| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | poimirlem28.1 | ⊢ ( 𝑝  =  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  𝐶 ) | 
						
							| 3 |  | poimirlem28.2 | ⊢ ( ( 𝜑  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  𝐵  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 4 |  | poimirlem25.3 | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 5 |  | poimirlem25.4 | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 6 |  | poimirlem25.5 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑁  ≠  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 7 |  | neq0 | ⊢ ( ¬  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  =  ∅  ↔  ∃ 𝑡 𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) | 
						
							| 8 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 9 |  | iddvds | ⊢ ( 2  ∈  ℤ  →  2  ∥  2 ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ 2  ∥  2 | 
						
							| 11 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 12 | 10 11 | breqtri | ⊢ 2  ∥  ( 1  +  1 ) | 
						
							| 13 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 14 |  | fzfi | ⊢ ( 0 ... 𝑁 )  ∈  Fin | 
						
							| 15 |  | rabfi | ⊢ ( ( 0 ... 𝑁 )  ∈  Fin  →  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∈  Fin ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∈  Fin | 
						
							| 17 |  | diffi | ⊢ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∈  Fin  →  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } )  ∈  Fin ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } )  ∈  Fin | 
						
							| 19 |  | neldifsn | ⊢ ¬  𝑡  ∈  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) | 
						
							| 20 | 18 19 | pm3.2i | ⊢ ( ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } )  ∈  Fin  ∧  ¬  𝑡  ∈  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) ) | 
						
							| 21 |  | hashunsng | ⊢ ( 𝑡  ∈  V  →  ( ( ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } )  ∈  Fin  ∧  ¬  𝑡  ∈  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  →  ( ♯ ‘ ( ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } )  ∪  { 𝑡 } ) )  =  ( ( ♯ ‘ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  +  1 ) ) ) | 
						
							| 22 | 13 20 21 | mp2 | ⊢ ( ♯ ‘ ( ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } )  ∪  { 𝑡 } ) )  =  ( ( ♯ ‘ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  +  1 ) | 
						
							| 23 |  | difsnid | ⊢ ( 𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  →  ( ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } )  ∪  { 𝑡 } )  =  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( 𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  →  ( ♯ ‘ ( ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } )  ∪  { 𝑡 } ) )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) ) | 
						
							| 25 | 22 24 | eqtr3id | ⊢ ( 𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  →  ( ( ♯ ‘ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  +  1 )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } )  →  ( ( ♯ ‘ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  +  1 )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) ) | 
						
							| 27 |  | sneq | ⊢ ( 𝑦  =  𝑡  →  { 𝑦 }  =  { 𝑡 } ) | 
						
							| 28 | 27 | difeq2d | ⊢ ( 𝑦  =  𝑡  →  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ) | 
						
							| 29 | 28 | rexeqdv | ⊢ ( 𝑦  =  𝑡  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 30 | 29 | ralbidv | ⊢ ( 𝑦  =  𝑡  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 31 | 30 | elrab | ⊢ ( 𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ↔  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 32 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑗 𝑁 | 
						
							| 34 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 35 | 33 34 | nfne | ⊢ Ⅎ 𝑗 𝑁  ≠  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 36 |  | csbeq1a | ⊢ ( 𝑗  =  𝑡  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 37 | 36 | neeq2d | ⊢ ( 𝑗  =  𝑡  →  ( 𝑁  ≠  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑁  ≠  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 38 | 35 37 | rspc | ⊢ ( 𝑡  ∈  ( 0 ... 𝑁 )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑁  ≠  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑁  ≠  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 39 | 32 38 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  𝑁  ≠  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 40 |  | nesym | ⊢ ( 𝑁  ≠  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) | 
						
							| 41 | 39 40 | sylib | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) | 
						
							| 42 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 43 | 34 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) | 
						
							| 44 | 42 43 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 45 |  | eleq1w | ⊢ ( 𝑗  =  𝑡  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↔  𝑡  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 46 | 45 | anbi2d | ⊢ ( 𝑗  =  𝑡  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 47 | 36 | eleq1d | ⊢ ( 𝑗  =  𝑡  →  ( ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 )  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 48 | 46 47 | imbi12d | ⊢ ( 𝑗  =  𝑡  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) )  ↔  ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 49 |  | ovex | ⊢ ( 0 ..^ 𝐾 )  ∈  V | 
						
							| 50 |  | ovex | ⊢ ( 1 ... 𝑁 )  ∈  V | 
						
							| 51 | 49 50 | elmap | ⊢ ( 𝑇  ∈  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↔  𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 52 | 4 51 | sylibr | ⊢ ( 𝜑  →  𝑇  ∈  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 53 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 54 |  | f1oexrnex | ⊢ ( ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  𝑈  ∈  V ) | 
						
							| 55 | 53 54 | mpan2 | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈  ∈  V ) | 
						
