| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | poimirlem28.1 | ⊢ ( 𝑝  =  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  𝐵  =  𝐶 ) | 
						
							| 3 |  | poimirlem28.2 | ⊢ ( ( 𝜑  ∧  𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  𝐵  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 4 |  | poimirlem25.3 | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 5 |  | poimirlem25.4 | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 6 |  | poimirlem24.5 | ⊢ ( 𝜑  →  𝑉  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 8 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑗 ( 1 ... 𝑁 ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑗 ( 0 ... 𝐾 ) | 
						
							| 11 | 8 9 10 | nff | ⊢ Ⅎ 𝑗 ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) | 
						
							| 12 | 7 11 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 13 |  | eleq1 | ⊢ ( 𝑗  =  𝑦  →  ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑗  =  𝑦  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ↔  ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 15 |  | csbeq1a | ⊢ ( 𝑗  =  𝑦  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 16 | 15 | feq1d | ⊢ ( 𝑗  =  𝑦  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ↔  ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) | 
						
							| 17 | 14 16 | imbi12d | ⊢ ( 𝑗  =  𝑦  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  ↔  ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) ) | 
						
							| 18 | 1 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 19 |  | npcan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 21 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 22 |  | peano2zm | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 24 |  | uzid | ⊢ ( ( 𝑁  −  1 )  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 25 |  | peano2uz | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 26 | 23 24 25 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 27 | 20 26 | eqeltrrd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 28 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 30 | 29 | sselda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 31 |  | elun | ⊢ ( 𝑦  ∈  ( { 1 }  ∪  { 0 } )  ↔  ( 𝑦  ∈  { 1 }  ∨  𝑦  ∈  { 0 } ) ) | 
						
							| 32 |  | fzofzp1 | ⊢ ( 𝑥  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑥  +  1 )  ∈  ( 0 ... 𝐾 ) ) | 
						
							| 33 |  | elsni | ⊢ ( 𝑦  ∈  { 1 }  →  𝑦  =  1 ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝑦  ∈  { 1 }  →  ( 𝑥  +  𝑦 )  =  ( 𝑥  +  1 ) ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( 𝑦  ∈  { 1 }  →  ( ( 𝑥  +  𝑦 )  ∈  ( 0 ... 𝐾 )  ↔  ( 𝑥  +  1 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 36 | 32 35 | syl5ibrcom | ⊢ ( 𝑥  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑦  ∈  { 1 }  →  ( 𝑥  +  𝑦 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 37 |  | elfzoelz | ⊢ ( 𝑥  ∈  ( 0 ..^ 𝐾 )  →  𝑥  ∈  ℤ ) | 
						
							| 38 | 37 | zcnd | ⊢ ( 𝑥  ∈  ( 0 ..^ 𝐾 )  →  𝑥  ∈  ℂ ) | 
						
							| 39 | 38 | addridd | ⊢ ( 𝑥  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑥  +  0 )  =  𝑥 ) | 
						
							| 40 |  | elfzofz | ⊢ ( 𝑥  ∈  ( 0 ..^ 𝐾 )  →  𝑥  ∈  ( 0 ... 𝐾 ) ) | 
						
							| 41 | 39 40 | eqeltrd | ⊢ ( 𝑥  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑥  +  0 )  ∈  ( 0 ... 𝐾 ) ) | 
						
							| 42 |  | elsni | ⊢ ( 𝑦  ∈  { 0 }  →  𝑦  =  0 ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝑦  ∈  { 0 }  →  ( 𝑥  +  𝑦 )  =  ( 𝑥  +  0 ) ) | 
						
