Metamath Proof Explorer


Theorem poimirlem24

Description: Lemma for poimir , two ways of expressing that a simplex has an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem28.1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 )
poimirlem28.2 ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
poimirlem25.3 ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
poimirlem25.4 ( 𝜑𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
poimirlem24.5 ( 𝜑𝑉 ∈ ( 0 ... 𝑁 ) )
Assertion poimirlem24 ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ∧ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇𝑁 ) = 0 ∧ ( 𝑈𝑁 ) = 𝑁 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem28.1 ( 𝑝 = ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 )
3 poimirlem28.2 ( ( 𝜑𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) )
4 poimirlem25.3 ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
5 poimirlem25.4 ( 𝜑𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
6 poimirlem24.5 ( 𝜑𝑉 ∈ ( 0 ... 𝑁 ) )
7 nfv 𝑗 ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
8 nfcsb1v 𝑗 𝑦 / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
9 nfcv 𝑗 ( 1 ... 𝑁 )
10 nfcv 𝑗 ( 0 ... 𝐾 )
11 8 9 10 nff 𝑗 𝑦 / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )
12 7 11 nfim 𝑗 ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
13 eleq1 ( 𝑗 = 𝑦 → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) )
14 13 anbi2d ( 𝑗 = 𝑦 → ( ( 𝜑𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) )
15 csbeq1a ( 𝑗 = 𝑦 → ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = 𝑦 / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
16 15 feq1d ( 𝑗 = 𝑦 → ( ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ 𝑦 / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) )
17 14 16 imbi12d ( 𝑗 = 𝑦 → ( ( ( 𝜑𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ↔ ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) )
18 1 nncnd ( 𝜑𝑁 ∈ ℂ )
19 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
20 18 19 syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
21 1 nnzd ( 𝜑𝑁 ∈ ℤ )
22 peano2zm ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ )
23 21 22 syl ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ )
24 uzid ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
25 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
26 23 24 25 3syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
27 20 26 eqeltrrd ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
28 fzss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) )
29 27 28 syl ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) )
30 29 sselda ( ( 𝜑𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) )
31 elun ( 𝑦 ∈ ( { 1 } ∪ { 0 } ) ↔ ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ { 0 } ) )
32 fzofzp1 ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝐾 ) )
33 elsni ( 𝑦 ∈ { 1 } → 𝑦 = 1 )
34 33 oveq2d ( 𝑦 ∈ { 1 } → ( 𝑥 + 𝑦 ) = ( 𝑥 + 1 ) )
35 34 eleq1d ( 𝑦 ∈ { 1 } → ( ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ↔ ( 𝑥 + 1 ) ∈ ( 0 ... 𝐾 ) ) )
36 32 35 syl5ibrcom ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑦 ∈ { 1 } → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) )
37 elfzoelz ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → 𝑥 ∈ ℤ )
38 37 zcnd ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → 𝑥 ∈ ℂ )
39 38 addid1d ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑥 + 0 ) = 𝑥 )
40 elfzofz ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → 𝑥 ∈ ( 0 ... 𝐾 ) )
41 39 40 eqeltrd ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑥 + 0 ) ∈ ( 0 ... 𝐾 ) )
42 elsni ( 𝑦 ∈ { 0 } → 𝑦 = 0 )
43 42 oveq2d ( 𝑦 ∈ { 0 } → ( 𝑥 + 𝑦 ) = ( 𝑥 + 0 ) )
44 43 eleq1d ( 𝑦 ∈ { 0 } → ( ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ↔ ( 𝑥 + 0 ) ∈ ( 0 ... 𝐾 ) ) )
45 41 44 syl5ibrcom ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑦 ∈ { 0 } → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) )
46 36 45 jaod ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ { 0 } ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) )
47 31 46 syl5bi ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑦 ∈ ( { 1 } ∪ { 0 } ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) )
48 47 imp ( ( 𝑥 ∈ ( 0 ..^ 𝐾 ) ∧ 𝑦 ∈ ( { 1 } ∪ { 0 } ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) )
49 48 adantl ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) ∧ 𝑦 ∈ ( { 1 } ∪ { 0 } ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) )
50 4 adantr ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
51 1ex 1 ∈ V
52 51 fconst ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 }
53 c0ex 0 ∈ V