							| 56 |  | f1oeq1 | ⊢ ( 𝑓  =  𝑈  →  ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ↔  𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) | 
						
							| 57 | 56 | elabg | ⊢ ( 𝑈  ∈  V  →  ( 𝑈  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ↔  𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) | 
						
							| 58 | 55 57 | syl | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  ( 𝑈  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ↔  𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) | 
						
							| 59 | 58 | ibir | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) | 
						
							| 60 | 5 59 | syl | ⊢ ( 𝜑  →  𝑈  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) | 
						
							| 61 |  | opelxpi | ⊢ ( ( 𝑇  ∈  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∧  𝑈  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  〈 𝑇 ,  𝑈 〉  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) | 
						
							| 62 | 52 60 61 | syl2anc | ⊢ ( 𝜑  →  〈 𝑇 ,  𝑈 〉  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  〈 𝑇 ,  𝑈 〉  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) | 
						
							| 64 |  | nfcv | ⊢ Ⅎ 𝑠 〈 𝑇 ,  𝑈 〉 | 
						
							| 65 |  | nfv | ⊢ Ⅎ 𝑠 ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 66 |  | nfcsb1v | ⊢ Ⅎ 𝑠 ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 67 | 66 | nfel1 | ⊢ Ⅎ 𝑠 ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) | 
						
							| 68 | 65 67 | nfim | ⊢ Ⅎ 𝑠 ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 69 |  | csbeq1a | ⊢ ( 𝑠  =  〈 𝑇 ,  𝑈 〉  →  𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 70 | 69 | eleq1d | ⊢ ( 𝑠  =  〈 𝑇 ,  𝑈 〉  →  ( 𝐶  ∈  ( 0 ... 𝑁 )  ↔  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 71 | 70 | imbi2d | ⊢ ( 𝑠  =  〈 𝑇 ,  𝑈 〉  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝐶  ∈  ( 0 ... 𝑁 ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 72 |  | elun | ⊢ ( 𝑝  ∈  ( { 1 }  ∪  { 0 } )  ↔  ( 𝑝  ∈  { 1 }  ∨  𝑝  ∈  { 0 } ) ) | 
						
							| 73 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝐾 ) ) | 
						
							| 74 |  | elsni | ⊢ ( 𝑝  ∈  { 1 }  →  𝑝  =  1 ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( 𝑝  ∈  { 1 }  →  ( 𝑖  +  𝑝 )  =  ( 𝑖  +  1 ) ) | 
						
							| 76 | 75 | eleq1d | ⊢ ( 𝑝  ∈  { 1 }  →  ( ( 𝑖  +  𝑝 )  ∈  ( 0 ... 𝐾 )  ↔  ( 𝑖  +  1 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 77 | 73 76 | syl5ibrcom | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑝  ∈  { 1 }  →  ( 𝑖  +  𝑝 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 78 |  | elfzonn0 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝐾 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 79 | 78 | nn0cnd | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝐾 )  →  𝑖  ∈  ℂ ) | 
						
							| 80 | 79 | addridd | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑖  +  0 )  =  𝑖 ) | 
						
							| 81 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝐾 )  →  𝑖  ∈  ( 0 ... 𝐾 ) ) | 
						
							| 82 | 80 81 | eqeltrd | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑖  +  0 )  ∈  ( 0 ... 𝐾 ) ) | 
						
							| 83 |  | elsni | ⊢ ( 𝑝  ∈  { 0 }  →  𝑝  =  0 ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( 𝑝  ∈  { 0 }  →  ( 𝑖  +  𝑝 )  =  ( 𝑖  +  0 ) ) | 
						
							| 85 | 84 | eleq1d | ⊢ ( 𝑝  ∈  { 0 }  →  ( ( 𝑖  +  𝑝 )  ∈  ( 0 ... 𝐾 )  ↔  ( 𝑖  +  0 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 86 | 82 85 | syl5ibrcom | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑝  ∈  { 0 }  →  ( 𝑖  +  𝑝 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 87 | 77 86 | jaod | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝐾 )  →  ( ( 𝑝  ∈  { 1 }  ∨  𝑝  ∈  { 0 } )  →  ( 𝑖  +  𝑝 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 88 | 72 87 | biimtrid | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑝  ∈  ( { 1 }  ∪  { 0 } )  →  ( 𝑖  +  𝑝 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 89 | 88 | imp | ⊢ ( ( 𝑖  ∈  ( 0 ..^ 𝐾 )  ∧  𝑝  ∈  ( { 1 }  ∪  { 0 } ) )  →  ( 𝑖  +  𝑝 )  ∈  ( 0 ... 𝐾 ) ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑖  ∈  ( 0 ..^ 𝐾 )  ∧  𝑝  ∈  ( { 1 }  ∪  { 0 } ) ) )  →  ( 𝑖  +  𝑝 )  ∈  ( 0 ... 𝐾 ) ) | 
						
