Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimirlem28.1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 ) |
3 |
|
poimirlem28.2 |
⊢ ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) |
4 |
|
poimirlem25.3 |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
5 |
|
poimirlem25.4 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
6 |
|
poimirlem25.5 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ≠ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
7 |
|
neq0 |
⊢ ( ¬ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } = ∅ ↔ ∃ 𝑡 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) |
8 |
|
2z |
⊢ 2 ∈ ℤ |
9 |
|
iddvds |
⊢ ( 2 ∈ ℤ → 2 ∥ 2 ) |
10 |
8 9
|
ax-mp |
⊢ 2 ∥ 2 |
11 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
12 |
10 11
|
breqtri |
⊢ 2 ∥ ( 1 + 1 ) |
13 |
|
vex |
⊢ 𝑡 ∈ V |
14 |
|
fzfi |
⊢ ( 0 ... 𝑁 ) ∈ Fin |
15 |
|
rabfi |
⊢ ( ( 0 ... 𝑁 ) ∈ Fin → { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∈ Fin ) |
16 |
14 15
|
ax-mp |
⊢ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∈ Fin |
17 |
|
diffi |
⊢ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∈ Fin → ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ∈ Fin ) |
18 |
16 17
|
ax-mp |
⊢ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ∈ Fin |
19 |
|
neldifsn |
⊢ ¬ 𝑡 ∈ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) |
20 |
18 19
|
pm3.2i |
⊢ ( ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ∈ Fin ∧ ¬ 𝑡 ∈ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) |
21 |
|
hashunsng |
⊢ ( 𝑡 ∈ V → ( ( ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ∈ Fin ∧ ¬ 𝑡 ∈ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) → ( ♯ ‘ ( ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ∪ { 𝑡 } ) ) = ( ( ♯ ‘ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) + 1 ) ) ) |
22 |
13 20 21
|
mp2 |
⊢ ( ♯ ‘ ( ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ∪ { 𝑡 } ) ) = ( ( ♯ ‘ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) + 1 ) |
23 |
|
difsnid |
⊢ ( 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } → ( ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ∪ { 𝑡 } ) = { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) |
24 |
23
|
fveq2d |
⊢ ( 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } → ( ♯ ‘ ( ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ∪ { 𝑡 } ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) ) |
25 |
22 24
|
eqtr3id |
⊢ ( 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } → ( ( ♯ ‘ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) + 1 ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) → ( ( ♯ ‘ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) + 1 ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) ) |
27 |
|
sneq |
⊢ ( 𝑦 = 𝑡 → { 𝑦 } = { 𝑡 } ) |
28 |
27
|
difeq2d |
⊢ ( 𝑦 = 𝑡 → ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) = ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) |
29 |
28
|
rexeqdv |
⊢ ( 𝑦 = 𝑡 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
30 |
29
|
ralbidv |
⊢ ( 𝑦 = 𝑡 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
31 |
30
|
elrab |
⊢ ( 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ↔ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
32 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑁 |
34 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
35 |
33 34
|
nfne |
⊢ Ⅎ 𝑗 𝑁 ≠ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
36 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑡 → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
37 |
36
|
neeq2d |
⊢ ( 𝑗 = 𝑡 → ( 𝑁 ≠ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑁 ≠ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
38 |
35 37
|
rspc |
⊢ ( 𝑡 ∈ ( 0 ... 𝑁 ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑁 ≠ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑁 ≠ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
39 |
32 38
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ≠ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
40 |
|
nesym |
⊢ ( 𝑁 ≠ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) |
41 |
39 40
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) |
42 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) |
43 |
34
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) |
44 |
42 43
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ) |
45 |
|
eleq1w |
⊢ ( 𝑗 = 𝑡 → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ 𝑡 ∈ ( 0 ... 𝑁 ) ) ) |
46 |
45
|
anbi2d |
⊢ ( 𝑗 = 𝑡 → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ) ) |
47 |
36
|
eleq1d |
⊢ ( 𝑗 = 𝑡 → ( ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ) ) |
48 |
46 47
|
imbi12d |
⊢ ( 𝑗 = 𝑡 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ) ) ) |
49 |
|
ovex |
⊢ ( 0 ..^ 𝐾 ) ∈ V |
50 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
51 |
49 50
|
elmap |
⊢ ( 𝑇 ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↔ 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
52 |
4 51
|
sylibr |
⊢ ( 𝜑 → 𝑇 ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
53 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
54 |
|
f1oexrnex |
⊢ ( ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ ( 1 ... 𝑁 ) ∈ Fin ) → 𝑈 ∈ V ) |
55 |
53 54
