Metamath Proof Explorer


Theorem poimirlem25

Description: Lemma for poimir stating that for a given simplex such that no vertex maps to N , the number of admissible faces is even. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem28.1 p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 B = C
poimirlem28.2 φ p : 1 N 0 K B 0 N
poimirlem25.3 φ T : 1 N 0 ..^ K
poimirlem25.4 φ U : 1 N 1-1 onto 1 N
poimirlem25.5 φ j 0 N N T U / s C
Assertion poimirlem25 φ 2 y 0 N | i 0 N 1 j 0 N y i = T U / s C

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem28.1 p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 B = C
3 poimirlem28.2 φ p : 1 N 0 K B 0 N
4 poimirlem25.3 φ T : 1 N 0 ..^ K
5 poimirlem25.4 φ U : 1 N 1-1 onto 1 N
6 poimirlem25.5 φ j 0 N N T U / s C
7 neq0 ¬ y 0 N | i 0 N 1 j 0 N y i = T U / s C = t t y 0 N | i 0 N 1 j 0 N y i = T U / s C
8 2z 2
9 iddvds 2 2 2
10 8 9 ax-mp 2 2
11 df-2 2 = 1 + 1
12 10 11 breqtri 2 1 + 1
13 vex t V
14 fzfi 0 N Fin
15 rabfi 0 N Fin y 0 N | i 0 N 1 j 0 N y i = T U / s C Fin
16 14 15 ax-mp y 0 N | i 0 N 1 j 0 N y i = T U / s C Fin
17 diffi y 0 N | i 0 N 1 j 0 N y i = T U / s C Fin y 0 N | i 0 N 1 j 0 N y i = T U / s C t Fin
18 16 17 ax-mp y 0 N | i 0 N 1 j 0 N y i = T U / s C t Fin
19 neldifsn ¬ t y 0 N | i 0 N 1 j 0 N y i = T U / s C t
20 18 19 pm3.2i y 0 N | i 0 N 1 j 0 N y i = T U / s C t Fin ¬ t y 0 N | i 0 N 1 j 0 N y i = T U / s C t
21 hashunsng t V y 0 N | i 0 N 1 j 0 N y i = T U / s C t Fin ¬ t y 0 N | i 0 N 1 j 0 N y i = T U / s C t y 0 N | i 0 N 1 j 0 N y i = T U / s C t t = y 0 N | i 0 N 1 j 0 N y i = T U / s C t + 1
22 13 20 21 mp2 y 0 N | i 0 N 1 j 0 N y i = T U / s C t t = y 0 N | i 0 N 1 j 0 N y i = T U / s C t + 1
23 difsnid t y 0 N | i 0 N 1 j 0 N y i = T U / s C y 0 N | i 0 N 1 j 0 N y i = T U / s C t t = y 0 N | i 0 N 1 j 0 N y i = T U / s C
24 23 fveq2d t y 0 N | i 0 N 1 j 0 N y i = T U / s C y 0 N | i 0 N 1 j 0 N y i = T U / s C t t = y 0 N | i 0 N 1 j 0 N y i = T U / s C
25 22 24 eqtr3id t y 0 N | i 0 N 1 j 0 N y i = T U / s C y 0 N | i 0 N 1 j 0 N y i = T U / s C t + 1 = y 0 N | i 0 N 1 j 0 N y i = T U / s C
26 25 adantl φ t y 0 N | i 0 N 1 j 0 N y i = T U / s C y 0 N | i 0 N 1 j 0 N y i = T U / s C t + 1 = y 0 N | i 0 N 1 j 0 N y i = T U / s C
27 sneq y = t y = t
28 27 difeq2d y = t 0 N y = 0 N t
29 28 rexeqdv y = t j 0 N y i = T U / s C j 0 N t i = T U / s C
30 29 ralbidv y = t i 0 N 1 j 0 N y i = T U / s C i 0 N 1 j 0 N t i = T U / s C
31 30 elrab t y 0 N | i 0 N 1 j 0 N y i = T U / s C t 0 N i 0 N 1 j 0 N t i = T U / s C
32 6 ralrimiva φ j 0 N N T U / s C
33 nfcv _ j N
34 nfcsb1v _ j t / j T U / s C
35 33 34 nfne j N t / j T U / s C
36 csbeq1a j = t T U / s C = t / j T U / s C
37 36 neeq2d j = t N T U / s C N t / j T U / s C
38 35 37 rspc t 0 N j 0 N N T U / s C N t / j T U / s C
39 32 38 mpan9 φ t 0 N N t / j T U / s C
40 nesym N t / j T U / s C ¬ t / j T U / s C = N
41 39 40 sylib φ t 0 N ¬ t / j T U / s C = N
42 nfv j φ t 0 N
43 34 nfel1 j t / j T U / s C 0 N
44 42 43 nfim j φ t 0 N t / j T U / s C 0 N
45 eleq1w j = t j 0 N t 0 N
46 45 anbi2d j = t φ j 0 N φ t 0 N
47 36 eleq1d j = t T U / s C 0 N t / j T U / s C 0 N
48 46 47 imbi12d j = t φ j 0 N T U / s C 0 N φ t 0 N t / j T U / s C 0 N
49 ovex 0 ..^ K V