							| 91 |  | xp1st | ⊢ ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 1st  ‘ 𝑠 )  ∈  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 92 |  | elmapi | ⊢ ( ( 1st  ‘ 𝑠 )  ∈  ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  →  ( 1st  ‘ 𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 93 | 91 92 | syl | ⊢ ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 1st  ‘ 𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 1st  ‘ 𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 95 |  | xp2nd | ⊢ ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 2nd  ‘ 𝑠 )  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) | 
						
							| 96 |  | fvex | ⊢ ( 2nd  ‘ 𝑠 )  ∈  V | 
						
							| 97 |  | f1oeq1 | ⊢ ( 𝑓  =  ( 2nd  ‘ 𝑠 )  →  ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ↔  ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) | 
						
							| 98 | 96 97 | elab | ⊢ ( ( 2nd  ‘ 𝑠 )  ∈  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) }  ↔  ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 99 | 95 98 | sylib | ⊢ ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 100 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 101 | 100 | fconst | ⊢ ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) : ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) ) ⟶ { 1 } | 
						
							| 102 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 103 | 102 | fconst | ⊢ ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) : ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ⟶ { 0 } | 
						
							| 104 | 101 103 | pm3.2i | ⊢ ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) : ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) ) ⟶ { 1 }  ∧  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) : ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ⟶ { 0 } ) | 
						
							| 105 |  | dff1o3 | ⊢ ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ↔  ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 )  ∧  Fun  ◡ ( 2nd  ‘ 𝑠 ) ) ) | 
						
							| 106 |  | imain | ⊢ ( Fun  ◡ ( 2nd  ‘ 𝑠 )  →  ( ( 2nd  ‘ 𝑠 )  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ∩  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 107 | 105 106 | simplbiim | ⊢ ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  ( ( 2nd  ‘ 𝑠 )  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ∩  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 108 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 109 | 108 | nn0red | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ∈  ℝ ) | 
						
							| 110 | 109 | ltp1d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  <  ( 𝑗  +  1 ) ) | 
						
							| 111 |  | fzdisj | ⊢ ( 𝑗  <  ( 𝑗  +  1 )  →  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 112 | 110 111 | syl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 113 | 112 | imaeq2d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ( 2nd  ‘ 𝑠 )  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( 2nd  ‘ 𝑠 )  “  ∅ ) ) | 
						
							| 114 |  | ima0 | ⊢ ( ( 2nd  ‘ 𝑠 )  “  ∅ )  =  ∅ | 
						
							| 115 | 113 114 | eqtrdi | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ( 2nd  ‘ 𝑠 )  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 116 | 107 115 | sylan9req | ⊢ ( ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ∩  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 117 |  | fun | ⊢ ( ( ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) : ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) ) ⟶ { 1 }  ∧  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) : ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ⟶ { 0 } )  ∧  ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ∩  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ )  →  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ∪  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ⟶ ( { 1 }  ∪  { 0 } ) ) | 
						
							| 118 | 104 116 117 | sylancr | ⊢ ( ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ∪  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ⟶ ( { 1 }  ∪  { 0 } ) ) | 
						
							| 119 |  | nn0p1nn | ⊢ ( 𝑗  ∈  ℕ0  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 120 | 108 119 | syl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 121 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 122 | 120 121 | eleqtrdi | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 123 |  | elfzuz3 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 124 |  | fzsplit2 | ⊢ ( ( ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 125 | 122 123 124 | syl2anc | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 126 | 125 | imaeq2d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑁 ) )  =  ( ( 2nd  ‘ 𝑠 )  “  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 127 |  | imaundi | ⊢ ( ( 2nd  ‘ 𝑠 )  “  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ∪  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 128 | 126 127 | eqtr2di | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ∪  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑁 ) ) ) | 
						
							| 129 |  | f1ofo | ⊢ ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) | 
						
							| 130 |  | foima | ⊢ ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 )  →  ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 131 | 129 130 | syl | ⊢ ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 132 | 128 131 | sylan9eqr | ⊢ ( ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ∪  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 133 | 132 | feq2d | ⊢ ( ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ∪  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ⟶ ( { 1 }  ∪  { 0 } )  ↔  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 }  ∪  { 0 } ) ) ) | 
						
							| 134 | 118 133 | mpbid | ⊢ ( ( ( 2nd  ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 }  ∪  { 0 } ) ) | 
						
							| 135 | 99 134 | sylan | ⊢ ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 }  ∪  { 0 } ) ) | 
						
							| 136 |  | fzfid | ⊢ ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 137 |  | inidm | ⊢ ( ( 1 ... 𝑁 )  ∩  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) | 
						
							| 138 | 90 94 135 136 136 137 | off | ⊢ ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 139 |  | ovex | ⊢ ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V | 
						
							| 140 |  | feq1 | ⊢ ( 𝑝  =  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ↔  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) | 
						
							| 141 | 140 | anbi2d | ⊢ ( 𝑝  =  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  ( ( 𝜑  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  ↔  ( 𝜑  ∧  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) ) | 
						