|
mpan2 |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 ∈ V ) |
56 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑈 → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
57 |
56
|
elabg |
⊢ ( 𝑈 ∈ V → ( 𝑈 ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
58 |
55 57
|
syl |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 𝑈 ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
59 |
58
|
ibir |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
60 |
5 59
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
61 |
|
opelxpi |
⊢ ( ( 𝑇 ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∧ 𝑈 ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → 〈 𝑇 , 𝑈 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
62 |
52 60 61
|
syl2anc |
⊢ ( 𝜑 → 〈 𝑇 , 𝑈 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 〈 𝑇 , 𝑈 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
64 |
|
nfcv |
⊢ Ⅎ 𝑠 〈 𝑇 , 𝑈 〉 |
65 |
|
nfv |
⊢ Ⅎ 𝑠 ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) |
66 |
|
nfcsb1v |
⊢ Ⅎ 𝑠 ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
67 |
66
|
nfel1 |
⊢ Ⅎ 𝑠 ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) |
68 |
65 67
|
nfim |
⊢ Ⅎ 𝑠 ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ) |
69 |
|
csbeq1a |
⊢ ( 𝑠 = 〈 𝑇 , 𝑈 〉 → 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
70 |
69
|
eleq1d |
⊢ ( 𝑠 = 〈 𝑇 , 𝑈 〉 → ( 𝐶 ∈ ( 0 ... 𝑁 ) ↔ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ) ) |
71 |
70
|
imbi2d |
⊢ ( 𝑠 = 〈 𝑇 , 𝑈 〉 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝐶 ∈ ( 0 ... 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ) ) ) |
72 |
|
elun |
⊢ ( 𝑝 ∈ ( { 1 } ∪ { 0 } ) ↔ ( 𝑝 ∈ { 1 } ∨ 𝑝 ∈ { 0 } ) ) |
73 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝐾 ) ) |
74 |
|
elsni |
⊢ ( 𝑝 ∈ { 1 } → 𝑝 = 1 ) |
75 |
74
|
oveq2d |
⊢ ( 𝑝 ∈ { 1 } → ( 𝑖 + 𝑝 ) = ( 𝑖 + 1 ) ) |
76 |
75
|
eleq1d |
⊢ ( 𝑝 ∈ { 1 } → ( ( 𝑖 + 𝑝 ) ∈ ( 0 ... 𝐾 ) ↔ ( 𝑖 + 1 ) ∈ ( 0 ... 𝐾 ) ) ) |
77 |
73 76
|
syl5ibrcom |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) → ( 𝑝 ∈ { 1 } → ( 𝑖 + 𝑝 ) ∈ ( 0 ... 𝐾 ) ) ) |
78 |
|
elfzonn0 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) → 𝑖 ∈ ℕ0 ) |
79 |
78
|
nn0cnd |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) → 𝑖 ∈ ℂ ) |
80 |
79
|
addid1d |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) → ( 𝑖 + 0 ) = 𝑖 ) |
81 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) → 𝑖 ∈ ( 0 ... 𝐾 ) ) |
82 |
80 81
|
eqeltrd |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) → ( 𝑖 + 0 ) ∈ ( 0 ... 𝐾 ) ) |
83 |
|
elsni |
⊢ ( 𝑝 ∈ { 0 } → 𝑝 = 0 ) |
84 |
83
|
oveq2d |
⊢ ( 𝑝 ∈ { 0 } → ( 𝑖 + 𝑝 ) = ( 𝑖 + 0 ) ) |
85 |
84
|
eleq1d |
⊢ ( 𝑝 ∈ { 0 } → ( ( 𝑖 + 𝑝 ) ∈ ( 0 ... 𝐾 ) ↔ ( 𝑖 + 0 ) ∈ ( 0 ... 𝐾 ) ) ) |
86 |
82 85
|
syl5ibrcom |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) → ( 𝑝 ∈ { 0 } → ( 𝑖 + 𝑝 ) ∈ ( 0 ... 𝐾 ) ) ) |
87 |
77 86
|
jaod |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) → ( ( 𝑝 ∈ { 1 } ∨ 𝑝 ∈ { 0 } ) → ( 𝑖 + 𝑝 ) ∈ ( 0 ... 𝐾 ) ) ) |
88 |
72 87
|
syl5bi |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) → ( 𝑝 ∈ ( { 1 } ∪ { 0 } ) → ( 𝑖 + 𝑝 ) ∈ ( 0 ... 𝐾 ) ) ) |
89 |
88
|
imp |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝐾 ) ∧ 𝑝 ∈ ( { 1 } ∪ { 0 } ) ) → ( 𝑖 + 𝑝 ) ∈ ( 0 ... 𝐾 ) ) |
90 |
89
|
adantl |
⊢ ( ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑖 ∈ ( 0 ..^ 𝐾 ) ∧ 𝑝 ∈ ( { 1 } ∪ { 0 } ) ) ) → ( 𝑖 + 𝑝 ) ∈ ( 0 ... 𝐾 ) ) |
91 |
|
xp1st |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ 𝑠 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
92 |
|
elmapi |
⊢ ( ( 1st ‘ 𝑠 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ 𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
93 |
91 92
|
syl |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ 𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
94 |
93
|
adantr |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1st ‘ 𝑠 ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
95 |
|
xp2nd |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ 𝑠 ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
96 |
|
fvex |
⊢ ( 2nd ‘ 𝑠 ) ∈ V |
97 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 2nd ‘ 𝑠 ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
98 |
96 97
|
elab |
⊢ ( ( 2nd ‘ 𝑠 ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
99 |
95 98
|
sylib |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
100 |
|
1ex |
⊢ 1 ∈ V |
101 |
100
|
fconst |
⊢ ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } |
102 |
|
c0ex |
⊢ 0 ∈ V |
103 |
102
|
fconst |
⊢ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } |
104 |
101 103
|
pm3.2i |
⊢ ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) |
105 |
|
dff1o3 |
⊢ ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ ( 2nd ‘ 𝑠 ) ) ) |
106 |
|
imain |
⊢ ( Fun ◡ ( 2nd ‘ 𝑠 ) → ( ( 2nd ‘ 𝑠 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
107 |
105 106
|
simplbiim |
⊢ ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ 𝑠 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
108 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℕ0 ) |
109 |
108
|
nn0red |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℝ ) |
110 |
109
|
ltp1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 < ( 𝑗 + 1 ) ) |