50 ovex 1 N V
51 49 50 elmap T 0 ..^ K 1 N T : 1 N 0 ..^ K
52 4 51 sylibr φ T 0 ..^ K 1 N
53 fzfi 1 N Fin
54 f1oexrnex U : 1 N 1-1 onto 1 N 1 N Fin U V
55 53 54 mpan2 U : 1 N 1-1 onto 1 N U V
56 f1oeq1 f = U f : 1 N 1-1 onto 1 N U : 1 N 1-1 onto 1 N
57 56 elabg U V U f | f : 1 N 1-1 onto 1 N U : 1 N 1-1 onto 1 N
58 55 57 syl U : 1 N 1-1 onto 1 N U f | f : 1 N 1-1 onto 1 N U : 1 N 1-1 onto 1 N
59 58 ibir U : 1 N 1-1 onto 1 N U f | f : 1 N 1-1 onto 1 N
60 5 59 syl φ U f | f : 1 N 1-1 onto 1 N
61 opelxpi T 0 ..^ K 1 N U f | f : 1 N 1-1 onto 1 N T U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
62 52 60 61 syl2anc φ T U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
63 62 adantr φ j 0 N T U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
64 nfcv _ s T U
65 nfv s φ j 0 N
66 nfcsb1v _ s T U / s C
67 66 nfel1 s T U / s C 0 N
68 65 67 nfim s φ j 0 N T U / s C 0 N
69 csbeq1a s = T U C = T U / s C
70 69 eleq1d s = T U C 0 N T U / s C 0 N
71 70 imbi2d s = T U φ j 0 N C 0 N φ j 0 N T U / s C 0 N
72 elun p 1 0 p 1 p 0
73 fzofzp1 i 0 ..^ K i + 1 0 K
74 elsni p 1 p = 1
75 74 oveq2d p 1 i + p = i + 1
76 75 eleq1d p 1 i + p 0 K i + 1 0 K
77 73 76 syl5ibrcom i 0 ..^ K p 1 i + p 0 K
78 elfzonn0 i 0 ..^ K i 0
79 78 nn0cnd i 0 ..^ K i
80 79 addid1d i 0 ..^ K i + 0 = i
81 elfzofz i 0 ..^ K i 0 K
82 80 81 eqeltrd i 0 ..^ K i + 0 0 K
83 elsni p 0 p = 0
84 83 oveq2d p 0 i + p = i + 0
85 84 eleq1d p 0 i + p 0 K i + 0 0 K
86 82 85 syl5ibrcom i 0 ..^ K p 0 i + p 0 K
87 77 86 jaod i 0 ..^ K p 1 p 0 i + p 0 K
88 72 87 syl5bi i 0 ..^ K p 1 0 i + p 0 K
89 88 imp i 0 ..^ K p 1 0 i + p 0 K
90 89 adantl s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N j 0 N i 0 ..^ K p 1 0 i + p 0 K
91 xp1st s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st s 0 ..^ K 1 N
92 elmapi 1 st s 0 ..^ K 1 N 1 st s : 1 N 0 ..^ K
93 91 92 syl s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st s : 1 N 0 ..^ K
94 93 adantr s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N j 0 N 1 st s : 1 N 0 ..^ K
95 xp2nd s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd s f | f : 1 N 1-1 onto 1 N
96 fvex 2 nd s V
97 f1oeq1 f = 2 nd s f : 1 N 1-1 onto 1 N 2 nd s : 1 N 1-1 onto 1 N
98 96 97 elab 2 nd s f | f : 1 N 1-1 onto 1 N 2 nd s : 1 N 1-1 onto 1 N
99 95 98 sylib s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd s : 1 N 1-1 onto 1 N
100 1ex 1 V
101 100 fconst 2 nd s 1 j × 1 : 2 nd s 1 j 1
102 c0ex 0 V
103 102 fconst 2 nd s j + 1 N × 0 : 2 nd s j + 1 N 0
104 101 103 pm3.2i 2 nd s 1 j × 1 : 2 nd s 1 j 1 2 nd s j + 1 N × 0 : 2 nd s j + 1 N 0
105 dff1o3 2 nd s : 1 N 1-1 onto 1 N 2 nd s : 1 N onto 1 N Fun 2 nd s -1
106 imain Fun 2 nd s -1 2 nd s 1 j j + 1 N = 2 nd s 1 j 2 nd s j + 1 N
107 105 106 simplbiim 2 nd s : 1 N 1-1 onto 1 N 2 nd s 1 j j + 1 N = 2 nd s 1 j 2 nd s j + 1 N
108 elfznn0 j 0 N j 0
109 108 nn0red j 0 N j
110 109 ltp1d j 0 N j < j + 1
111 fzdisj j < j + 1 1 j j + 1 N =
112 110 111 syl j 0 N 1 j j + 1 N =
113 112 imaeq2d j 0 N 2 nd s 1 j j + 1 N = 2 nd s
114 ima0 2 nd s =
115 113 114 eqtrdi j 0 N 2 nd s 1 j j + 1 N =
116 107 115 sylan9req 2 nd s : 1 N 1-1 onto 1 N j 0 N 2 nd s 1 j 2 nd s j + 1 N =
117 fun 2 nd s 1 j × 1 : 2 nd s 1 j 1 2 nd s j + 1 N × 0 : 2 nd s j + 1 N 0 2 nd s 1 j 2 nd s j + 1 N = 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 2 nd s 1 j 2 nd s j + 1 N 1 0