							| 44 | 43 | eleq1d | ⊢ ( 𝑦  ∈  { 0 }  →  ( ( 𝑥  +  𝑦 )  ∈  ( 0 ... 𝐾 )  ↔  ( 𝑥  +  0 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 45 | 41 44 | syl5ibrcom | ⊢ ( 𝑥  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑦  ∈  { 0 }  →  ( 𝑥  +  𝑦 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 46 | 36 45 | jaod | ⊢ ( 𝑥  ∈  ( 0 ..^ 𝐾 )  →  ( ( 𝑦  ∈  { 1 }  ∨  𝑦  ∈  { 0 } )  →  ( 𝑥  +  𝑦 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 47 | 31 46 | biimtrid | ⊢ ( 𝑥  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑦  ∈  ( { 1 }  ∪  { 0 } )  →  ( 𝑥  +  𝑦 )  ∈  ( 0 ... 𝐾 ) ) ) | 
						
							| 48 | 47 | imp | ⊢ ( ( 𝑥  ∈  ( 0 ..^ 𝐾 )  ∧  𝑦  ∈  ( { 1 }  ∪  { 0 } ) )  →  ( 𝑥  +  𝑦 )  ∈  ( 0 ... 𝐾 ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑥  ∈  ( 0 ..^ 𝐾 )  ∧  𝑦  ∈  ( { 1 }  ∪  { 0 } ) ) )  →  ( 𝑥  +  𝑦 )  ∈  ( 0 ... 𝐾 ) ) | 
						
							| 50 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 51 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 52 | 51 | fconst | ⊢ ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) : ( 𝑈  “  ( 1 ... 𝑗 ) ) ⟶ { 1 } | 
						
							| 53 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 54 | 53 | fconst | ⊢ ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) : ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ⟶ { 0 } | 
						
							| 55 | 52 54 | pm3.2i | ⊢ ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) : ( 𝑈  “  ( 1 ... 𝑗 ) ) ⟶ { 1 }  ∧  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) : ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ⟶ { 0 } ) | 
						
							| 56 |  | dff1o3 | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ↔  ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 )  ∧  Fun  ◡ 𝑈 ) ) | 
						
							| 57 | 56 | simprbi | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  Fun  ◡ 𝑈 ) | 
						
							| 58 |  | imain | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 59 | 5 57 58 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 60 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 61 | 60 | nn0red | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ∈  ℝ ) | 
						
							| 62 | 61 | ltp1d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  <  ( 𝑗  +  1 ) ) | 
						
							| 63 |  | fzdisj | ⊢ ( 𝑗  <  ( 𝑗  +  1 )  →  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 64 | 62 63 | syl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 65 | 64 | imaeq2d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 66 |  | ima0 | ⊢ ( 𝑈  “  ∅ )  =  ∅ | 
						
							| 67 | 65 66 | eqtrdi | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 68 | 59 67 | sylan9req | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 69 |  | fun | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) : ( 𝑈  “  ( 1 ... 𝑗 ) ) ⟶ { 1 }  ∧  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) : ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ⟶ { 0 } )  ∧  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ⟶ ( { 1 }  ∪  { 0 } ) ) | 
						
							| 70 | 55 68 69 | sylancr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ⟶ ( { 1 }  ∪  { 0 } ) ) | 
						
							| 71 |  | nn0p1nn | ⊢ ( 𝑗  ∈  ℕ0  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 72 | 60 71 | syl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 73 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 74 | 72 73 | eleqtrdi | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 75 |  | elfzuz3 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 76 |  | fzsplit2 | ⊢ ( ( ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 77 | 74 75 76 | syl2anc | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 78 | 77 | imaeq2d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 79 |  | imaundi | ⊢ ( 𝑈  “  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 80 | 78 79 | eqtr2di | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( 𝑈  “  ( 1 ... 𝑁 ) ) ) | 
						
							| 81 |  | f1ofo | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) | 
						
							| 82 |  | foima | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 )  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 83 | 5 81 82 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 84 | 80 83 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 85 | 84 | feq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ⟶ ( { 1 }  ∪  { 0 } )  ↔  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 }  ∪  { 0 } ) ) ) | 
						
							| 86 | 70 85 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 }  ∪  { 0 } ) ) | 
						
							| 87 |  | ovex | ⊢ ( 1 ... 𝑁 )  ∈  V | 
						
							| 88 | 87 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 1 ... 𝑁 )  ∈  V ) | 
						