111 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
112 |
110 111
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
113 |
112
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ 𝑠 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ 𝑠 ) “ ∅ ) ) |
114 |
|
ima0 |
⊢ ( ( 2nd ‘ 𝑠 ) “ ∅ ) = ∅ |
115 |
113 114
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ 𝑠 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
116 |
107 115
|
sylan9req |
⊢ ( ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
117 |
|
fun |
⊢ ( ( ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) ∧ ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
118 |
104 116 117
|
sylancr |
⊢ ( ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
119 |
|
nn0p1nn |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) |
120 |
108 119
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
121 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
122 |
120 121
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
123 |
|
elfzuz3 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
124 |
|
fzsplit2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
125 |
122 123 124
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
126 |
125
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑁 ) ) = ( ( 2nd ‘ 𝑠 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
127 |
|
imaundi |
⊢ ( ( 2nd ‘ 𝑠 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
128 |
126 127
|
eqtr2di |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑁 ) ) ) |
129 |
|
f1ofo |
⊢ ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
130 |
|
foima |
⊢ ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
131 |
129 130
|
syl |
⊢ ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
132 |
128 131
|
sylan9eqr |
⊢ ( ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
133 |
132
|
feq2d |
⊢ ( ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) ) |
134 |
118 133
|
mpbid |
⊢ ( ( ( 2nd ‘ 𝑠 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) |
135 |
99 134
|
sylan |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) |
136 |
|
fzfid |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
137 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
138 |
90 94 135 136 136 137
|
off |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
139 |
|
ovex |
⊢ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
140 |
|
feq1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
141 |
140
|
anbi2d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ↔ ( 𝜑 ∧ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) ) |
142 |
2
|
eleq1d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝐵 ∈ ( 0 ... 𝑁 ) ↔ 𝐶 ∈ ( 0 ... 𝑁 ) ) ) |
143 |
141 142
|
imbi12d |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) ↔ ( ( 𝜑 ∧ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐶 ∈ ( 0 ... 𝑁 ) ) ) ) |
144 |
139 143 3
|
vtocl |
⊢ ( ( 𝜑 ∧ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐶 ∈ ( 0 ... 𝑁 ) ) |
145 |
138 144
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ) → 𝐶 ∈ ( 0 ... 𝑁 ) ) |
146 |
145
|
an12s |
⊢ ( ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ∧ ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ) → 𝐶 ∈ ( 0 ... 𝑁 ) ) |
147 |
146
|
ex |
⊢ ( 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝐶 ∈ ( 0 ... 𝑁 ) ) ) |
148 |
64 68 71 147
|
vtoclgaf |
⊢ ( 〈 𝑇 , 𝑈 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ) ) |
149 |
63 148
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ) |
150 |
44 48 149
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ) |
151 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
152 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
153 |
151 152
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
154 |
|
fzm1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ↔ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) ) ) |
155 |
153 154
|
syl |
⊢ ( 𝜑 → ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ↔ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) ) ) |
156 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ↔ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) ) ) |
157 |
150 156
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) ) |
158 |
157
|
ord |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ( ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) ) |
159 |
41 158
|
mt3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
160 |
159
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
161 |
|
fzfi |
⊢ ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin |
162 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
163 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
164 |
162 163 163
|
addsubd |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = ( ( 𝑁 − 1 ) + 1 ) ) |
165 |
|
hashfz0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ... 𝑁 ) ) = ( 𝑁 + 1 ) ) |
166 |
151 165
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝑁 ) ) = ( 𝑁 + 1 ) ) |
167 |
166
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
168 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
169 |
|
hashfz0 |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) = ( ( 𝑁 − 1 ) + 1 ) ) |
170 |
1 168 169