54 53 fconst ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 }
55 52 54 pm3.2i ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } )
56 dff1o3 ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun 𝑈 ) )
57 56 simprbi ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun 𝑈 )
58 imain ( Fun 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) )
59 5 57 58 3syl ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) )
60 elfznn0 ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℕ0 )
61 60 nn0red ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℝ )
62 61 ltp1d ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 < ( 𝑗 + 1 ) )
63 fzdisj ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ )
64 62 63 syl ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ )
65 64 imaeq2d ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) )
66 ima0 ( 𝑈 “ ∅ ) = ∅
67 65 66 eqtrdi ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ )
68 59 67 sylan9req ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ )
69 fun ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) ∧ ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) )
70 55 68 69 sylancr ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) )
71 nn0p1nn ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ )
72 60 71 syl ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ℕ )
73 nnuz ℕ = ( ℤ ‘ 1 )
74 72 73 eleqtrdi ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) )
75 elfzuz3 ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝑗 ) )
76 fzsplit2 ( ( ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ𝑗 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
77 74 75 76 syl2anc ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
78 77 imaeq2d ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) )
79 imaundi ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
80 78 79 eqtr2di ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ( 1 ... 𝑁 ) ) )
81 f1ofo ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) )
82 foima ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
83 5 81 82 3syl ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
84 80 83 sylan9eqr ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
85 84 feq2d ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) )
86 70 85 mpbid ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) )
87 ovex ( 1 ... 𝑁 ) ∈ V
88 87 a1i ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ V )
89 inidm ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 )
90 49 50 86 88 88 89 off ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
91 30 90 syldan ( ( 𝜑𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
92 12 17 91 chvarfv ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
93 fzp1elp1 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) )
94 20 oveq2d ( 𝜑 → ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 0 ... 𝑁 ) )
95 94 eleq2d ( 𝜑 → ( ( 𝑦 + 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) ↔ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) )
96 95 biimpa ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) )
97 93 96 sylan2 ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) )
98 nfv 𝑗 ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) )
99 nfcsb1v 𝑗 ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
100 99 9 10 nff 𝑗 ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )
101 98 100 nfim 𝑗 ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
102 ovex ( 𝑦 + 1 ) ∈ V
103 eleq1 ( 𝑗 = ( 𝑦 + 1 ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) )
104 103 anbi2d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) )
105 csbeq1a ( 𝑗 = ( 𝑦 + 1 ) → ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
106 105 feq1d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) )
107 104 106 imbi12d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ↔ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) )
108 101 102 107 90 vtoclf ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
109 97 108 syldan ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
110 csbeq1 ( 𝑦 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → 𝑦 / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
111 110 feq1d ( 𝑦 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ( 𝑦 / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) )
112 csbeq1 ( ( 𝑦 + 1 ) = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
113 112 feq1d ( ( 𝑦 + 1 ) = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ( ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) )
114 111 113 ifboth ( ( 𝑦 / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ( 𝑦 + 1 ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