							| 89 |  | inidm | ⊢ ( ( 1 ... 𝑁 )  ∩  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) | 
						
							| 90 | 49 50 86 88 88 89 | off | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 91 | 30 90 | syldan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 92 | 12 17 91 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 93 |  | fzp1elp1 | ⊢ ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( 𝑦  +  1 )  ∈  ( 0 ... ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 94 | 20 | oveq2d | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 0 ... 𝑁 ) ) | 
						
							| 95 | 94 | eleq2d | ⊢ ( 𝜑  →  ( ( 𝑦  +  1 )  ∈  ( 0 ... ( ( 𝑁  −  1 )  +  1 ) )  ↔  ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 96 | 95 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝑦  +  1 )  ∈  ( 0 ... ( ( 𝑁  −  1 )  +  1 ) ) )  →  ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 97 | 93 96 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 98 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 99 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 100 | 99 9 10 | nff | ⊢ Ⅎ 𝑗 ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) | 
						
							| 101 | 98 100 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 102 |  | ovex | ⊢ ( 𝑦  +  1 )  ∈  V | 
						
							| 103 |  | eleq1 | ⊢ ( 𝑗  =  ( 𝑦  +  1 )  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 104 | 103 | anbi2d | ⊢ ( 𝑗  =  ( 𝑦  +  1 )  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 105 |  | csbeq1a | ⊢ ( 𝑗  =  ( 𝑦  +  1 )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 106 | 105 | feq1d | ⊢ ( 𝑗  =  ( 𝑦  +  1 )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ↔  ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) | 
						
							| 107 | 104 106 | imbi12d | ⊢ ( 𝑗  =  ( 𝑦  +  1 )  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  ↔  ( ( 𝜑  ∧  ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) ) | 
						
							| 108 | 101 102 107 90 | vtoclf | ⊢ ( ( 𝜑  ∧  ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 109 | 97 108 | syldan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 110 |  | csbeq1 | ⊢ ( 𝑦  =  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  →  ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 111 | 110 | feq1d | ⊢ ( 𝑦  =  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  →  ( ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ↔  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) | 
						
							| 112 |  | csbeq1 | ⊢ ( ( 𝑦  +  1 )  =  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  →  ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 113 | 112 | feq1d | ⊢ ( ( 𝑦  +  1 )  =  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  →  ( ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ↔  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) | 
						
							| 114 | 111 113 | ifboth | ⊢ ( ( ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 )  ∧  ⦋ ( 𝑦  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) )  →  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 115 | 92 109 114 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 116 |  | ovex | ⊢ ( 0 ... 𝐾 )  ∈  V | 
						
							| 117 | 116 87 | elmap | ⊢ ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↔  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) | 
						
							| 118 | 115 117 | sylibr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 119 | 118 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) : ( 0 ... ( 𝑁  −  1 ) ) ⟶ ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 120 |  | ovex | ⊢ ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ∈  V | 
						
							| 121 |  | ovex | ⊢ ( 0 ... ( 𝑁  −  1 ) )  ∈  V | 
						
							| 122 | 120 121 | elmap | ⊢ ( ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) )  ↔  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) : ( 0 ... ( 𝑁  −  1 ) ) ⟶ ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 123 | 119 122 | sylibr | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 124 |  | rneq | ⊢ ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  →  ran  𝑥  =  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 125 | 124 | mpteq1d | ⊢ ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  →  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  =  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 ) ) | 
						
							| 126 | 125 | rneqd | ⊢ ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  →  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  =  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 ) ) | 
						
							| 127 | 126 | sseq2d | ⊢ ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  →  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ↔  ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 ) ) ) | 
						
							| 128 | 124 | rexeqdv | ⊢ ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  →  ( ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 129 | 127 128 | anbi12d | ⊢ ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  →  ( ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 )  ↔  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) ) | 
						
							| 130 | 129 | ceqsrexv | ⊢ ( ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) )  ↔  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) ) | 
						
