |
431
|
fdmi |
⊢ dom 1st = V |
433 |
429 432
|
sseqtrri |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ⊆ dom 1st |
434 |
|
fores |
⊢ ( ( Fun 1st ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ⊆ dom 1st ) → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) |
435 |
428 433 434
|
mp2an |
⊢ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) |
436 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑥 ) ) |
437 |
436
|
csbeq1d |
⊢ ( 𝑡 = 𝑥 → ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
438 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑥 ) ) |
439 |
438
|
csbeq1d |
⊢ ( 𝑡 = 𝑥 → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
440 |
439
|
csbeq2dv |
⊢ ( 𝑡 = 𝑥 → ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
441 |
437 440
|
eqtrd |
⊢ ( 𝑡 = 𝑥 → ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
442 |
441
|
eqeq2d |
⊢ ( 𝑡 = 𝑥 → ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
443 |
439
|
eqeq2d |
⊢ ( 𝑡 = 𝑥 → ( 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
444 |
443
|
rexbidv |
⊢ ( 𝑡 = 𝑥 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
445 |
444
|
ralbidv |
⊢ ( 𝑡 = 𝑥 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
446 |
442 445
|
anbi12d |
⊢ ( 𝑡 = 𝑥 → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ↔ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ) |
447 |
446
|
rexrab |
⊢ ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑠 ↔ ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
448 |
|
xp1st |
⊢ ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st ‘ 𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
449 |
448
|
anim1i |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( ( 1st ‘ 𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
450 |
|
eleq1 |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ( 1st ‘ 𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ↔ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ) |
451 |
|
csbeq1a |
⊢ ( 𝑠 = ( 1st ‘ 𝑥 ) → 𝐶 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
452 |
451
|
eqcoms |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → 𝐶 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
453 |
452
|
eqcomd |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 = 𝐶 ) |
454 |
453
|
eqeq2d |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑖 = 𝐶 ) ) |
455 |
454
|
rexbidv |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) |
456 |
455
|
ralbidv |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) |
457 |
450 456
|
anbi12d |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑠 → ( ( ( 1st ‘ 𝑥 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) ) |
458 |
449 457
|
syl5ibcom |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( ( 1st ‘ 𝑥 ) = 𝑠 → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) ) |
459 |
458
|
adantrl |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) → ( ( 1st ‘ 𝑥 ) = 𝑠 → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) ) |
460 |
459
|
expimpd |
⊢ ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) ) |
461 |
460
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) → ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) |
462 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
463 |
|
ovex |
⊢ ( 0 ... 𝑁 ) ∈ V |
464 |
463
|
enref |
⊢ ( 0 ... 𝑁 ) ≈ ( 0 ... 𝑁 ) |
465 |
|
phpreu |
⊢ ( ( ( 0 ... 𝑁 ) ∈ Fin ∧ ( 0 ... 𝑁 ) ≈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) |
466 |
23 464 465
|
mp2an |
⊢ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) |
467 |
466
|
biimpi |
⊢ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) |
468 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑁 → ( 𝑖 = 𝐶 ↔ 𝑁 = 𝐶 ) ) |
469 |
468
|
reubidv |
⊢ ( 𝑖 = 𝑁 → ( ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ↔ ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ) |
470 |
469
|
rspcva |
⊢ ( ( 𝑁 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) |
471 |
232 467 470
|
syl2an |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) |
472 |
|
riotacl |
⊢ ( ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 → ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ ( 0 ... 𝑁 ) ) |
473 |
471 472
|
syl |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ ( 0 ... 𝑁 ) ) |
474 |
473
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ ( 0 ... 𝑁 ) ) |
475 |
|
opelxpi |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ ( 0 ... 𝑁 ) ) → 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) |
476 |
462 474 475
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) |
477 |
|
riotasbc |
⊢ ( ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 → [ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ] 𝑁 = 𝐶 ) |
478 |
471 477
|
syl |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → [ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ] 𝑁 = 𝐶 ) |
479 |
|
riotaex |
⊢ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ V |
480 |
|
sbceq2g |
⊢ ( ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ∈ V → ( [ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ] 𝑁 = 𝐶 ↔ 𝑁 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ) ) |
481 |
479 480
|
ax-mp |
⊢ ( [ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ] 𝑁 = 𝐶 ↔ 𝑁 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ) |
482 |
478 481
|
sylib |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → 𝑁 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ) |
483 |
482
|
expcom |
⊢ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 → ( 𝜑 → 𝑁 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ) ) |
484 |
483
|
imdistanri |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ( 𝑁 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) |
485 |
484
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ( 𝑁 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) |
486 |
|
vex |
⊢ 𝑠 ∈ V |
487 |
486 479
|
op2ndd |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ( 2nd ‘ 𝑥 ) = ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) ) |
488 |
487