118 104 116 117 sylancr 2 nd s : 1 N 1-1 onto 1 N j 0 N 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 2 nd s 1 j 2 nd s j + 1 N 1 0
119 nn0p1nn j 0 j + 1
120 108 119 syl j 0 N j + 1
121 nnuz = 1
122 120 121 eleqtrdi j 0 N j + 1 1
123 elfzuz3 j 0 N N j
124 fzsplit2 j + 1 1 N j 1 N = 1 j j + 1 N
125 122 123 124 syl2anc j 0 N 1 N = 1 j j + 1 N
126 125 imaeq2d j 0 N 2 nd s 1 N = 2 nd s 1 j j + 1 N
127 imaundi 2 nd s 1 j j + 1 N = 2 nd s 1 j 2 nd s j + 1 N
128 126 127 eqtr2di j 0 N 2 nd s 1 j 2 nd s j + 1 N = 2 nd s 1 N
129 f1ofo 2 nd s : 1 N 1-1 onto 1 N 2 nd s : 1 N onto 1 N
130 foima 2 nd s : 1 N onto 1 N 2 nd s 1 N = 1 N
131 129 130 syl 2 nd s : 1 N 1-1 onto 1 N 2 nd s 1 N = 1 N
132 128 131 sylan9eqr 2 nd s : 1 N 1-1 onto 1 N j 0 N 2 nd s 1 j 2 nd s j + 1 N = 1 N
133 132 feq2d 2 nd s : 1 N 1-1 onto 1 N j 0 N 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 2 nd s 1 j 2 nd s j + 1 N 1 0 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 1 N 1 0
134 118 133 mpbid 2 nd s : 1 N 1-1 onto 1 N j 0 N 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 1 N 1 0
135 99 134 sylan s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N j 0 N 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 1 N 1 0
136 fzfid s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N j 0 N 1 N Fin
137 inidm 1 N 1 N = 1 N
138 90 94 135 136 136 137 off s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N j 0 N 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 1 N 0 K
139 ovex 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 V
140 feq1 p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 p : 1 N 0 K 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 1 N 0 K
141 140 anbi2d p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 φ p : 1 N 0 K φ 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 1 N 0 K
142 2 eleq1d p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 B 0 N C 0 N
143 141 142 imbi12d p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 φ p : 1 N 0 K B 0 N φ 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 1 N 0 K C 0 N
144 139 143 3 vtocl φ 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 : 1 N 0 K C 0 N
145 138 144 sylan2 φ s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N j 0 N C 0 N
146 145 an12s s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N φ j 0 N C 0 N
147 146 ex s 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N φ j 0 N C 0 N
148 64 68 71 147 vtoclgaf T U 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N φ j 0 N T U / s C 0 N
149 63 148 mpcom φ j 0 N T U / s C 0 N
150 44 48 149 chvarfv φ t 0 N t / j T U / s C 0 N
151 1 nnnn0d φ N 0
152 nn0uz 0 = 0
153 151 152 eleqtrdi φ N 0
154 fzm1 N 0 t / j T U / s C 0 N t / j T U / s C 0 N 1 t / j T U / s C = N
155 153 154 syl φ t / j T U / s C 0 N t / j T U / s C 0 N 1 t / j T U / s C = N
156 155 adantr φ t 0 N t / j T U / s C 0 N t / j T U / s C 0 N 1 t / j T U / s C = N
157 150 156 mpbid φ t 0 N t / j T U / s C 0 N 1 t / j T U / s C = N
158 157 ord φ t 0 N ¬ t / j T U / s C 0 N 1 t / j T U / s C = N
159 41 158 mt3d φ t 0 N t / j T U / s C 0 N 1
160 159 adantrr φ t 0 N i 0 N 1 j 0 N t i = T U / s C t / j T U / s C 0 N 1