							| 142 | 2 | eleq1d | ⊢ ( 𝑝  =  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  ( 𝐵  ∈  ( 0 ... 𝑁 )  ↔  𝐶  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 143 | 141 142 | imbi12d | ⊢ ( 𝑝  =  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  ( ( ( 𝜑  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  𝐵  ∈  ( 0 ... 𝑁 ) )  ↔  ( ( 𝜑  ∧  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  𝐶  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 144 | 139 143 3 | vtocl | ⊢ ( ( 𝜑  ∧  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  𝐶  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 145 | 138 144 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) ) )  →  𝐶  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 146 | 145 | an12s | ⊢ ( ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  ∧  ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) ) )  →  𝐶  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 147 | 146 | ex | ⊢ ( 𝑠  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝐶  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 148 | 64 68 71 147 | vtoclgaf | ⊢ ( 〈 𝑇 ,  𝑈 〉  ∈  ( ( ( 0 ..^ 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ×  { 𝑓  ∣  𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 149 | 63 148 | mpcom | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 150 | 44 48 149 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 151 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 152 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 153 | 151 152 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 154 |  | fzm1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 )  ↔  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) ) ) | 
						
							| 155 | 153 154 | syl | ⊢ ( 𝜑  →  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 )  ↔  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) ) ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 )  ↔  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) ) ) | 
						
							| 157 | 150 156 | mpbid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) ) | 
						
							| 158 | 157 | ord | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ( ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) ) | 
						
							| 159 | 41 158 | mt3d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 160 | 159 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 161 |  | fzfi | ⊢ ( 0 ... ( 𝑁  −  1 ) )  ∈  Fin | 
						
							| 162 | 1 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 163 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 164 | 162 163 163 | addsubd | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 165 |  | hashfz0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ♯ ‘ ( 0 ... 𝑁 ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 166 | 151 165 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... 𝑁 ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 167 | 166 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 0 ... 𝑁 ) )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 168 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 169 |  | hashfz0 | ⊢ ( ( 𝑁  −  1 )  ∈  ℕ0  →  ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) )  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 170 | 1 168 169 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) )  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 171 | 164 167 170 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) )  =  ( ( ♯ ‘ ( 0 ... 𝑁 ) )  −  1 ) ) | 
						
							| 172 |  | hashdifsn | ⊢ ( ( ( 0 ... 𝑁 )  ∈  Fin  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  =  ( ( ♯ ‘ ( 0 ... 𝑁 ) )  −  1 ) ) | 
						
							| 173 | 14 172 | mpan | ⊢ ( 𝑡  ∈  ( 0 ... 𝑁 )  →  ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  =  ( ( ♯ ‘ ( 0 ... 𝑁 ) )  −  1 ) ) | 
						
							| 174 | 173 | eqcomd | ⊢ ( 𝑡  ∈  ( 0 ... 𝑁 )  →  ( ( ♯ ‘ ( 0 ... 𝑁 ) )  −  1 )  =  ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ) ) | 
						
							| 175 | 171 174 | sylan9eq | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) )  =  ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ) ) | 
						
							| 176 |  | diffi | ⊢ ( ( 0 ... 𝑁 )  ∈  Fin  →  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∈  Fin ) | 
						
							| 177 | 14 176 | ax-mp | ⊢ ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∈  Fin | 
						
							| 178 |  | hashen | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ∈  Fin  ∧  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∈  Fin )  →  ( ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) )  =  ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ↔  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ) ) | 
						
							| 179 | 161 177 178 | mp2an | ⊢ ( ( ♯ ‘ ( 0 ... ( 𝑁  −  1 ) ) )  =  ( ♯ ‘ ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ↔  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ) | 
						
							| 180 | 175 179 | sylib | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ) | 
						