115 92 109 114 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
116 ovex ( 0 ... 𝐾 ) ∈ V
117 116 87 elmap ( if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↔ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )
118 115 117 sylibr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
119 118 fmpttd ( 𝜑 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
120 ovex ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ V
121 ovex ( 0 ... ( 𝑁 − 1 ) ) ∈ V
122 120 121 elmap ( ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
123 119 122 sylibr ( 𝜑 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) )
124 rneq ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ran 𝑥 = ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
125 124 mpteq1d ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( 𝑝 ∈ ran 𝑥𝐵 ) = ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) )
126 125 rneqd ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ran ( 𝑝 ∈ ran 𝑥𝐵 ) = ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) )
127 126 sseq2d ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ↔ ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) )
128 124 rexeqdv ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝𝑁 ) ≠ 0 ) )
129 127 128 anbi12d ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝𝑁 ) ≠ 0 ) ) )
130 129 ceqsrexv ( ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝𝑁 ) ≠ 0 ) ) )
131 123 130 syl ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝𝑁 ) ≠ 0 ) ) )
132 dfss3 ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) )
133 ovex ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V
134 133 2 csbie ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 = 𝐶
135 134 csbeq2i 𝑇 , 𝑈 ⟩ / 𝑠 ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶
136 opex 𝑇 , 𝑈 ⟩ ∈ V
137 136 a1i ( 𝜑 → ⟨ 𝑇 , 𝑈 ⟩ ∈ V )
138 fveq2 ( 𝑠 = ⟨ 𝑇 , 𝑈 ⟩ → ( 1st𝑠 ) = ( 1st ‘ ⟨ 𝑇 , 𝑈 ⟩ ) )
139 fex ( ( 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ∧ ( 1 ... 𝑁 ) ∈ V ) → 𝑇 ∈ V )
140 4 87 139 sylancl ( 𝜑𝑇 ∈ V )
141 f1oexrnex ( ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ ( 1 ... 𝑁 ) ∈ V ) → 𝑈 ∈ V )
142 5 87 141 sylancl ( 𝜑𝑈 ∈ V )
143 op1stg ( ( 𝑇 ∈ V ∧ 𝑈 ∈ V ) → ( 1st ‘ ⟨ 𝑇 , 𝑈 ⟩ ) = 𝑇 )
144 140 142 143 syl2anc ( 𝜑 → ( 1st ‘ ⟨ 𝑇 , 𝑈 ⟩ ) = 𝑇 )
145 138 144 sylan9eqr ( ( 𝜑𝑠 = ⟨ 𝑇 , 𝑈 ⟩ ) → ( 1st𝑠 ) = 𝑇 )
146 fveq2 ( 𝑠 = ⟨ 𝑇 , 𝑈 ⟩ → ( 2nd𝑠 ) = ( 2nd ‘ ⟨ 𝑇 , 𝑈 ⟩ ) )
147 op2ndg ( ( 𝑇 ∈ V ∧ 𝑈 ∈ V ) → ( 2nd ‘ ⟨ 𝑇 , 𝑈 ⟩ ) = 𝑈 )
148 140 142 147 syl2anc ( 𝜑 → ( 2nd ‘ ⟨ 𝑇 , 𝑈 ⟩ ) = 𝑈 )
149 146 148 sylan9eqr ( ( 𝜑𝑠 = ⟨ 𝑇 , 𝑈 ⟩ ) → ( 2nd𝑠 ) = 𝑈 )
150 imaeq1 ( ( 2nd𝑠 ) = 𝑈 → ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... 𝑗 ) ) )
151 150 xpeq1d ( ( 2nd𝑠 ) = 𝑈 → ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) )
152 imaeq1 ( ( 2nd𝑠 ) = 𝑈 → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
153 152 xpeq1d ( ( 2nd𝑠 ) = 𝑈 → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
154 151 153 uneq12d ( ( 2nd𝑠 ) = 𝑈 → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
155 149 154 syl ( ( 𝜑𝑠 = ⟨ 𝑇 , 𝑈 ⟩ ) → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
156 145 155 oveq12d ( ( 𝜑𝑠 = ⟨ 𝑇 , 𝑈 ⟩ ) → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
157 156 csbeq1d ( ( 𝜑𝑠 = ⟨ 𝑇 , 𝑈 ⟩ ) → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 = ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 )
158 137 157 csbied ( 𝜑𝑇 , 𝑈 ⟩ / 𝑠 ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 = ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 )
159 135 158 eqtr3id ( 𝜑𝑇 , 𝑈 ⟩ / 𝑠 𝐶 = ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 )
160 159 csbeq2dv ( 𝜑 if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 )
161 160 eqeq2d ( 𝜑 → ( 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 ) )
162 161 rexbidv ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 ) )
163 vex 𝑖 ∈ V
164 eqid ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) = ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 )
165 164 elrnmpt ( 𝑖 ∈ V → ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝐵 ) )
166 163 165 ax-mp ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝐵 )
167 nfv 𝑘 𝑖 = 𝐵
168 nfcsb1v 𝑝 𝑘 / 𝑝 𝐵
169 168 nfeq2 𝑝 𝑖 = 𝑘 / 𝑝 𝐵
170 csbeq1a ( 𝑝 = 𝑘𝐵 = 𝑘 / 𝑝 𝐵 )
171 170 eqeq2d ( 𝑝 = 𝑘 → ( 𝑖 = 𝐵𝑖 = 𝑘 / 𝑝 𝐵 ) )
172 167 169 171 cbvrexw ( ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝐵 ↔ ∃ 𝑘 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝑘 / 𝑝 𝐵 )
173 ovex ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V
174 173 csbex if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V
175 174 rgenw 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V