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) = ( ( 𝑁 − 1 ) + 1 ) ) |
171 |
164 167 170
|
3eqtr4rd |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) = ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) ) |
172 |
|
hashdifsn |
⊢ ( ( ( 0 ... 𝑁 ) ∈ Fin ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) = ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) ) |
173 |
14 172
|
mpan |
⊢ ( 𝑡 ∈ ( 0 ... 𝑁 ) → ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) = ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) ) |
174 |
173
|
eqcomd |
⊢ ( 𝑡 ∈ ( 0 ... 𝑁 ) → ( ( ♯ ‘ ( 0 ... 𝑁 ) ) − 1 ) = ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ) |
175 |
171 174
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) = ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ) |
176 |
|
diffi |
⊢ ( ( 0 ... 𝑁 ) ∈ Fin → ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∈ Fin ) |
177 |
14 176
|
ax-mp |
⊢ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∈ Fin |
178 |
|
hashen |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ∧ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∈ Fin ) → ( ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) = ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ↔ ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ) |
179 |
161 177 178
|
mp2an |
⊢ ( ( ♯ ‘ ( 0 ... ( 𝑁 − 1 ) ) ) = ( ♯ ‘ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ↔ ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) |
180 |
175 179
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) |
181 |
|
phpreu |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ∧ ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
182 |
161 180 181
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
183 |
182
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
184 |
183
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
185 |
|
nfv |
⊢ Ⅎ 𝑧 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
186 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
187 |
186
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑖 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
188 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑧 → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
189 |
188
|
eqeq2d |
⊢ ( 𝑗 = 𝑧 → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
190 |
185 187 189
|
cbvreuw |
⊢ ( ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
191 |
|
eqeq1 |
⊢ ( 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( 𝑖 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
192 |
191
|
reubidv |
⊢ ( 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
193 |
190 192
|
syl5bb |
⊢ ( 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
194 |
193
|
rspcv |
⊢ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
195 |
160 184 194
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) → ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
196 |
|
an32 |
⊢ ( ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ↔ ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
197 |
196
|
biimpi |
⊢ ( ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) → ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
198 |
197
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) → ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
199 |
|
eqeq2 |
⊢ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
200 |
|
rexsns |
⊢ ( ∃ 𝑗 ∈ { 𝑡 } 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ [ 𝑡 / 𝑗 ] 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
201 |
34
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
202 |
36
|
eqeq2d |
⊢ ( 𝑗 = 𝑡 → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
203 |
201 202
|
sbciegf |
⊢ ( 𝑡 ∈ V → ( [ 𝑡 / 𝑗 ] 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
204 |
13 203
|
ax-mp |
⊢ ( [ 𝑡 / 𝑗 ] 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
205 |
200 204
|
bitri |
⊢ ( ∃ 𝑗 ∈ { 𝑡 } 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
206 |
|
rexsns |
⊢ ( ∃ 𝑗 ∈ { 𝑧 } 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ [ 𝑧 / 𝑗 ] 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
207 |
|
vex |
⊢ 𝑧 ∈ V |
208 |
187 189
|
sbciegf |
⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑗 ] 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
209 |
207 208
|
ax-mp |
⊢ ( [ 𝑧 / 𝑗 ] 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
210 |
206 209
|
bitri |
⊢ ( ∃ 𝑗 ∈ { 𝑧 } 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
211 |
199 205 210
|
3bitr4g |
⊢ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( ∃ 𝑗 ∈ { 𝑡 } 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ { 𝑧 } 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
212 |
211
|
orbi1d |
⊢ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( ( ∃ 𝑗 ∈ { 𝑡 } 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∨ ∃ 𝑗 ∈ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ( ∃ 𝑗 ∈ { 𝑧 } 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∨ ∃ 𝑗 ∈ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
213 |
|
rexun |
⊢ ( ∃ 𝑗 ∈ ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ( ∃ 𝑗 ∈ { 𝑡 } 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∨ ∃ 𝑗 ∈ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