161 fzfi 0 N 1 Fin
162 1 nncnd φ N
163 1cnd φ 1
164 162 163 163 addsubd φ N + 1 - 1 = N - 1 + 1
165 hashfz0 N 0 0 N = N + 1
166 151 165 syl φ 0 N = N + 1
167 166 oveq1d φ 0 N 1 = N + 1 - 1
168 nnm1nn0 N N 1 0
169 hashfz0 N 1 0 0 N 1 = N - 1 + 1
170 1 168 169 3syl φ 0 N 1 = N - 1 + 1
171 164 167 170 3eqtr4rd φ 0 N 1 = 0 N 1
172 hashdifsn 0 N Fin t 0 N 0 N t = 0 N 1
173 14 172 mpan t 0 N 0 N t = 0 N 1
174 173 eqcomd t 0 N 0 N 1 = 0 N t
175 171 174 sylan9eq φ t 0 N 0 N 1 = 0 N t
176 diffi 0 N Fin 0 N t Fin
177 14 176 ax-mp 0 N t Fin
178 hashen 0 N 1 Fin 0 N t Fin 0 N 1 = 0 N t 0 N 1 0 N t
179 161 177 178 mp2an 0 N 1 = 0 N t 0 N 1 0 N t
180 175 179 sylib φ t 0 N 0 N 1 0 N t
181 phpreu 0 N 1 Fin 0 N 1 0 N t i 0 N 1 j 0 N t i = T U / s C i 0 N 1 ∃! j 0 N t i = T U / s C
182 161 180 181 sylancr φ t 0 N i 0 N 1 j 0 N t i = T U / s C i 0 N 1 ∃! j 0 N t i = T U / s C
183 182 biimpd φ t 0 N i 0 N 1 j 0 N t i = T U / s C i 0 N 1 ∃! j 0 N t i = T U / s C
184 183 impr φ t 0 N i 0 N 1 j 0 N t i = T U / s C i 0 N 1 ∃! j 0 N t i = T U / s C
185 nfv z i = T U / s C
186 nfcsb1v _ j z / j T U / s C
187 186 nfeq2 j i = z / j T U / s C
188 csbeq1a j = z T U / s C = z / j T U / s C
189 188 eqeq2d j = z i = T U / s C i = z / j T U / s C
190 185 187 189 cbvreuw ∃! j 0 N t i = T U / s C ∃! z 0 N t i = z / j T U / s C
191 eqeq1 i = t / j T U / s C i = z / j T U / s C t / j T U / s C = z / j T U / s C
192 191 reubidv i = t / j T U / s C ∃! z 0 N t i = z / j T U / s C ∃! z 0 N t t / j T U / s C = z / j T U / s C
193 190 192 syl5bb i = t / j T U / s C ∃! j 0 N t i = T U / s C ∃! z 0 N t t / j T U / s C = z / j T U / s C
194 193 rspcv t / j T U / s C 0 N 1 i 0 N 1 ∃! j 0 N t i = T U / s C ∃! z 0 N t t / j T U / s C = z / j T U / s C
195 160 184 194 sylc φ t 0 N i 0 N 1 j 0 N t i = T U / s C ∃! z 0 N t t / j T U / s C = z / j T U / s C
196 an32 t 0 N i 0 N 1 j 0 N t i = T U / s C z 0 N t t 0 N z 0 N t i 0 N 1 j 0 N t i = T U / s C
197 196 biimpi t 0 N i 0 N 1 j 0 N t i = T U / s C z 0 N t t 0 N z 0 N t i 0 N 1 j 0 N t i = T U / s C
198 197 adantll φ t 0 N i 0 N 1 j 0 N t i = T U / s C z 0 N t t 0 N z 0 N t i 0 N 1 j 0 N t i = T U / s C
199 eqeq2 t / j T U / s C = z / j T U / s C i = t / j T U / s C i = z / j T U / s C
200 rexsns j t i = T U / s C [˙t / j]˙ i = T U / s C
201 34 nfeq2 j i = t / j T U / s C
202 36 eqeq2d j = t i = T U / s C i = t / j T U / s C
203 201 202 sbciegf t V [˙t / j]˙ i = T U / s C i = t / j T U / s C
204 13 203 ax-mp [˙t / j]˙ i = T U / s C i = t / j T U / s C
205 200 204 bitri j t i = T U / s C i = t / j T U / s C
206 rexsns j z i = T U / s C [˙z / j]˙ i = T U / s C
207 vex z V
208 187 189 sbciegf z V [˙z / j]˙ i = T U / s C i = z / j T U / s C
209 207 208 ax-mp [˙z / j]˙ i = T U / s C i = z / j T U / s C
210 206 209 bitri j z i = T U / s C i = z / j T U / s C
211 199 205 210 3bitr4g t / j T U / s C = z / j T U / s C j t i = T U / s C j z i = T U / s C
212 211 orbi1d t / j T U / s C = z / j T U / s C j t i = T U / s C j 0 N t z i = T U / s C j z i = T U / s C j 0 N t z i = T U / s C
213 rexun j t 0 N t z i = T U / s C j t i = T U / s C j 0 N t z i = T U / s C
214 rexun j z 0 N t z i = T U / s C j z i = T U / s C j 0 N t z i = T U / s C