							| 181 |  | phpreu | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ∈  Fin  ∧  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 182 | 161 180 181 | sylancr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 183 | 182 | biimpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 184 | 183 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 185 |  | nfv | ⊢ Ⅎ 𝑧 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 186 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 187 | 186 | nfeq2 | ⊢ Ⅎ 𝑗 𝑖  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 188 |  | csbeq1a | ⊢ ( 𝑗  =  𝑧  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 189 | 188 | eqeq2d | ⊢ ( 𝑗  =  𝑧  →  ( 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 190 | 185 187 189 | cbvreuw | ⊢ ( ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 191 |  | eqeq1 | ⊢ ( 𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( 𝑖  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 192 | 191 | reubidv | ⊢ ( 𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 193 | 190 192 | bitrid | ⊢ ( 𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 194 | 193 | rspcv | ⊢ ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 195 | 160 184 194 | sylc | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  →  ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 196 |  | an32 | ⊢ ( ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ↔  ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 197 | 196 | biimpi | ⊢ ( ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  →  ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 198 | 197 | adantll | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  →  ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 199 |  | eqeq2 | ⊢ ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( 𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 200 |  | rexsns | ⊢ ( ∃ 𝑗  ∈  { 𝑡 } 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  [ 𝑡  /  𝑗 ] 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 201 | 34 | nfeq2 | ⊢ Ⅎ 𝑗 𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 202 | 36 | eqeq2d | ⊢ ( 𝑗  =  𝑡  →  ( 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 203 | 201 202 | sbciegf | ⊢ ( 𝑡  ∈  V  →  ( [ 𝑡  /  𝑗 ] 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 204 | 13 203 | ax-mp | ⊢ ( [ 𝑡  /  𝑗 ] 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 205 | 200 204 | bitri | ⊢ ( ∃ 𝑗  ∈  { 𝑡 } 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 206 |  | rexsns | ⊢ ( ∃ 𝑗  ∈  { 𝑧 } 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  [ 𝑧  /  𝑗 ] 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 207 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 208 | 187 189 | sbciegf | ⊢ ( 𝑧  ∈  V  →  ( [ 𝑧  /  𝑗 ] 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 209 | 207 208 | ax-mp | ⊢ ( [ 𝑧  /  𝑗 ] 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 210 | 206 209 | bitri | ⊢ ( ∃ 𝑗  ∈  { 𝑧 } 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 211 | 199 205 210 | 3bitr4g | ⊢ ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( ∃ 𝑗  ∈  { 𝑡 } 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  { 𝑧 } 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 212 | 211 | orbi1d | ⊢ ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( ( ∃ 𝑗  ∈  { 𝑡 } 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∨  ∃ 𝑗  ∈  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ( ∃ 𝑗  ∈  { 𝑧 } 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∨  ∃ 𝑗  ∈  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 213 |  | rexun | ⊢ ( ∃ 𝑗  ∈  ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ( ∃ 𝑗  ∈  { 𝑡 } 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∨  ∃ 𝑗  ∈  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 214 |  | rexun | ⊢ ( ∃ 𝑗  ∈  ( { 𝑧 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ( ∃ 𝑗  ∈  { 𝑧 } 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∨  ∃ 𝑗  ∈  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 215 | 212 213 214 | 3bitr4g | ⊢ ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( ∃ 𝑗  ∈  ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( { 𝑧 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 216 | 215 | adantl | ⊢ ( ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ( ∃ 𝑗  ∈  ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( { 𝑧 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 217 |  | eldifsni | ⊢ ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  →  𝑧  ≠  𝑡 ) | 
						
							| 218 | 217 | necomd | ⊢ ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  →  𝑡  ≠  𝑧 ) | 
						
							| 219 |  | dif32 | ⊢ ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } )  =  ( ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∖  { 𝑡 } ) | 
						
							| 220 | 219 | uneq2i | ⊢ ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) )  =  ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∖  { 𝑡 } ) ) | 
						
							| 221 |  | snssi | ⊢ ( 𝑡  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  →  { 𝑡 }  ⊆  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 222 |  | eldifsn | ⊢ ( 𝑡  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ↔  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ≠  𝑧 ) ) | 
						
							| 223 |  | undif | ⊢ ( { 𝑡 }  ⊆  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ↔  ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∖  { 𝑡 } ) )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 224 | 221 222 223 | 3imtr3i | ⊢ ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ≠  𝑧 )  →  ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∖  { 𝑡 } ) )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 225 | 220 224 | eqtrid | ⊢ ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ≠  𝑧 )  →  ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 226 | 218 225 | sylan2 | ⊢ ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  →  ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 227 | 226 | rexeqdv | ⊢ ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  →  ( ∃ 𝑗  ∈  ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 228 | 227 | adantr | ⊢ ( ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ( ∃ 𝑗  ∈  ( { 𝑡 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 229 |  | snssi | ⊢ ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  →  { 𝑧 }  ⊆  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ) | 
						
							| 230 |  | undif | ⊢ ( { 𝑧 }  ⊆  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ↔  ( { 𝑧 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ) | 
						
							| 231 | 229 230 | sylib | ⊢ ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  →  ( { 𝑧 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ) | 
						
							| 232 | 231 | rexeqdv | ⊢ ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  →  ( ∃ 𝑗  ∈  ( { 𝑧 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 233 | 232 | ad2antlr | ⊢ ( ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ( ∃ 𝑗  ∈  ( { 𝑧 }  ∪  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 234 | 216 228 233 | 3bitr3d | ⊢ ( ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 235 | 234 | ralbidv | ⊢ ( ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 236 | 235 | biimpar | ⊢ ( ( ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 237 | 236 | an32s | ⊢ ( ( ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 238 | 198 237 | sylan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 239 |  | simpl | ⊢ ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  𝑡  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 240 | 239 | anim2i | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  →  ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 241 |  | necom | ⊢ ( 𝑧  ≠  𝑡  ↔  𝑡  ≠  𝑧 ) | 
						