214 |
|
rexun |
⊢ ( ∃ 𝑗 ∈ ( { 𝑧 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ( ∃ 𝑗 ∈ { 𝑧 } 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∨ ∃ 𝑗 ∈ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
215 |
212 213 214
|
3bitr4g |
⊢ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( ∃ 𝑗 ∈ ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( { 𝑧 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
216 |
215
|
adantl |
⊢ ( ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ( ∃ 𝑗 ∈ ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( { 𝑧 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
217 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) → 𝑧 ≠ 𝑡 ) |
218 |
217
|
necomd |
⊢ ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) → 𝑡 ≠ 𝑧 ) |
219 |
|
dif32 |
⊢ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) = ( ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∖ { 𝑡 } ) |
220 |
219
|
uneq2i |
⊢ ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) = ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∖ { 𝑡 } ) ) |
221 |
|
snssi |
⊢ ( 𝑡 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) → { 𝑡 } ⊆ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
222 |
|
eldifsn |
⊢ ( 𝑡 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ↔ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ≠ 𝑧 ) ) |
223 |
|
undif |
⊢ ( { 𝑡 } ⊆ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ↔ ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∖ { 𝑡 } ) ) = ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
224 |
221 222 223
|
3imtr3i |
⊢ ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ≠ 𝑧 ) → ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∖ { 𝑡 } ) ) = ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
225 |
220 224
|
syl5eq |
⊢ ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ≠ 𝑧 ) → ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) = ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
226 |
218 225
|
sylan2 |
⊢ ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) → ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) = ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
227 |
226
|
rexeqdv |
⊢ ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) → ( ∃ 𝑗 ∈ ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
228 |
227
|
adantr |
⊢ ( ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ( ∃ 𝑗 ∈ ( { 𝑡 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
229 |
|
snssi |
⊢ ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) → { 𝑧 } ⊆ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) |
230 |
|
undif |
⊢ ( { 𝑧 } ⊆ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ↔ ( { 𝑧 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) = ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) |
231 |
229 230
|
sylib |
⊢ ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) → ( { 𝑧 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) = ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) |
232 |
231
|
rexeqdv |
⊢ ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) → ( ∃ 𝑗 ∈ ( { 𝑧 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
233 |
232
|
ad2antlr |
⊢ ( ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ( ∃ 𝑗 ∈ ( { 𝑧 } ∪ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
234 |
216 228 233
|
3bitr3d |
⊢ ( ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
235 |
234
|
ralbidv |
⊢ ( ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
236 |
235
|
biimpar |
⊢ ( ( ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
237 |
236
|
an32s |
⊢ ( ( ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
238 |
198 237
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
239 |
|
simpl |
⊢ ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → 𝑡 ∈ ( 0 ... 𝑁 ) ) |
240 |
239
|
anim2i |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) → ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ) |
241 |
|
necom |
⊢ ( 𝑧 ≠ 𝑡 ↔ 𝑡 ≠ 𝑧 ) |
242 |
241
|
biimpi |
⊢ ( 𝑧 ≠ 𝑡 → 𝑡 ≠ 𝑧 ) |
243 |
242
|
adantl |
⊢ ( ( 𝑧 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ≠ 𝑡 ) → 𝑡 ≠ 𝑧 ) |
244 |
243
|
anim2i |
⊢ ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑧 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ≠ 𝑡 ) ) → ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ≠ 𝑧 ) ) |
245 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ↔ ( 𝑧 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ≠ 𝑡 ) ) |
246 |
245
|
anbi2i |
⊢ ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ↔ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ( 𝑧 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ≠ 𝑡 ) ) ) |
247 |
244 246 222
|
3imtr4i |
⊢ ( ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) → 𝑡 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
248 |
247
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) → 𝑡 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
249 |
248
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → 𝑡 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
250 |
34
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) |
251 |
42 250
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
252 |
36
|
eleq1d |
⊢ ( 𝑗 = 𝑡 → ( ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