215 212 213 214 3bitr4g t / j T U / s C = z / j T U / s C j t 0 N t z i = T U / s C j z 0 N t z i = T U / s C
216 215 adantl t 0 N z 0 N t t / j T U / s C = z / j T U / s C j t 0 N t z i = T U / s C j z 0 N t z i = T U / s C
217 eldifsni z 0 N t z t
218 217 necomd z 0 N t t z
219 dif32 0 N t z = 0 N z t
220 219 uneq2i t 0 N t z = t 0 N z t
221 snssi t 0 N z t 0 N z
222 eldifsn t 0 N z t 0 N t z
223 undif t 0 N z t 0 N z t = 0 N z
224 221 222 223 3imtr3i t 0 N t z t 0 N z t = 0 N z
225 220 224 eqtrid t 0 N t z t 0 N t z = 0 N z
226 218 225 sylan2 t 0 N z 0 N t t 0 N t z = 0 N z
227 226 rexeqdv t 0 N z 0 N t j t 0 N t z i = T U / s C j 0 N z i = T U / s C
228 227 adantr t 0 N z 0 N t t / j T U / s C = z / j T U / s C j t 0 N t z i = T U / s C j 0 N z i = T U / s C
229 snssi z 0 N t z 0 N t
230 undif z 0 N t z 0 N t z = 0 N t
231 229 230 sylib z 0 N t z 0 N t z = 0 N t
232 231 rexeqdv z 0 N t j z 0 N t z i = T U / s C j 0 N t i = T U / s C
233 232 ad2antlr t 0 N z 0 N t t / j T U / s C = z / j T U / s C j z 0 N t z i = T U / s C j 0 N t i = T U / s C
234 216 228 233 3bitr3d t 0 N z 0 N t t / j T U / s C = z / j T U / s C j 0 N z i = T U / s C j 0 N t i = T U / s C
235 234 ralbidv t 0 N z 0 N t t / j T U / s C = z / j T U / s C i 0 N 1 j 0 N z i = T U / s C i 0 N 1 j 0 N t i = T U / s C
236 235 biimpar t 0 N z 0 N t t / j T U / s C = z / j T U / s C i 0 N 1 j 0 N t i = T U / s C i 0 N 1 j 0 N z i = T U / s C
237 236 an32s t 0 N z 0 N t i 0 N 1 j 0 N t i = T U / s C t / j T U / s C = z / j T U / s C i 0 N 1 j 0 N z i = T U / s C
238 198 237 sylan φ t 0 N i 0 N 1 j 0 N t i = T U / s C z 0 N t t / j T U / s C = z / j T U / s C i 0 N 1 j 0 N z i = T U / s C
239 simpl t 0 N i 0 N 1 j 0 N t i = T U / s C t 0 N
240 239 anim2i φ t 0 N i 0 N 1 j 0 N t i = T U / s C φ t 0 N
241 necom z t t z
242 241 biimpi z t t z
243 242 adantl z 0 N z t t z
244 243 anim2i t 0 N z 0 N z t t 0 N t z
245 eldifsn z 0 N t z 0 N z t
246 245 anbi2i t 0 N z 0 N t t 0 N z 0 N z t
247 244 246 222 3imtr4i t 0 N z 0 N t t 0 N z
248 247 adantll φ t 0 N z 0 N t t 0 N z
249 248 adantr φ t 0 N z 0 N t i 0 N 1 j 0 N z i = T U / s C t 0 N z
250 34 nfel1 j t / j T U / s C 0 N 1
251 42 250 nfim j φ t 0 N t / j T U / s C 0 N 1
252 36 eleq1d j = t T U / s C 0 N 1 t / j T U / s C 0 N 1
253 46 252 imbi12d j = t φ j 0 N T U / s C 0 N 1 φ t 0 N t / j T U / s C 0 N 1
254 6 necomd φ j 0 N T U / s C N
255 254 neneqd φ j 0 N ¬ T U / s C = N
256 fzm1 N 0 T U / s C 0 N T U / s C 0 N 1 T U / s C = N
257 153 256 syl φ T U / s C 0 N T U / s C 0 N 1 T U / s C = N
258 257 adantr φ j 0 N T U / s C 0 N T U / s C 0 N 1 T U / s C = N
259 149 258 mpbid φ j 0 N T U / s C 0 N 1 T U / s C = N
260 259 ord φ j 0 N ¬ T U / s C 0 N 1 T U / s C = N
261 255 260 mt3d φ j 0 N T U / s C 0 N 1
262 251 253 261 chvarfv φ t 0 N t / j T U / s C 0 N 1
263 262 ad2antrr φ t 0 N z 0 N t i 0 N 1 j 0 N z i = T U / s C t / j T U / s C 0 N 1
264 eldifi z 0 N t z 0 N
265 eleq1w t = z t 0 N z 0 N
266 265 anbi2d t = z φ t 0 N φ z 0 N
267 sneq t = z t = z
268 267 difeq2d t = z 0 N t = 0 N z
269 268 breq2d t = z 0 N 1 0 N t 0 N 1 0 N z
270 266 269 imbi12d t = z φ t 0 N 0 N 1 0 N t φ z 0 N 0 N 1 0 N z
271 270 180 chvarvv φ z 0 N 0 N 1 0 N z
272 264 271 sylan2 φ z 0 N t 0 N 1 0 N z