|
csbeq1d |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ 𝐶 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ) |
489 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑠 |
490 |
|
nfriota1 |
⊢ Ⅎ 𝑗 ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) |
491 |
489 490
|
nfop |
⊢ Ⅎ 𝑗 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 |
492 |
491
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 |
493 |
486 479
|
op1std |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ( 1st ‘ 𝑥 ) = 𝑠 ) |
494 |
493
|
eqcomd |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → 𝑠 = ( 1st ‘ 𝑥 ) ) |
495 |
494 451
|
syl |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → 𝐶 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
496 |
492 495
|
csbeq2d |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
497 |
488 496
|
eqtr3d |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
498 |
497
|
eqeq2d |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ( 𝑁 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ↔ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
499 |
495
|
eqeq2d |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ( 𝑖 = 𝐶 ↔ 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
500 |
492 499
|
rexbid |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
501 |
500
|
ralbidv |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
502 |
498 501
|
anbi12d |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ( ( 𝑁 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ↔ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ) |
503 |
493
|
biantrud |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ↔ ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ) ) |
504 |
502 503
|
bitr2d |
⊢ ( 𝑥 = 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 → ( ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ↔ ( 𝑁 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) ) |
505 |
504
|
rspcev |
⊢ ( ( 〈 𝑠 , ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) 〉 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ⦋ ( ℩ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = 𝐶 ) / 𝑗 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
506 |
476 485 505
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
507 |
506
|
expl |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) → ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ) ) |
508 |
461 507
|
impbid2 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( 1st ‘ 𝑥 ) = 𝑠 ) ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) ) |
509 |
447 508
|
syl5bb |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑠 ↔ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) ) ) |
510 |
509
|
abbidv |
⊢ ( 𝜑 → { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) } ) |
511 |
|
dfimafn |
⊢ ( ( Fun 1st ∧ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ⊆ dom 1st ) → ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑦 } ) |
512 |
428 433 511
|
mp2an |
⊢ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑦 } |
513 |
|
nfcv |
⊢ Ⅎ 𝑠 ( 2nd ‘ 𝑡 ) |
514 |
|
nfcsb1v |
⊢ Ⅎ 𝑠 ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
515 |
513 514
|
nfcsbw |
⊢ Ⅎ 𝑠 ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
516 |
515
|
nfeq2 |
⊢ Ⅎ 𝑠 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
517 |
|
nfcv |
⊢ Ⅎ 𝑠 ( 0 ... 𝑁 ) |
518 |
514
|
nfeq2 |
⊢ Ⅎ 𝑠 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
519 |
517 518
|
nfrex |
⊢ Ⅎ 𝑠 ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
520 |
517 519
|
nfralw |
⊢ Ⅎ 𝑠 ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 |
521 |
516 520
|
nfan |
⊢ Ⅎ 𝑠 ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
522 |
|
nfcv |
⊢ Ⅎ 𝑠 ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) |
523 |
521 522
|
nfrabw |
⊢ Ⅎ 𝑠 { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } |
524 |
|
nfv |
⊢ Ⅎ 𝑠 ( 1st ‘ 𝑥 ) = 𝑦 |
525 |
523 524
|
nfrex |
⊢ Ⅎ 𝑠 ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑦 |
526 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑠 |
527 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑠 → ( ( 1st ‘ 𝑥 ) = 𝑦 ↔ ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
528 |
527
|
rexbidv |
⊢ ( 𝑦 = 𝑠 → ( ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑠 ) ) |
529 |
525 526 528
|
cbvabw |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑦 } = { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑠 } |
530 |
512 529
|
eqtri |
⊢ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) = { 𝑠 ∣ ∃ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( 1st ‘ 𝑥 ) = 𝑠 } |
531 |
|
df-rab |
⊢ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } = { 𝑠 ∣ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 ) } |
532 |
510 530 531
|
3eqtr4g |
⊢ ( 𝜑 → ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
533 |
|
foeq3 |
⊢ ( ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) = { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ↔ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) |
534 |
532 533
|
syl |
⊢ ( 𝜑 → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –onto→ ( 1st “ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ↔ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) |
535 |
435 534
|
mpbii |
⊢ ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
536 |
|
fof |
⊢ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
537 |
535 536
|
syl |
⊢ ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
538 |
|
fvres |
⊢ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 ) = ( 1st ‘ 𝑥 ) ) |
539 |
|
fvres |
⊢ ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } → ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 ) = ( 1st ‘ 𝑦 ) ) |
540 |
538 539
|
eqeqan12d |
⊢ ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
541 |
540
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
542 |
446
|
elrab |
⊢ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ↔ ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ) |
543 |
|
xp2nd |