253 |
46 252
|
imbi12d |
⊢ ( 𝑗 = 𝑡 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) ) |
254 |
6
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ≠ 𝑁 ) |
255 |
254
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ¬ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) |
256 |
|
fzm1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ↔ ( ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) ) ) |
257 |
153 256
|
syl |
⊢ ( 𝜑 → ( ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ↔ ( ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) ) ) |
258 |
257
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... 𝑁 ) ↔ ( ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) ) ) |
259 |
149 258
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) ) |
260 |
259
|
ord |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ¬ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = 𝑁 ) ) |
261 |
255 260
|
mt3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
262 |
251 253 261
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
263 |
262
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
264 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) → 𝑧 ∈ ( 0 ... 𝑁 ) ) |
265 |
|
eleq1w |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∈ ( 0 ... 𝑁 ) ↔ 𝑧 ∈ ( 0 ... 𝑁 ) ) ) |
266 |
265
|
anbi2d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑧 ∈ ( 0 ... 𝑁 ) ) ) ) |
267 |
|
sneq |
⊢ ( 𝑡 = 𝑧 → { 𝑡 } = { 𝑧 } ) |
268 |
267
|
difeq2d |
⊢ ( 𝑡 = 𝑧 → ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) = ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
269 |
268
|
breq2d |
⊢ ( 𝑡 = 𝑧 → ( ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ↔ ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) ) |
270 |
266 269
|
imbi12d |
⊢ ( 𝑡 = 𝑧 → ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 ... 𝑁 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) ) ) |
271 |
270 180
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 ... 𝑁 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
272 |
264 271
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
273 |
272
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
274 |
|
phpreu |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ∧ ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
275 |
161 274
|
mpan |
⊢ ( ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
276 |
275
|
biimpa |
⊢ ( ( ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
277 |
273 276
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
278 |
|
eqeq1 |
⊢ ( 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
279 |
278
|
adantr |
⊢ ( ( 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
280 |
201 279
|
reubida |
⊢ ( 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
281 |
280
|
rspcv |
⊢ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
282 |
263 277 281
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
283 |
|
reurmo |
⊢ ( ∃! 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃* 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
284 |
282 283
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃* 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
285 |
|
nfv |
⊢ Ⅎ 𝑖 ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
286 |
285
|
rmo3 |
⊢ ( ∃* 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∀ 𝑖 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → 𝑗 = 𝑖 ) ) |
287 |
284 286
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∀ 𝑖 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → 𝑗 = 𝑖 ) ) |
288 |
|
equcomi |
⊢ ( 𝑖 = 𝑡 → 𝑡 = 𝑖 ) |
289 |
288
|
csbeq1d |
⊢ ( 𝑖 = 𝑡 → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
290 |
|
sbsbc |
⊢ ( [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
291 |
|
vex |
⊢ 𝑖 ∈ V |
292 |
|
sbceqg |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ⦋ 𝑖 / 𝑗 ⦌ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
293 |
34
|
csbconstgf |
⊢ ( 𝑖 ∈ V → ⦋ 𝑖 / 𝑗 ⦌ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
294 |
293
|
eqeq1d |
⊢ ( 𝑖 ∈ V → ( ⦋ 𝑖 / 𝑗 ⦌ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
295 |
292 294
|
bitrd |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
296 |
291 295
|
ax-mp |
⊢ ( [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
297 |
290 296
|
bitri |
⊢ ( [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
298 |
289 297
|
sylibr |
⊢ ( 𝑖 = 𝑡 → [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
299 |
298
|
biantrud |
⊢ ( 𝑖 = 𝑡 → ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
300 |
299
|
bicomd |
⊢ ( 𝑖 = 𝑡 → ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
301 |
|
eqeq2 |
⊢ ( 𝑖 = 𝑡 → ( 𝑗 = 𝑖 ↔ 𝑗 = 𝑡 ) ) |
302 |
300 301
|
imbi12d |
⊢ ( 𝑖 = 𝑡 → ( ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → 𝑗 = 𝑖 ) ↔ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑡 ) ) ) |
303 |
302
|
rspcv |
⊢ ( 𝑡 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) → ( ∀ 𝑖 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → 𝑗 = 𝑖 ) → ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑡 ) ) ) |
304 |
303
|
ralimdv |