273 272 adantlr φ t 0 N z 0 N t 0 N 1 0 N z
274 phpreu 0 N 1 Fin 0 N 1 0 N z i 0 N 1 j 0 N z i = T U / s C i 0 N 1 ∃! j 0 N z i = T U / s C
275 161 274 mpan 0 N 1 0 N z i 0 N 1 j 0 N z i = T U / s C i 0 N 1 ∃! j 0 N z i = T U / s C
276 275 biimpa 0 N 1 0 N z i 0 N 1 j 0 N z i = T U / s C i 0 N 1 ∃! j 0 N z i = T U / s C
277 273 276 sylan φ t 0 N z 0 N t i 0 N 1 j 0 N z i = T U / s C i 0 N 1 ∃! j 0 N z i = T U / s C
278 eqeq1 i = t / j T U / s C i = T U / s C t / j T U / s C = T U / s C
279 278 adantr i = t / j T U / s C j 0 N z i = T U / s C t / j T U / s C = T U / s C
280 201 279 reubida i = t / j T U / s C ∃! j 0 N z i = T U / s C ∃! j 0 N z t / j T U / s C = T U / s C
281 280 rspcv t / j T U / s C 0 N 1 i 0 N 1 ∃! j 0 N z i = T U / s C ∃! j 0 N z t / j T U / s C = T U / s C
282 263 277 281 sylc φ t 0 N z 0 N t i 0 N 1 j 0 N z i = T U / s C ∃! j 0 N z t / j T U / s C = T U / s C
283 reurmo ∃! j 0 N z t / j T U / s C = T U / s C * j 0 N z t / j T U / s C = T U / s C
284 282 283 syl φ t 0 N z 0 N t i 0 N 1 j 0 N z i = T U / s C * j 0 N z t / j T U / s C = T U / s C
285 nfv i t / j T U / s C = T U / s C
286 285 rmo3 * j 0 N z t / j T U / s C = T U / s C j 0 N z i 0 N z t / j T U / s C = T U / s C i j t / j T U / s C = T U / s C j = i
287 284 286 sylib φ t 0 N z 0 N t i 0 N 1 j 0 N z i = T U / s C j 0 N z i 0 N z t / j T U / s C = T U / s C i j t / j T U / s C = T U / s C j = i
288 equcomi i = t t = i
289 288 csbeq1d i = t t / j T U / s C = i / j T U / s C
290 sbsbc i j t / j T U / s C = T U / s C [˙i / j]˙ t / j T U / s C = T U / s C
291 vex i V
292 sbceqg i V [˙i / j]˙ t / j T U / s C = T U / s C i / j t / j T U / s C = i / j T U / s C
293 34 csbconstgf i V i / j t / j T U / s C = t / j T U / s C
294 293 eqeq1d i V i / j t / j T U / s C = i / j T U / s C t / j T U / s C = i / j T U / s C
295 292 294 bitrd i V [˙i / j]˙ t / j T U / s C = T U / s C t / j T U / s C = i / j T U / s C
296 291 295 ax-mp [˙i / j]˙ t / j T U / s C = T U / s C t / j T U / s C = i / j T U / s C
297 290 296 bitri i j t / j T U / s C = T U / s C t / j T U / s C = i / j T U / s C
298 289 297 sylibr i = t i j t / j T U / s C = T U / s C
299 298 biantrud i = t t / j T U / s C = T U / s C t / j T U / s C = T U / s C i j t / j T U / s C = T U / s C
300 299 bicomd i = t t / j T U / s C = T U / s C i j t / j T U / s C = T U / s C t / j T U / s C = T U / s C
301 eqeq2 i = t j = i j = t
302 300 301 imbi12d i = t t / j T U / s C = T U / s C i j t / j T U / s C = T U / s C j = i t / j T U / s C = T U / s C j = t
303 302 rspcv t 0 N z i 0 N z t / j T U / s C = T U / s C i j t / j T U / s C = T U / s C j = i t / j T U / s C = T U / s C j = t
304 303 ralimdv t 0 N z j 0 N z i 0 N z t / j T U / s C = T U / s C i j t / j T U / s C = T U / s C j = i j 0 N z t / j T U / s C = T U / s C j = t
305 249 287 304 sylc φ t 0 N z 0 N t i 0 N 1 j 0 N z i = T U / s C j 0 N z t / j T U / s C = T U / s C j = t
306 dif32 0 N z t = 0 N t z
307 306 eleq2i j 0 N z t j 0 N t z
308 eldifsn j 0 N z t j 0 N z j t
309 eldifsn j 0 N t z j 0 N t j z
310 307 308 309 3bitr3ri j 0 N t j z j 0 N z j t
311 310 imbi1i j 0 N t j z ¬ t / j T U / s C = T U / s C j 0 N z j t ¬ t / j T U / s C = T U / s C
312 impexp j 0 N t j z ¬ t / j T U / s C = T U / s C j 0 N t j z ¬ t / j T U / s C = T U / s C