⊢ ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ) |
544 |
543
|
anim1i |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) → ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ) |
545 |
542 544
|
sylbi |
⊢ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } → ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ) |
546 |
|
simpl |
⊢ ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
547 |
546
|
a1i |
⊢ ( 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) → 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) ) |
548 |
547
|
ss2rabi |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ⊆ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } |
549 |
548
|
sseli |
⊢ ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } → 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) |
550 |
|
fveq2 |
⊢ ( 𝑡 = 𝑦 → ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑦 ) ) |
551 |
550
|
csbeq1d |
⊢ ( 𝑡 = 𝑦 → ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) |
552 |
|
fveq2 |
⊢ ( 𝑡 = 𝑦 → ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑦 ) ) |
553 |
552
|
csbeq1d |
⊢ ( 𝑡 = 𝑦 → ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) |
554 |
553
|
csbeq2dv |
⊢ ( 𝑡 = 𝑦 → ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) |
555 |
551 554
|
eqtrd |
⊢ ( 𝑡 = 𝑦 → ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) |
556 |
555
|
eqeq2d |
⊢ ( 𝑡 = 𝑦 → ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) |
557 |
556
|
elrab |
⊢ ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ↔ ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) |
558 |
|
xp2nd |
⊢ ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) |
559 |
558
|
anim1i |
⊢ ( ( 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) → ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) |
560 |
557 559
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } → ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) |
561 |
549 560
|
syl |
⊢ ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } → ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) |
562 |
545 561
|
anim12i |
⊢ ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) → ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) |
563 |
|
an4 |
⊢ ( ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ↔ ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) |
564 |
563
|
anbi2i |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) ) |
565 |
|
anass |
⊢ ( ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ↔ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ) |
566 |
|
ancom |
⊢ ( ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ) |
567 |
565 566
|
bitr3i |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ) |
568 |
567
|
anbi1i |
⊢ ( ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ↔ ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) |
569 |
|
anass |
⊢ ( ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) ) |
570 |
568 569
|
bitri |
⊢ ( ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) ) |
571 |
|
anass |
⊢ ( ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) ) |
572 |
564 570 571
|
3bitr4i |
⊢ ( ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ↔ ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) |
573 |
562 572
|
sylib |
⊢ ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) |
574 |
|
phpreu |
⊢ ( ( ( 0 ... 𝑁 ) ∈ Fin ∧ ( 0 ... 𝑁 ) ≈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
575 |
23 464 574
|
mp2an |
⊢ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
576 |
|
reurmo |
⊢ ( ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 → ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
577 |
576
|
ralimi |
⊢ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃! 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
578 |
575 577
|
sylbi |
⊢ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
579 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑁 → ( 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
580 |
579
|
rmobidv |
⊢ ( 𝑖 = 𝑁 → ( ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
581 |
580
|
rspcva |
⊢ ( ( 𝑁 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
582 |
232 578 581
|
syl2an |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
583 |
|
nfv |
⊢ Ⅎ 𝑘 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 |
584 |
583
|
rmo3 |
⊢ ( ∃* 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → 𝑗 = 𝑘 ) ) |
585 |
582 584
|
sylib |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → 𝑗 = 𝑘 ) ) |
586 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 |
587 |
586
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 |
588 |
|
nfs1v |
⊢ Ⅎ 𝑗 [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 |
589 |
587 588
|
nfan |
⊢ Ⅎ 𝑗 ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
590 |
|
nfv |
⊢ Ⅎ 𝑗 ( 2nd ‘ 𝑥 ) = 𝑘 |
591 |
589 590
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = 𝑘 ) |
592 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) |
593 |
|
csbeq1a |
⊢ ( 𝑗 = ( 2nd ‘ 𝑥 ) → ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
594 |
593
|
eqeq2d |
⊢ ( 𝑗 = ( 2nd ‘ 𝑥 ) → ( 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
595 |
594
|
anbi1d |
⊢ ( 𝑗 = ( 2nd ‘ 𝑥 ) → ( ( 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ↔ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ) |
596 |
|
eqeq1 |
⊢ ( 𝑗 = ( 2nd ‘ 𝑥 ) → ( 𝑗 = 𝑘 ↔ ( 2nd ‘ 𝑥 ) = 𝑘 ) ) |
597 |
595 596
|
imbi12d |
⊢ ( 𝑗 = ( 2nd ‘ 𝑥 ) → ( ( ( 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → 𝑗 = 𝑘 ) ↔ ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = 𝑘 ) ) ) |
598 |
|
sbsbc |
⊢ ( [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
599 |
|
vex |
⊢ 𝑘 ∈ V |
600 |
|
sbceq2g |
⊢ ( 𝑘 ∈ V → ( [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
601 |
599 600
|
ax-mp |
⊢ ( [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
602 |
598 601
|
bitri |
⊢ ( [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
603 |
|
csbeq1 |
⊢ ( 𝑘 = ( 2nd ‘ 𝑦 ) → ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) |