⊢ ( 𝑡 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) → ( ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∀ 𝑖 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ [ 𝑖 / 𝑗 ] ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → 𝑗 = 𝑖 ) → ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑡 ) ) ) |
305 |
249 287 304
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑡 ) ) |
306 |
|
dif32 |
⊢ ( ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∖ { 𝑡 } ) = ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) |
307 |
306
|
eleq2i |
⊢ ( 𝑗 ∈ ( ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∖ { 𝑡 } ) ↔ 𝑗 ∈ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ) |
308 |
|
eldifsn |
⊢ ( 𝑗 ∈ ( ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∖ { 𝑡 } ) ↔ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∧ 𝑗 ≠ 𝑡 ) ) |
309 |
|
eldifsn |
⊢ ( 𝑗 ∈ ( ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∖ { 𝑧 } ) ↔ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∧ 𝑗 ≠ 𝑧 ) ) |
310 |
307 308 309
|
3bitr3ri |
⊢ ( ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∧ 𝑗 ≠ 𝑧 ) ↔ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∧ 𝑗 ≠ 𝑡 ) ) |
311 |
310
|
imbi1i |
⊢ ( ( ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∧ 𝑗 ≠ 𝑧 ) → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ( ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∧ 𝑗 ≠ 𝑡 ) → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
312 |
|
impexp |
⊢ ( ( ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∧ 𝑗 ≠ 𝑧 ) → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) → ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
313 |
|
impexp |
⊢ ( ( ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ∧ 𝑗 ≠ 𝑡 ) → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) → ( 𝑗 ≠ 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
314 |
311 312 313
|
3bitr3ri |
⊢ ( ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) → ( 𝑗 ≠ 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ↔ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) → ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
315 |
314
|
albii |
⊢ ( ∀ 𝑗 ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) → ( 𝑗 ≠ 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ↔ ∀ 𝑗 ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) → ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
316 |
|
con34b |
⊢ ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑡 ) ↔ ( ¬ 𝑗 = 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
317 |
|
df-ne |
⊢ ( 𝑗 ≠ 𝑡 ↔ ¬ 𝑗 = 𝑡 ) |
318 |
317
|
imbi1i |
⊢ ( ( 𝑗 ≠ 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ( ¬ 𝑗 = 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
319 |
316 318
|
bitr4i |
⊢ ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑡 ) ↔ ( 𝑗 ≠ 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
320 |
319
|
ralbii |
⊢ ( ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑡 ) ↔ ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( 𝑗 ≠ 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
321 |
|
df-ral |
⊢ ( ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( 𝑗 ≠ 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ∀ 𝑗 ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) → ( 𝑗 ≠ 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
322 |
320 321
|
bitri |
⊢ ( ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑡 ) ↔ ∀ 𝑗 ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) → ( 𝑗 ≠ 𝑡 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
323 |
|
df-ral |
⊢ ( ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ∀ 𝑗 ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) → ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
324 |
315 322 323
|
3bitr4i |
⊢ ( ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑡 ) ↔ ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
325 |
305 324
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
326 |
|
df-ne |
⊢ ( 𝑗 ≠ 𝑧 ↔ ¬ 𝑗 = 𝑧 ) |
327 |
326
|
imbi1i |
⊢ ( ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ( ¬ 𝑗 = 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
328 |
|
con34b |
⊢ ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑧 ) ↔ ( ¬ 𝑗 = 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
329 |
327 328
|
bitr4i |
⊢ ( ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑧 ) ) |
330 |
|
ancr |
⊢ ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑗 = 𝑧 ) → ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
331 |
329 330
|
sylbi |
⊢ ( ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
332 |
331
|
ralimi |
⊢ ( ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( 𝑗 ≠ 𝑧 → ¬ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
333 |
325 332
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
334 |
240 333
|
sylanl1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
335 |
201 278
|
rexbid |
⊢ ( 𝑖 = ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
336 |
335
|
rspcva |
⊢ ( ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
337 |
262 336
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
338 |
337
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
339 |
338
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
340 |
|
rexim |
⊢ ( ∀ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
341 |
334 339 340
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