313 impexp j 0 N z j t ¬ t / j T U / s C = T U / s C j 0 N z j t ¬ t / j T U / s C = T U / s C
314 311 312 313 3bitr3ri j 0 N z j t ¬ t / j T U / s C = T U / s C j 0 N t j z ¬ t / j T U / s C = T U / s C
315 314 albii j j 0 N z j t ¬ t / j T U / s C = T U / s C j j 0 N t j z ¬ t / j T U / s C = T U / s C
316 con34b t / j T U / s C = T U / s C j = t ¬ j = t ¬ t / j T U / s C = T U / s C
317 df-ne j t ¬ j = t
318 317 imbi1i j t ¬ t / j T U / s C = T U / s C ¬ j = t ¬ t / j T U / s C = T U / s C
319 316 318 bitr4i t / j T U / s C = T U / s C j = t j t ¬ t / j T U / s C = T U / s C
320 319 ralbii j 0 N z t / j T U / s C = T U / s C j = t j 0 N z j t ¬ t / j T U / s C = T U / s C
321 df-ral j 0 N z j t ¬ t / j T U / s C = T U / s C j j 0 N z j t ¬ t / j T U / s C = T U / s C
322 320 321 bitri j 0 N z t / j T U / s C = T U / s C j = t j j 0 N z j t ¬ t / j T U / s C = T U / s C
323 df-ral j 0 N t j z ¬ t / j T U / s C = T U / s C j j 0 N t j z ¬ t / j T U / s C = T U / s C
324 315 322 323 3bitr4i j 0 N z t / j T U / s C = T U / s C j = t j 0 N t j z ¬ t / j T U / s C = T U / s C
325 305 324 sylib φ t 0 N z 0 N t i 0 N 1 j 0 N z i = T U / s C j 0 N t j z ¬ t / j T U / s C = T U / s C
326 df-ne j z ¬ j = z
327 326 imbi1i j z ¬ t / j T U / s C = T U / s C ¬ j = z ¬ t / j T U / s C = T U / s C
328 con34b t / j T U / s C = T U / s C j = z ¬ j = z ¬ t / j T U / s C = T U / s C
329 327 328 bitr4i j z ¬ t / j T U / s C = T U / s C t / j T U / s C = T U / s C j = z
330 ancr t / j T U / s C = T U / s C j = z t / j T U / s C = T U / s C j = z t / j T U / s C = T U / s C
331 329 330 sylbi j z ¬ t / j T U / s C = T U / s C t / j T U / s C = T U / s C j = z t / j T U / s C = T U / s C
332 331 ralimi j 0 N t j z ¬ t / j T U / s C = T U / s C j 0 N t t / j T U / s C = T U / s C j = z t / j T U / s C = T U / s C
333 325 332 syl φ t 0 N z 0 N t i 0 N 1 j 0 N z i = T U / s C j 0 N t t / j T U / s C = T U / s C j = z t / j T U / s C = T U / s C
334 240 333 sylanl1 φ t 0 N i 0 N 1 j 0 N t i = T U / s C z 0 N t i 0 N 1 j 0 N z i = T U / s C j 0 N t t / j T U / s C = T U / s C j = z t / j T U / s C = T U / s C
335 201 278 rexbid i = t / j T U / s C j 0 N t i = T U / s C j 0 N t t / j T U / s C = T U / s C
336 335 rspcva t / j T U / s C 0 N 1 i 0 N 1 j 0 N t i = T U / s C j 0 N t t / j T U / s C = T U / s C
337 262 336 sylan φ t 0 N i 0 N 1 j 0 N t i = T U / s C j 0 N t t / j T U / s C = T U / s C
338 337 anasss φ t 0 N i 0 N 1 j 0 N t i = T U / s C j 0 N t t / j T U / s C = T U / s C
339 338 ad2antrr φ t 0 N i 0 N 1 j 0 N t i = T U / s C z 0 N t i 0 N 1 j 0 N z i = T U / s C j 0 N t t / j T U / s C = T U / s C
340 rexim j 0 N t t / j T U / s C = T U / s C j = z t / j T U / s C = T U / s C j 0 N t t / j T U / s C = T U / s C j 0 N t j = z t / j T U / s C = T U / s C
341 334 339 340 sylc φ t 0 N i 0 N 1 j 0 N t i = T U / s C z 0 N t i 0 N 1 j 0 N z i = T U / s C j 0 N t j = z t / j T U / s C = T U / s C
342 rexex j 0 N t j = z t / j T U / s C = T U / s C j j = z t / j T U / s C = T U / s C
343 341 342 syl φ t 0 N i 0 N 1 j 0 N t i = T U / s C z 0 N t i 0 N 1 j 0 N z i = T U / s C j j = z t / j T U / s C = T U / s C
344 34 186 nfeq j t / j T U / s C = z / j T U / s C