							| 242 | 241 | biimpi | ⊢ ( 𝑧  ≠  𝑡  →  𝑡  ≠  𝑧 ) | 
						
							| 243 | 242 | adantl | ⊢ ( ( 𝑧  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ≠  𝑡 )  →  𝑡  ≠  𝑧 ) | 
						
							| 244 | 243 | anim2i | ⊢ ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑧  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ≠  𝑡 ) )  →  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ≠  𝑧 ) ) | 
						
							| 245 |  | eldifsn | ⊢ ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ↔  ( 𝑧  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ≠  𝑡 ) ) | 
						
							| 246 | 245 | anbi2i | ⊢ ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ↔  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑧  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ≠  𝑡 ) ) ) | 
						
							| 247 | 244 246 222 | 3imtr4i | ⊢ ( ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  →  𝑡  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 248 | 247 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  →  𝑡  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 249 | 248 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  𝑡  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 250 | 34 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) | 
						
							| 251 | 42 250 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 252 | 36 | eleq1d | ⊢ ( 𝑗  =  𝑡  →  ( ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 253 | 46 252 | imbi12d | ⊢ ( 𝑗  =  𝑡  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ↔  ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 254 | 6 | necomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ≠  𝑁 ) | 
						
							| 255 | 254 | neneqd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ¬  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) | 
						
							| 256 |  | fzm1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 )  ↔  ( ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) ) ) | 
						
							| 257 | 153 256 | syl | ⊢ ( 𝜑  →  ( ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 )  ↔  ( ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) ) ) | 
						
							| 258 | 257 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... 𝑁 )  ↔  ( ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) ) ) | 
						
							| 259 | 149 258 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∨  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) ) | 
						
							| 260 | 259 | ord | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ¬  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  𝑁 ) ) | 
						
							| 261 | 255 260 | mt3d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 262 | 251 253 261 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 263 | 262 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 264 |  | eldifi | ⊢ ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  →  𝑧  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 265 |  | eleq1w | ⊢ ( 𝑡  =  𝑧  →  ( 𝑡  ∈  ( 0 ... 𝑁 )  ↔  𝑧  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 266 | 265 | anbi2d | ⊢ ( 𝑡  =  𝑧  →  ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑧  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 267 |  | sneq | ⊢ ( 𝑡  =  𝑧  →  { 𝑡 }  =  { 𝑧 } ) | 
						
							| 268 | 267 | difeq2d | ⊢ ( 𝑡  =  𝑧  →  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 269 | 268 | breq2d | ⊢ ( 𝑡  =  𝑧  →  ( ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ↔  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) ) | 
						
							| 270 | 266 269 | imbi12d | ⊢ ( 𝑡  =  𝑧  →  ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ↔  ( ( 𝜑  ∧  𝑧  ∈  ( 0 ... 𝑁 ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) ) ) | 
						
							| 271 | 270 180 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 0 ... 𝑁 ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 272 | 264 271 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 273 | 272 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 274 |  | phpreu | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ∈  Fin  ∧  ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 275 | 161 274 | mpan | ⊢ ( ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 276 | 275 | biimpa | ⊢ ( ( ( 0 ... ( 𝑁  −  1 ) )  ≈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 277 | 273 276 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 278 |  | eqeq1 | ⊢ ( 𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 279 | 278 | adantr | ⊢ ( ( 𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) )  →  ( 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 280 | 201 279 | reubida | ⊢ ( 𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 281 | 280 | rspcv | ⊢ ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 282 | 263 277 281 | sylc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 283 |  | reurmo | ⊢ ( ∃! 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∃* 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 284 | 282 283 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∃* 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 285 |  | nfv | ⊢ Ⅎ 𝑖 ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 286 | 285 | rmo3 | ⊢ ( ∃* 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ∀ 𝑖  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  𝑗  =  𝑖 ) ) | 
						
							| 287 | 284 286 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ∀ 𝑖  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  𝑗  =  𝑖 ) ) | 
						
							| 288 |  | equcomi | ⊢ ( 𝑖  =  𝑡  →  𝑡  =  𝑖 ) | 
						
							| 289 | 288 | csbeq1d | ⊢ ( 𝑖  =  𝑡  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑖  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 290 |  | sbsbc | ⊢ ( [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 291 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 292 |  | sbceqg | ⊢ ( 𝑖  ∈  V  →  ( [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ⦋ 𝑖  /  𝑗 ⦌ ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑖  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 293 | 34 | csbconstgf | ⊢ ( 𝑖  ∈  V  →  ⦋ 𝑖  /  𝑗 ⦌ ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 294 | 293 | eqeq1d | ⊢ ( 𝑖  ∈  V  →  ( ⦋ 𝑖  /  𝑗 ⦌ ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑖  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑖  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 295 | 292 294 | bitrd | ⊢ ( 𝑖  ∈  V  →  ( [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑖  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 296 | 291 295 | ax-mp | ⊢ ( [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑖  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 297 | 290 296 | bitri | ⊢ ( [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑖  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 298 | 289 297 | sylibr | ⊢ ( 𝑖  =  𝑡  →  [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 299 | 298 | biantrud | ⊢ ( 𝑖  =  𝑡  →  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 300 | 299 | bicomd | ⊢ ( 𝑖  =  𝑡  →  ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 301 |  | eqeq2 | ⊢ ( 𝑖  =  𝑡  →  ( 𝑗  =  𝑖  ↔  𝑗  =  𝑡 ) ) | 
						