342 |
|
rexex |
⊢ ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃ 𝑗 ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
343 |
341 342
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃ 𝑗 ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
344 |
34 186
|
nfeq |
⊢ Ⅎ 𝑗 ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
345 |
188
|
eqeq2d |
⊢ ( 𝑗 = 𝑧 → ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
346 |
344 345
|
equsexv |
⊢ ( ∃ 𝑗 ( 𝑗 = 𝑧 ∧ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
347 |
343 346
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
348 |
238 347
|
impbida |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ) → ( ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
349 |
348
|
reubidva |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) → ( ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ⦋ 𝑡 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ 𝑧 / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
350 |
195 349
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) → ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
351 |
|
an32 |
⊢ ( ( ( 𝑧 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ≠ 𝑡 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ( ( 𝑧 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ∧ 𝑧 ≠ 𝑡 ) ) |
352 |
245
|
anbi1i |
⊢ ( ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ( ( 𝑧 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ≠ 𝑡 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
353 |
|
sneq |
⊢ ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } ) |
354 |
353
|
difeq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) = ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) ) |
355 |
354
|
rexeqdv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
356 |
355
|
ralbidv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
357 |
356
|
elrab |
⊢ ( 𝑧 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ↔ ( 𝑧 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
358 |
357
|
anbi1i |
⊢ ( ( 𝑧 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∧ 𝑧 ≠ 𝑡 ) ↔ ( ( 𝑧 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ∧ 𝑧 ≠ 𝑡 ) ) |
359 |
351 352 358
|
3bitr4i |
⊢ ( ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ( 𝑧 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∧ 𝑧 ≠ 𝑡 ) ) |
360 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ↔ ( 𝑧 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∧ 𝑧 ≠ 𝑡 ) ) |
361 |
359 360
|
bitr4i |
⊢ ( ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ 𝑧 ∈ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) |
362 |
361
|
eubii |
⊢ ( ∃! 𝑧 ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ↔ ∃! 𝑧 𝑧 ∈ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) |
363 |
|
df-reu |
⊢ ( ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃! 𝑧 ( 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
364 |
|
euhash1 |
⊢ ( ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ∈ Fin → ( ( ♯ ‘ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) = 1 ↔ ∃! 𝑧 𝑧 ∈ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) ) |
365 |
18 364
|
ax-mp |
⊢ ( ( ♯ ‘ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) = 1 ↔ ∃! 𝑧 𝑧 ∈ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) |
366 |
362 363 365
|
3bitr4i |
⊢ ( ∃! 𝑧 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑧 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ( ♯ ‘ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) = 1 ) |
367 |
350 366
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑡 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) → ( ♯ ‘ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) = 1 ) |
368 |
31 367
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) → ( ♯ ‘ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) = 1 ) |
369 |
368
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) → ( ( ♯ ‘ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ∖ { 𝑡 } ) ) + 1 ) = ( 1 + 1 ) ) |
370 |
26 369
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) → ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) = ( 1 + 1 ) ) |
371 |
12 370
|
breqtrrid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) ) |
372 |
371
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) ) ) |
373 |
372
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑡 𝑡 ∈ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) ) ) |
374 |
7 373
|
syl5bi |
⊢ ( 𝜑 → ( ¬ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } = ∅ → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) ) ) |
375 |
|
dvds0 |
⊢ ( 2 ∈ ℤ → 2 ∥ 0 ) |
376 |
8 375
|
ax-mp |
⊢ 2 ∥ 0 |
377 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
378 |
376 377
|
breqtrri |
⊢ 2 ∥ ( ♯ ‘ ∅ ) |
379 |
|
fveq2 |
⊢ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } = ∅ → ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) = ( ♯ ‘ ∅ ) ) |
380 |
378 379
|
breqtrrid |
⊢ ( { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } = ∅ → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) ) |
381 |
374 380
|
pm2.61d2 |
⊢ ( 𝜑 → 2 ∥ ( ♯ ‘ { 𝑦 ∈ ( 0 ... 𝑁 ) ∣ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑦 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 } ) ) |