604 |
603
|
eqeq2d |
⊢ ( 𝑘 = ( 2nd ‘ 𝑦 ) → ( 𝑁 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
605 |
602 604
|
syl5bb |
⊢ ( 𝑘 = ( 2nd ‘ 𝑦 ) → ( [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) |
606 |
605
|
anbi2d |
⊢ ( 𝑘 = ( 2nd ‘ 𝑦 ) → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ↔ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ) ) |
607 |
|
eqeq2 |
⊢ ( 𝑘 = ( 2nd ‘ 𝑦 ) → ( ( 2nd ‘ 𝑥 ) = 𝑘 ↔ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) |
608 |
606 607
|
imbi12d |
⊢ ( 𝑘 = ( 2nd ‘ 𝑦 ) → ( ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = 𝑘 ) ↔ ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ) |
609 |
591 592 597 608
|
rspc2 |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ [ 𝑘 / 𝑗 ] 𝑁 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → 𝑗 = 𝑘 ) → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ) |
610 |
585 609
|
syl5com |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ) |
611 |
610
|
impr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) |
612 |
|
csbeq1 |
⊢ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) |
613 |
612
|
csbeq2dv |
⊢ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) |
614 |
613
|
eqeq2d |
⊢ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ( 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ↔ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) |
615 |
614
|
anbi2d |
⊢ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) ↔ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) |
616 |
615
|
imbi1d |
⊢ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ( ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ↔ ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ) |
617 |
611 616
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ) |
618 |
617
|
com23 |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ) |
619 |
618
|
impr |
⊢ ( ( 𝜑 ∧ ( ( ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ ( ( 2nd ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ( 0 ... 𝑁 ) ) ) ∧ ( 𝑁 = ⦋ ( 2nd ‘ 𝑥 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑥 ) / 𝑠 ⦌ 𝐶 ∧ 𝑁 = ⦋ ( 2nd ‘ 𝑦 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑠 ⦌ 𝐶 ) ) ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) |
620 |
573 619
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) |
621 |
|
elrabi |
⊢ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } → 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) |
622 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } → 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) |
623 |
|
xpopth |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) |
624 |
623
|
biimpd |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
625 |
624
|
expd |
⊢ ( ( 𝑥 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
626 |
621 622 625
|
syl2an |
⊢ ( ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
627 |
626
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
628 |
620 627
|
mpdd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
629 |
541 628
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∧ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) → ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
630 |
629
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
631 |
|
dff13 |
⊢ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ↔ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ⟶ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ∧ ∀ 𝑥 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∀ 𝑦 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ( ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑥 ) = ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
632 |
537 630 631
|
sylanbrc |
⊢ ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
633 |
|
df-f1o |
⊢ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ↔ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –1-1→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ∧ ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) |
634 |
632 535 633
|
sylanbrc |
⊢ ( 𝜑 → ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
635 |
|
rabfi |
⊢ ( ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∈ Fin → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∈ Fin ) |
636 |
138 635
|
ax-mp |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∈ Fin |
637 |
636
|
elexi |
⊢ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∈ V |
638 |
637
|
f1oen |
⊢ ( ( 1st ↾ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) : { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
639 |
634 638
|
syl |
⊢ ( 𝜑 → { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
640 |
|
rabfi |
⊢ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∈ Fin → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ∈ Fin ) |
641 |
136 640
|
ax-mp |
⊢ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ∈ Fin |
642 |
|
hashen |
⊢ ( ( { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ∈ Fin ∧ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ∈ Fin ) → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ↔ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) |
643 |
636 641 642
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ↔ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) |
644 |
639 643
|
sylibr |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) = ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) |
645 |
644
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ( 𝑁 = ⦋ ( 2nd ‘ 𝑡 ) / 𝑗 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) ) |
646 |
202 425 645
|
3eqtr3d |
⊢ ( 𝜑 → Σ 𝑥 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ( ♯ ‘ ( { 𝑥 } × { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 𝑥 / 𝑠 ⦌ 𝐶 ) } ) ) = ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) ) |
647 |
135 646
|
breqtrd |
⊢ ( 𝜑 → 2 ∥ ( ( ♯ ‘ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { ( 2nd ‘ 𝑡 ) } ) 𝑖 = ⦋ ( 1st ‘ 𝑡 ) / 𝑠 ⦌ 𝐶 } ) − ( ♯ ‘ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑖 = 𝐶 } ) ) ) |