							| 131 | 123 130 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) )  ↔  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) ) | 
						
							| 132 |  | dfss3 | ⊢ ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  ∈  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 ) ) | 
						
							| 133 |  | ovex | ⊢ ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V | 
						
							| 134 | 133 2 | csbie | ⊢ ⦋ ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵  =  𝐶 | 
						
							| 135 | 134 | csbeq2i | ⊢ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ ⦋ ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 136 |  | opex | ⊢ 〈 𝑇 ,  𝑈 〉  ∈  V | 
						
							| 137 | 136 | a1i | ⊢ ( 𝜑  →  〈 𝑇 ,  𝑈 〉  ∈  V ) | 
						
							| 138 |  | fveq2 | ⊢ ( 𝑠  =  〈 𝑇 ,  𝑈 〉  →  ( 1st  ‘ 𝑠 )  =  ( 1st  ‘ 〈 𝑇 ,  𝑈 〉 ) ) | 
						
							| 139 |  | fex | ⊢ ( ( 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 )  ∧  ( 1 ... 𝑁 )  ∈  V )  →  𝑇  ∈  V ) | 
						
							| 140 | 4 87 139 | sylancl | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 141 |  | f1oexrnex | ⊢ ( ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ∧  ( 1 ... 𝑁 )  ∈  V )  →  𝑈  ∈  V ) | 
						
							| 142 | 5 87 141 | sylancl | ⊢ ( 𝜑  →  𝑈  ∈  V ) | 
						
							| 143 |  | op1stg | ⊢ ( ( 𝑇  ∈  V  ∧  𝑈  ∈  V )  →  ( 1st  ‘ 〈 𝑇 ,  𝑈 〉 )  =  𝑇 ) | 
						
							| 144 | 140 142 143 | syl2anc | ⊢ ( 𝜑  →  ( 1st  ‘ 〈 𝑇 ,  𝑈 〉 )  =  𝑇 ) | 
						
							| 145 | 138 144 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑠  =  〈 𝑇 ,  𝑈 〉 )  →  ( 1st  ‘ 𝑠 )  =  𝑇 ) | 
						
							| 146 |  | fveq2 | ⊢ ( 𝑠  =  〈 𝑇 ,  𝑈 〉  →  ( 2nd  ‘ 𝑠 )  =  ( 2nd  ‘ 〈 𝑇 ,  𝑈 〉 ) ) | 
						
							| 147 |  | op2ndg | ⊢ ( ( 𝑇  ∈  V  ∧  𝑈  ∈  V )  →  ( 2nd  ‘ 〈 𝑇 ,  𝑈 〉 )  =  𝑈 ) | 
						
							| 148 | 140 142 147 | syl2anc | ⊢ ( 𝜑  →  ( 2nd  ‘ 〈 𝑇 ,  𝑈 〉 )  =  𝑈 ) | 
						
							| 149 | 146 148 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑠  =  〈 𝑇 ,  𝑈 〉 )  →  ( 2nd  ‘ 𝑠 )  =  𝑈 ) | 
						
							| 150 |  | imaeq1 | ⊢ ( ( 2nd  ‘ 𝑠 )  =  𝑈  →  ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  =  ( 𝑈  “  ( 1 ... 𝑗 ) ) ) | 
						
							| 151 | 150 | xpeq1d | ⊢ ( ( 2nd  ‘ 𝑠 )  =  𝑈  →  ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) ) | 
						
							| 152 |  | imaeq1 | ⊢ ( ( 2nd  ‘ 𝑠 )  =  𝑈  →  ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 153 | 152 | xpeq1d | ⊢ ( ( 2nd  ‘ 𝑠 )  =  𝑈  →  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 154 | 151 153 | uneq12d | ⊢ ( ( 2nd  ‘ 𝑠 )  =  𝑈  →  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 155 | 149 154 | syl | ⊢ ( ( 𝜑  ∧  𝑠  =  〈 𝑇 ,  𝑈 〉 )  →  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 156 | 145 155 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑠  =  〈 𝑇 ,  𝑈 〉 )  →  ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 157 | 156 | csbeq1d | ⊢ ( ( 𝜑  ∧  𝑠  =  〈 𝑇 ,  𝑈 〉 )  →  ⦋ ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵  =  ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) | 
						