176 eqid ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
177 csbeq1 ( 𝑘 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝑘 / 𝑝 𝐵 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 )
178 vex 𝑦 ∈ V
179 178 102 ifex if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V
180 csbnestgw ( if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 )
181 179 180 ax-mp if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵
182 177 181 eqtr4di ( 𝑘 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝑘 / 𝑝 𝐵 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 )
183 182 eqeq2d ( 𝑘 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝑖 = 𝑘 / 𝑝 𝐵𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 ) )
184 176 183 rexrnmptw ( ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V → ( ∃ 𝑘 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝑘 / 𝑝 𝐵 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 ) )
185 175 184 ax-mp ( ∃ 𝑘 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝑘 / 𝑝 𝐵 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 )
186 166 172 185 3bitri ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 𝐵 )
187 162 186 bitr4di ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) )
188 29 sselda ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ( 0 ... 𝑁 ) )
189 188 adantr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑦 < 𝑉 ) → 𝑦 ∈ ( 0 ... 𝑁 ) )
190 elfzelz ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℤ )
191 190 zred ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℝ )
192 191 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ℝ )
193 ltne ( ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝑉 ) → 𝑉𝑦 )
194 193 necomd ( ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝑉 ) → 𝑦𝑉 )
195 192 194 sylan ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑦 < 𝑉 ) → 𝑦𝑉 )
196 eldifsn ( 𝑦 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ↔ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ 𝑦𝑉 ) )
197 189 195 196 sylanbrc ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑦 < 𝑉 ) → 𝑦 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) )
198 97 adantr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) )
199 6 elfzelzd ( 𝜑𝑉 ∈ ℤ )
200 199 zred ( 𝜑𝑉 ∈ ℝ )
201 200 ad2antrr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → 𝑉 ∈ ℝ )
202 zre ( 𝑉 ∈ ℤ → 𝑉 ∈ ℝ )
203 zre ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ )
204 lenlt ( ( 𝑉 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑉𝑦 ↔ ¬ 𝑦 < 𝑉 ) )
205 202 203 204 syl2an ( ( 𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑉𝑦 ↔ ¬ 𝑦 < 𝑉 ) )
206 zleltp1 ( ( 𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑉𝑦𝑉 < ( 𝑦 + 1 ) ) )
207 205 206 bitr3d ( ( 𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ¬ 𝑦 < 𝑉𝑉 < ( 𝑦 + 1 ) ) )
208 199 190 207 syl2an ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ¬ 𝑦 < 𝑉𝑉 < ( 𝑦 + 1 ) ) )
209 208 biimpa ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → 𝑉 < ( 𝑦 + 1 ) )
210 201 209 gtned ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → ( 𝑦 + 1 ) ≠ 𝑉 )
211 eldifsn ( ( 𝑦 + 1 ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ↔ ( ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑦 + 1 ) ≠ 𝑉 ) )
212 198 210 211 sylanbrc ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → ( 𝑦 + 1 ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) )
213 197 212 ifclda ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) )
214 nfcsb1v 𝑗 if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶
215 214 nfeq2 𝑗 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶
216 csbeq1a ( 𝑗 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 )
217 216 eqeq2d ( 𝑗 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ( 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
218 215 217 rspce ( ( if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ∧ 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 )
219 218 ex ( if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
220 213 219 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
221 220 rexlimdva ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
222 nfv 𝑗 𝜑
223 nfcv 𝑗 ( 0 ... ( 𝑁 − 1 ) )
224 223 215 nfrex 𝑗𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶
225 eldifi ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ( 0 ... 𝑁 ) )
226 225 60 syl ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℕ0 )
227 226 nn0ge0d ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 0 ≤ 𝑗 )
228 227 ad2antlr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 0 ≤ 𝑗 )
229 226 nn0red ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℝ )
230 229 ad2antlr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 ∈ ℝ )