							| 302 | 300 301 | imbi12d | ⊢ ( 𝑖  =  𝑡  →  ( ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  𝑗  =  𝑖 )  ↔  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑡 ) ) ) | 
						
							| 303 | 302 | rspcv | ⊢ ( 𝑡  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  →  ( ∀ 𝑖  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  𝑗  =  𝑖 )  →  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑡 ) ) ) | 
						
							| 304 | 303 | ralimdv | ⊢ ( 𝑡  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  →  ( ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ∀ 𝑖  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  [ 𝑖  /  𝑗 ] ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  𝑗  =  𝑖 )  →  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑡 ) ) ) | 
						
							| 305 | 249 287 304 | sylc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑡 ) ) | 
						
							| 306 |  | dif32 | ⊢ ( ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∖  { 𝑡 } )  =  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) | 
						
							| 307 | 306 | eleq2i | ⊢ ( 𝑗  ∈  ( ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∖  { 𝑡 } )  ↔  𝑗  ∈  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } ) ) | 
						
							| 308 |  | eldifsn | ⊢ ( 𝑗  ∈  ( ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∖  { 𝑡 } )  ↔  ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∧  𝑗  ≠  𝑡 ) ) | 
						
							| 309 |  | eldifsn | ⊢ ( 𝑗  ∈  ( ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∖  { 𝑧 } )  ↔  ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∧  𝑗  ≠  𝑧 ) ) | 
						
							| 310 | 307 308 309 | 3bitr3ri | ⊢ ( ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∧  𝑗  ≠  𝑧 )  ↔  ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∧  𝑗  ≠  𝑡 ) ) | 
						
							| 311 | 310 | imbi1i | ⊢ ( ( ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∧  𝑗  ≠  𝑧 )  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ( ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∧  𝑗  ≠  𝑡 )  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 312 |  | impexp | ⊢ ( ( ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∧  𝑗  ≠  𝑧 )  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  →  ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 313 |  | impexp | ⊢ ( ( ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  ∧  𝑗  ≠  𝑡 )  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  →  ( 𝑗  ≠  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 314 | 311 312 313 | 3bitr3ri | ⊢ ( ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  →  ( 𝑗  ≠  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  ↔  ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  →  ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 315 | 314 | albii | ⊢ ( ∀ 𝑗 ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  →  ( 𝑗  ≠  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  ↔  ∀ 𝑗 ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  →  ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 316 |  | con34b | ⊢ ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑡 )  ↔  ( ¬  𝑗  =  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 317 |  | df-ne | ⊢ ( 𝑗  ≠  𝑡  ↔  ¬  𝑗  =  𝑡 ) | 
						
							| 318 | 317 | imbi1i | ⊢ ( ( 𝑗  ≠  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ( ¬  𝑗  =  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 319 | 316 318 | bitr4i | ⊢ ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑡 )  ↔  ( 𝑗  ≠  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 320 | 319 | ralbii | ⊢ ( ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑡 )  ↔  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( 𝑗  ≠  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 321 |  | df-ral | ⊢ ( ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( 𝑗  ≠  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ∀ 𝑗 ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  →  ( 𝑗  ≠  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 322 | 320 321 | bitri | ⊢ ( ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑡 )  ↔  ∀ 𝑗 ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } )  →  ( 𝑗  ≠  𝑡  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 323 |  | df-ral | ⊢ ( ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ∀ 𝑗 ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  →  ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 324 | 315 322 323 | 3bitr4i | ⊢ ( ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑡 )  ↔  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 325 | 305 324 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 326 |  | df-ne | ⊢ ( 𝑗  ≠  𝑧  ↔  ¬  𝑗  =  𝑧 ) | 
						
							| 327 | 326 | imbi1i | ⊢ ( ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ( ¬  𝑗  =  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 328 |  | con34b | ⊢ ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑧 )  ↔  ( ¬  𝑗  =  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 329 | 327 328 | bitr4i | ⊢ ( ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑧 ) ) | 
						