							| 158 | 137 157 | csbied | ⊢ ( 𝜑  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ ⦋ ( ( 1st  ‘ 𝑠 )  ∘f   +  ( ( ( ( 2nd  ‘ 𝑠 )  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( ( 2nd  ‘ 𝑠 )  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵  =  ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) | 
						
							| 159 | 135 158 | eqtr3id | ⊢ ( 𝜑  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) | 
						
							| 160 | 159 | csbeq2dv | ⊢ ( 𝜑  →  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) | 
						
							| 161 | 160 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) ) | 
						
							| 162 | 161 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) ) | 
						
							| 163 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 164 |  | eqid | ⊢ ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  =  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 ) | 
						
							| 165 | 164 | elrnmpt | ⊢ ( 𝑖  ∈  V  →  ( 𝑖  ∈  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ↔  ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) 𝑖  =  𝐵 ) ) | 
						
							| 166 | 163 165 | ax-mp | ⊢ ( 𝑖  ∈  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ↔  ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) 𝑖  =  𝐵 ) | 
						
							| 167 |  | nfv | ⊢ Ⅎ 𝑘 𝑖  =  𝐵 | 
						
							| 168 |  | nfcsb1v | ⊢ Ⅎ 𝑝 ⦋ 𝑘  /  𝑝 ⦌ 𝐵 | 
						
							| 169 | 168 | nfeq2 | ⊢ Ⅎ 𝑝 𝑖  =  ⦋ 𝑘  /  𝑝 ⦌ 𝐵 | 
						
							| 170 |  | csbeq1a | ⊢ ( 𝑝  =  𝑘  →  𝐵  =  ⦋ 𝑘  /  𝑝 ⦌ 𝐵 ) | 
						
							| 171 | 170 | eqeq2d | ⊢ ( 𝑝  =  𝑘  →  ( 𝑖  =  𝐵  ↔  𝑖  =  ⦋ 𝑘  /  𝑝 ⦌ 𝐵 ) ) | 
						
							| 172 | 167 169 171 | cbvrexw | ⊢ ( ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) 𝑖  =  𝐵  ↔  ∃ 𝑘  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) 𝑖  =  ⦋ 𝑘  /  𝑝 ⦌ 𝐵 ) | 
						
							| 173 |  | ovex | ⊢ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V | 
						
							| 174 | 173 | csbex | ⊢ ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V | 
						
							| 175 | 174 | rgenw | ⊢ ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V | 
						
							| 176 |  | eqid | ⊢ ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 177 |  | csbeq1 | ⊢ ( 𝑘  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  ⦋ 𝑘  /  𝑝 ⦌ 𝐵  =  ⦋ ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) | 
						
							| 178 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 179 | 178 102 | ifex | ⊢ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  ∈  V | 
						
							| 180 |  | csbnestgw | ⊢ ( if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  ∈  V  →  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵  =  ⦋ ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) | 
						
							| 181 | 179 180 | ax-mp | ⊢ ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵  =  ⦋ ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 | 
						
							| 182 | 177 181 | eqtr4di | ⊢ ( 𝑘  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  ⦋ 𝑘  /  𝑝 ⦌ 𝐵  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) | 
						
							| 183 | 182 | eqeq2d | ⊢ ( 𝑘  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  ( 𝑖  =  ⦋ 𝑘  /  𝑝 ⦌ 𝐵  ↔  𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) ) | 
						
							| 184 | 176 183 | rexrnmptw | ⊢ ( ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V  →  ( ∃ 𝑘  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) 𝑖  =  ⦋ 𝑘  /  𝑝 ⦌ 𝐵  ↔  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) ) | 
						