231 200 ad2antrr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑉 ∈ ℝ )
232 21 zred ( 𝜑𝑁 ∈ ℝ )
233 232 ad2antrr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑁 ∈ ℝ )
234 simpr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 < 𝑉 )
235 elfzle2 ( 𝑉 ∈ ( 0 ... 𝑁 ) → 𝑉𝑁 )
236 6 235 syl ( 𝜑𝑉𝑁 )
237 236 ad2antrr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑉𝑁 )
238 230 231 233 234 237 ltletrd ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 < 𝑁 )
239 225 elfzelzd ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℤ )
240 zltlem1 ( ( 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 < 𝑁𝑗 ≤ ( 𝑁 − 1 ) ) )
241 239 21 240 syl2anr ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 < 𝑁𝑗 ≤ ( 𝑁 − 1 ) ) )
242 241 adantr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → ( 𝑗 < 𝑁𝑗 ≤ ( 𝑁 − 1 ) ) )
243 238 242 mpbid ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 ≤ ( 𝑁 − 1 ) )
244 0z 0 ∈ ℤ
245 elfz ( ( 𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗𝑗 ≤ ( 𝑁 − 1 ) ) ) )
246 244 245 mp3an2 ( ( 𝑗 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗𝑗 ≤ ( 𝑁 − 1 ) ) ) )
247 239 23 246 syl2anr ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗𝑗 ≤ ( 𝑁 − 1 ) ) ) )
248 247 adantr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗𝑗 ≤ ( 𝑁 − 1 ) ) ) )
249 228 243 248 mpbir2and ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) )
250 0red ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 0 ∈ ℝ )
251 200 ad2antrr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑉 ∈ ℝ )
252 229 ad2antlr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 ∈ ℝ )
253 elfzle1 ( 𝑉 ∈ ( 0 ... 𝑁 ) → 0 ≤ 𝑉 )
254 6 253 syl ( 𝜑 → 0 ≤ 𝑉 )
255 254 ad2antrr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 0 ≤ 𝑉 )
256 lenlt ( ( 𝑉 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑉𝑗 ↔ ¬ 𝑗 < 𝑉 ) )
257 200 229 256 syl2an ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑉𝑗 ↔ ¬ 𝑗 < 𝑉 ) )
258 257 biimpar ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑉𝑗 )
259 eldifsni ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗𝑉 )
260 259 ad2antlr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗𝑉 )
261 ltlen ( ( 𝑉 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑉 < 𝑗 ↔ ( 𝑉𝑗𝑗𝑉 ) ) )
262 200 229 261 syl2an ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑉 < 𝑗 ↔ ( 𝑉𝑗𝑗𝑉 ) ) )
263 262 adantr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 𝑉 < 𝑗 ↔ ( 𝑉𝑗𝑗𝑉 ) ) )
264 258 260 263 mpbir2and ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑉 < 𝑗 )
265 250 251 252 255 264 lelttrd ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 0 < 𝑗 )
266 zgt0ge1 ( 𝑗 ∈ ℤ → ( 0 < 𝑗 ↔ 1 ≤ 𝑗 ) )
267 239 266 syl ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( 0 < 𝑗 ↔ 1 ≤ 𝑗 ) )
268 267 ad2antlr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 0 < 𝑗 ↔ 1 ≤ 𝑗 ) )
269 265 268 mpbid ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 1 ≤ 𝑗 )
270 elfzle2 ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗𝑁 )
271 225 270 syl ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗𝑁 )
272 271 ad2antlr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗𝑁 )
273 1z 1 ∈ ℤ
274 elfz ( ( 𝑗 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗𝑗𝑁 ) ) )
275 273 274 mp3an2 ( ( 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗𝑗𝑁 ) ) )
276 239 21 275 syl2anr ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗𝑗𝑁 ) ) )
277 276 adantr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗𝑗𝑁 ) ) )
278 269 272 277 mpbir2and ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 ∈ ( 1 ... 𝑁 ) )
279 elfzmlbm ( 𝑗 ∈ ( 1 ... 𝑁 ) → ( 𝑗 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) )
280 278 279 syl ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 𝑗 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) )
281 249 280 ifclda ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ∈ ( 0 ... ( 𝑁 − 1 ) ) )
282 breq1 ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 < 𝑉 ↔ if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 ) )
283 id ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) )
284 oveq1 ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 + 1 ) = ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) )
285 282 283 284 ifbieq12d ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) )
286 285 eqeq2d ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) ↔ 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) )
287 breq1 ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( ( 𝑗 − 1 ) < 𝑉 ↔ if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 ) )
288 id ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) )