345 188 eqeq2d j = z t / j T U / s C = T U / s C t / j T U / s C = z / j T U / s C
346 344 345 equsexv j j = z t / j T U / s C = T U / s C t / j T U / s C = z / j T U / s C
347 343 346 sylib φ t 0 N i 0 N 1 j 0 N t i = T U / s C z 0 N t i 0 N 1 j 0 N z i = T U / s C t / j T U / s C = z / j T U / s C
348 238 347 impbida φ t 0 N i 0 N 1 j 0 N t i = T U / s C z 0 N t t / j T U / s C = z / j T U / s C i 0 N 1 j 0 N z i = T U / s C
349 348 reubidva φ t 0 N i 0 N 1 j 0 N t i = T U / s C ∃! z 0 N t t / j T U / s C = z / j T U / s C ∃! z 0 N t i 0 N 1 j 0 N z i = T U / s C
350 195 349 mpbid φ t 0 N i 0 N 1 j 0 N t i = T U / s C ∃! z 0 N t i 0 N 1 j 0 N z i = T U / s C
351 an32 z 0 N z t i 0 N 1 j 0 N z i = T U / s C z 0 N i 0 N 1 j 0 N z i = T U / s C z t
352 245 anbi1i z 0 N t i 0 N 1 j 0 N z i = T U / s C z 0 N z t i 0 N 1 j 0 N z i = T U / s C
353 sneq y = z y = z
354 353 difeq2d y = z 0 N y = 0 N z
355 354 rexeqdv y = z j 0 N y i = T U / s C j 0 N z i = T U / s C
356 355 ralbidv y = z i 0 N 1 j 0 N y i = T U / s C i 0 N 1 j 0 N z i = T U / s C
357 356 elrab z y 0 N | i 0 N 1 j 0 N y i = T U / s C z 0 N i 0 N 1 j 0 N z i = T U / s C
358 357 anbi1i z y 0 N | i 0 N 1 j 0 N y i = T U / s C z t z 0 N i 0 N 1 j 0 N z i = T U / s C z t
359 351 352 358 3bitr4i z 0 N t i 0 N 1 j 0 N z i = T U / s C z y 0 N | i 0 N 1 j 0 N y i = T U / s C z t
360 eldifsn z y 0 N | i 0 N 1 j 0 N y i = T U / s C t z y 0 N | i 0 N 1 j 0 N y i = T U / s C z t
361 359 360 bitr4i z 0 N t i 0 N 1 j 0 N z i = T U / s C z y 0 N | i 0 N 1 j 0 N y i = T U / s C t
362 361 eubii ∃! z z 0 N t i 0 N 1 j 0 N z i = T U / s C ∃! z z y 0 N | i 0 N 1 j 0 N y i = T U / s C t
363 df-reu ∃! z 0 N t i 0 N 1 j 0 N z i = T U / s C ∃! z z 0 N t i 0 N 1 j 0 N z i = T U / s C
364 euhash1 y 0 N | i 0 N 1 j 0 N y i = T U / s C t Fin y 0 N | i 0 N 1 j 0 N y i = T U / s C t = 1 ∃! z z y 0 N | i 0 N 1 j 0 N y i = T U / s C t
365 18 364 ax-mp y 0 N | i 0 N 1 j 0 N y i = T U / s C t = 1 ∃! z z y 0 N | i 0 N 1 j 0 N y i = T U / s C t
366 362 363 365 3bitr4i ∃! z 0 N t i 0 N 1 j 0 N z i = T U / s C y 0 N | i 0 N 1 j 0 N y i = T U / s C t = 1
367 350 366 sylib φ t 0 N i 0 N 1 j 0 N t i = T U / s C y 0 N | i 0 N 1 j 0 N y i = T U / s C t = 1
368 31 367 sylan2b φ t y 0 N | i 0 N 1 j 0 N y i = T U / s C y 0 N | i 0 N 1 j 0 N y i = T U / s C t = 1
369 368 oveq1d φ t y 0 N | i 0 N 1 j 0 N y i = T U / s C y 0 N | i 0 N 1 j 0 N y i = T U / s C t + 1 = 1 + 1
370 26 369 eqtr3d φ t y 0 N | i 0 N 1 j 0 N y i = T U / s C y 0 N | i 0 N 1 j 0 N y i = T U / s C = 1 + 1
371 12 370 breqtrrid φ t y 0 N | i 0 N 1 j 0 N y i = T U / s C 2 y 0 N | i 0 N 1 j 0 N y i = T U / s C
372 371 ex φ t y 0 N | i 0 N 1 j 0 N y i = T U / s C 2 y 0 N | i 0 N 1 j 0 N y i = T U / s C
373 372 exlimdv φ t t y 0 N | i 0 N 1 j 0 N y i = T U / s C 2 y 0 N | i 0 N 1 j 0 N y i = T U / s C
374 7 373 syl5bi φ ¬ y 0 N | i 0 N 1 j 0 N y i = T U / s C = 2 y 0 N | i 0 N 1 j 0 N y i = T U / s C
375 dvds0 2 2 0
376 8 375 ax-mp 2 0
377 hash0 = 0
378 376 377 breqtrri 2
379 fveq2 y 0 N | i 0 N 1 j 0 N y i = T U / s C = y 0 N | i 0 N 1 j 0 N y i = T U / s C =
380 378 379 breqtrrid y 0 N | i 0 N 1 j 0 N y i = T U / s C = 2 y 0 N | i 0 N 1 j 0 N y i = T U / s C
381 374 380 pm2.61d2 φ 2 y 0 N | i 0 N 1 j 0 N y i = T U / s C