							| 185 | 175 184 | ax-mp | ⊢ ( ∃ 𝑘  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) 𝑖  =  ⦋ 𝑘  /  𝑝 ⦌ 𝐵  ↔  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) | 
						
							| 186 | 166 172 185 | 3bitri | ⊢ ( 𝑖  ∈  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ↔  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  /  𝑝 ⦌ 𝐵 ) | 
						
							| 187 | 162 186 | bitr4di | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  ∈  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 ) ) ) | 
						
							| 188 | 29 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑦  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 189 | 188 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  𝑦  <  𝑉 )  →  𝑦  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 190 |  | elfzelz | ⊢ ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑦  ∈  ℤ ) | 
						
							| 191 | 190 | zred | ⊢ ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 192 | 191 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 193 |  | ltne | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑦  <  𝑉 )  →  𝑉  ≠  𝑦 ) | 
						
							| 194 | 193 | necomd | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑦  <  𝑉 )  →  𝑦  ≠  𝑉 ) | 
						
							| 195 | 192 194 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  𝑦  <  𝑉 )  →  𝑦  ≠  𝑉 ) | 
						
							| 196 |  | eldifsn | ⊢ ( 𝑦  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  ↔  ( 𝑦  ∈  ( 0 ... 𝑁 )  ∧  𝑦  ≠  𝑉 ) ) | 
						
							| 197 | 189 195 196 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  𝑦  <  𝑉 )  →  𝑦  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) ) | 
						
							| 198 | 97 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  ¬  𝑦  <  𝑉 )  →  ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 199 | 6 | elfzelzd | ⊢ ( 𝜑  →  𝑉  ∈  ℤ ) | 
						
							| 200 | 199 | zred | ⊢ ( 𝜑  →  𝑉  ∈  ℝ ) | 
						
							| 201 | 200 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  ¬  𝑦  <  𝑉 )  →  𝑉  ∈  ℝ ) | 
						
							| 202 |  | zre | ⊢ ( 𝑉  ∈  ℤ  →  𝑉  ∈  ℝ ) | 
						
							| 203 |  | zre | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℝ ) | 
						
							| 204 |  | lenlt | ⊢ ( ( 𝑉  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑉  ≤  𝑦  ↔  ¬  𝑦  <  𝑉 ) ) | 
						
							| 205 | 202 203 204 | syl2an | ⊢ ( ( 𝑉  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑉  ≤  𝑦  ↔  ¬  𝑦  <  𝑉 ) ) | 
						
							| 206 |  | zleltp1 | ⊢ ( ( 𝑉  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑉  ≤  𝑦  ↔  𝑉  <  ( 𝑦  +  1 ) ) ) | 
						
							| 207 | 205 206 | bitr3d | ⊢ ( ( 𝑉  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ¬  𝑦  <  𝑉  ↔  𝑉  <  ( 𝑦  +  1 ) ) ) | 
						
							| 208 | 199 190 207 | syl2an | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ¬  𝑦  <  𝑉  ↔  𝑉  <  ( 𝑦  +  1 ) ) ) | 
						
							| 209 | 208 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  ¬  𝑦  <  𝑉 )  →  𝑉  <  ( 𝑦  +  1 ) ) | 
						
							| 210 | 201 209 | gtned | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  ¬  𝑦  <  𝑉 )  →  ( 𝑦  +  1 )  ≠  𝑉 ) | 
						
							| 211 |  | eldifsn | ⊢ ( ( 𝑦  +  1 )  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  ↔  ( ( 𝑦  +  1 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑦  +  1 )  ≠  𝑉 ) ) | 
						
							| 212 | 198 210 211 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  ¬  𝑦  <  𝑉 )  →  ( 𝑦  +  1 )  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) ) | 
						
							| 213 | 197 212 | ifclda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) ) | 
						