289 oveq1 ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( ( 𝑗 − 1 ) + 1 ) = ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) )
290 287 288 289 ifbieq12d ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) )
291 290 eqeq2d ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 = if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) ↔ 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) )
292 iftrue ( 𝑗 < 𝑉 → if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) = 𝑗 )
293 292 eqcomd ( 𝑗 < 𝑉𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) )
294 293 adantl ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) )
295 zlem1lt ( ( 𝑗 ∈ ℤ ∧ 𝑉 ∈ ℤ ) → ( 𝑗𝑉 ↔ ( 𝑗 − 1 ) < 𝑉 ) )
296 239 199 295 syl2anr ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗𝑉 ↔ ( 𝑗 − 1 ) < 𝑉 ) )
297 259 necomd ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑉𝑗 )
298 297 adantl ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → 𝑉𝑗 )
299 ltlen ( ( 𝑗 ∈ ℝ ∧ 𝑉 ∈ ℝ ) → ( 𝑗 < 𝑉 ↔ ( 𝑗𝑉𝑉𝑗 ) ) )
300 229 200 299 syl2anr ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 < 𝑉 ↔ ( 𝑗𝑉𝑉𝑗 ) ) )
301 300 biimprd ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( ( 𝑗𝑉𝑉𝑗 ) → 𝑗 < 𝑉 ) )
302 298 301 mpan2d ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗𝑉𝑗 < 𝑉 ) )
303 296 302 sylbird ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( ( 𝑗 − 1 ) < 𝑉𝑗 < 𝑉 ) )
304 303 con3dimp ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ¬ ( 𝑗 − 1 ) < 𝑉 )
305 304 iffalsed ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) = ( ( 𝑗 − 1 ) + 1 ) )
306 226 nn0cnd ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℂ )
307 npcan1 ( 𝑗 ∈ ℂ → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 )
308 306 307 syl ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 )
309 308 ad2antlr ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 )
310 305 309 eqtr2d ( ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 = if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) )
311 286 291 294 310 ifbothda ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) )
312 csbeq1a ( 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) → 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 )
313 311 312 syl ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 )
314 313 eqeq2d ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶𝑖 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
315 314 biimpd ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶𝑖 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
316 breq1 ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑦 < 𝑉 ↔ if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 ) )
317 id ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) )
318 oveq1 ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑦 + 1 ) = ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) )
319 316 317 318 ifbieq12d ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) )
320 319 csbeq1d ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 )
321 320 eqeq2d ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶𝑖 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
322 321 rspcev ( ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑖 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 )
323 281 315 322 syl6an ( ( 𝜑𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
324 323 ex ( 𝜑 → ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) ) )
325 222 224 324 rexlimd ( 𝜑 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
326 221 325 impbid ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
327 187 326 bitr3d ( 𝜑 → ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
328 327 ralbidv ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
329 132 328 syl5bb ( 𝜑 → ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ) )
330 329 anbi1d ( 𝜑 → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝𝑁 ) ≠ 0 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝𝑁 ) ≠ 0 ) ) )
331 1 4 5 6 poimirlem23 ( 𝜑 → ( ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝𝑁 ) ≠ 0 ↔ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇𝑁 ) = 0 ∧ ( 𝑈𝑁 ) = 𝑁 ) ) ) )
332 331 anbi2d ( 𝜑 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝𝑁 ) ≠ 0 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ∧ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇𝑁 ) = 0 ∧ ( 𝑈𝑁 ) = 𝑁 ) ) ) ) )
333 131 330 332 3bitrd ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( 𝑇f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝𝑁 ) ≠ 0 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = 𝑇 , 𝑈 ⟩ / 𝑠 𝐶 ∧ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇𝑁 ) = 0 ∧ ( 𝑈𝑁 ) = 𝑁 ) ) ) ) )