							| 330 |  | ancr | ⊢ ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑗  =  𝑧 )  →  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 331 | 329 330 | sylbi | ⊢ ( ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 332 | 331 | ralimi | ⊢ ( ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( 𝑗  ≠  𝑧  →  ¬  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 333 | 325 332 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 334 | 240 333 | sylanl1 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 335 | 201 278 | rexbid | ⊢ ( 𝑖  =  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 336 | 335 | rspcva | ⊢ ( ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 337 | 262 336 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝑁 ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 338 | 337 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 339 | 338 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 340 |  | rexim | ⊢ ( ∀ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 341 | 334 339 340 | sylc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 342 |  | rexex | ⊢ ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∃ 𝑗 ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 343 | 341 342 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∃ 𝑗 ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 344 | 34 186 | nfeq | ⊢ Ⅎ 𝑗 ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 345 | 188 | eqeq2d | ⊢ ( 𝑗  =  𝑧  →  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 346 | 344 345 | equsexv | ⊢ ( ∃ 𝑗 ( 𝑗  =  𝑧  ∧  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 347 | 343 346 | sylib | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 348 | 238 347 | impbida | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  ∧  𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) )  →  ( ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 349 | 348 | reubidva | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  →  ( ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ⦋ 𝑡  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 350 | 195 349 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  →  ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 351 |  | an32 | ⊢ ( ( ( 𝑧  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ≠  𝑡 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ( ( 𝑧  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ∧  𝑧  ≠  𝑡 ) ) | 
						
							| 352 | 245 | anbi1i | ⊢ ( ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ( ( 𝑧  ∈  ( 0 ... 𝑁 )  ∧  𝑧  ≠  𝑡 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 353 |  | sneq | ⊢ ( 𝑦  =  𝑧  →  { 𝑦 }  =  { 𝑧 } ) | 
						
							| 354 | 353 | difeq2d | ⊢ ( 𝑦  =  𝑧  →  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } )  =  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) ) | 
						
							| 355 | 354 | rexeqdv | ⊢ ( 𝑦  =  𝑧  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 356 | 355 | ralbidv | ⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 357 | 356 | elrab | ⊢ ( 𝑧  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ↔  ( 𝑧  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 358 | 357 | anbi1i | ⊢ ( ( 𝑧  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∧  𝑧  ≠  𝑡 )  ↔  ( ( 𝑧  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ∧  𝑧  ≠  𝑡 ) ) | 
						
							| 359 | 351 352 358 | 3bitr4i | ⊢ ( ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ( 𝑧  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∧  𝑧  ≠  𝑡 ) ) | 
						
							| 360 |  | eldifsn | ⊢ ( 𝑧  ∈  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } )  ↔  ( 𝑧  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∧  𝑧  ≠  𝑡 ) ) | 
						
							| 361 | 359 360 | bitr4i | ⊢ ( ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  𝑧  ∈  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) ) | 
						
							| 362 | 361 | eubii | ⊢ ( ∃! 𝑧 ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  ↔  ∃! 𝑧 𝑧  ∈  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) ) | 
						
							| 363 |  | df-reu | ⊢ ( ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃! 𝑧 ( 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 364 |  | euhash1 | ⊢ ( ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } )  ∈  Fin  →  ( ( ♯ ‘ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  =  1  ↔  ∃! 𝑧 𝑧  ∈  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) ) ) | 
						
							| 365 | 18 364 | ax-mp | ⊢ ( ( ♯ ‘ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  =  1  ↔  ∃! 𝑧 𝑧  ∈  ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) ) | 
						
							| 366 | 362 363 365 | 3bitr4i | ⊢ ( ∃! 𝑧  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑧 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ( ♯ ‘ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  =  1 ) | 
						
							| 367 | 350 366 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 0 ... 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑡 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) )  →  ( ♯ ‘ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  =  1 ) | 
						
							| 368 | 31 367 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } )  →  ( ♯ ‘ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  =  1 ) | 
						
							| 369 | 368 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } )  →  ( ( ♯ ‘ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  ∖  { 𝑡 } ) )  +  1 )  =  ( 1  +  1 ) ) | 
						
							| 370 | 26 369 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } )  →  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } )  =  ( 1  +  1 ) ) | 
						
							| 371 | 12 370 | breqtrrid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } )  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) ) | 
						
							| 372 | 371 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) ) ) | 
						
							| 373 | 372 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑡 𝑡  ∈  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) ) ) | 
						
							| 374 | 7 373 | biimtrid | ⊢ ( 𝜑  →  ( ¬  { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  =  ∅  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) ) ) | 
						
							| 375 |  | dvds0 | ⊢ ( 2  ∈  ℤ  →  2  ∥  0 ) | 
						
							| 376 | 8 375 | ax-mp | ⊢ 2  ∥  0 | 
						
							| 377 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 378 | 376 377 | breqtrri | ⊢ 2  ∥  ( ♯ ‘ ∅ ) | 
						
							| 379 |  | fveq2 | ⊢ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  =  ∅  →  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 380 | 378 379 | breqtrrid | ⊢ ( { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 }  =  ∅  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) ) | 
						
							| 381 | 374 380 | pm2.61d2 | ⊢ ( 𝜑  →  2  ∥  ( ♯ ‘ { 𝑦  ∈  ( 0 ... 𝑁 )  ∣  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑦 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 } ) ) |