							| 214 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 215 | 214 | nfeq2 | ⊢ Ⅎ 𝑗 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 216 |  | csbeq1a | ⊢ ( 𝑗  =  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 217 | 216 | eqeq2d | ⊢ ( 𝑗  =  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  →  ( 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 218 | 215 217 | rspce | ⊢ ( ( if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  ∧  𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 219 | 218 | ex | ⊢ ( if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  ( 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 220 | 213 219 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 221 | 220 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 222 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 223 |  | nfcv | ⊢ Ⅎ 𝑗 ( 0 ... ( 𝑁  −  1 ) ) | 
						
							| 224 | 223 215 | nfrexw | ⊢ Ⅎ 𝑗 ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 | 
						
							| 225 |  | eldifi | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 226 | 225 60 | syl | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  𝑗  ∈  ℕ0 ) | 
						
							| 227 | 226 | nn0ge0d | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  0  ≤  𝑗 ) | 
						
							| 228 | 227 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  0  ≤  𝑗 ) | 
						
							| 229 | 226 | nn0red | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  𝑗  ∈  ℝ ) | 
						
							| 230 | 229 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  𝑗  ∈  ℝ ) | 
						
							| 231 | 200 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  𝑉  ∈  ℝ ) | 
						
							| 232 | 21 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 233 | 232 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  𝑁  ∈  ℝ ) | 
						
							| 234 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  𝑗  <  𝑉 ) | 
						
							| 235 |  | elfzle2 | ⊢ ( 𝑉  ∈  ( 0 ... 𝑁 )  →  𝑉  ≤  𝑁 ) | 
						
							| 236 | 6 235 | syl | ⊢ ( 𝜑  →  𝑉  ≤  𝑁 ) | 
						
							| 237 | 236 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  𝑉  ≤  𝑁 ) | 
						
							| 238 | 230 231 233 234 237 | ltletrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  𝑗  <  𝑁 ) | 
						
							| 239 | 225 | elfzelzd | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  𝑗  ∈  ℤ ) | 
						
							| 240 |  | zltlem1 | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  <  𝑁  ↔  𝑗  ≤  ( 𝑁  −  1 ) ) ) | 
						
							| 241 | 239 21 240 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑗  <  𝑁  ↔  𝑗  ≤  ( 𝑁  −  1 ) ) ) | 
						
							| 242 | 241 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  ( 𝑗  <  𝑁  ↔  𝑗  ≤  ( 𝑁  −  1 ) ) ) | 
						
							| 243 | 238 242 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  𝑗  ≤  ( 𝑁  −  1 ) ) | 
						
							| 244 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 245 |  | elfz | ⊢ ( ( 𝑗  ∈  ℤ  ∧  0  ∈  ℤ  ∧  ( 𝑁  −  1 )  ∈  ℤ )  →  ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ( 0  ≤  𝑗  ∧  𝑗  ≤  ( 𝑁  −  1 ) ) ) ) | 
						
							| 246 | 244 245 | mp3an2 | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ( 𝑁  −  1 )  ∈  ℤ )  →  ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ( 0  ≤  𝑗  ∧  𝑗  ≤  ( 𝑁  −  1 ) ) ) ) | 
						
							| 247 | 239 23 246 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ( 0  ≤  𝑗  ∧  𝑗  ≤  ( 𝑁  −  1 ) ) ) ) | 
						
							| 248 | 247 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↔  ( 0  ≤  𝑗  ∧  𝑗  ≤  ( 𝑁  −  1 ) ) ) ) | 
						
							| 249 | 228 243 248 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 250 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  0  ∈  ℝ ) | 
						
							| 251 | 200 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  𝑉  ∈  ℝ ) | 
						
							| 252 | 229 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  𝑗  ∈  ℝ ) | 
						
							| 253 |  | elfzle1 | ⊢ ( 𝑉  ∈  ( 0 ... 𝑁 )  →  0  ≤  𝑉 ) | 
						
							| 254 | 6 253 | syl | ⊢ ( 𝜑  →  0  ≤  𝑉 ) | 
						
							| 255 | 254 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  0  ≤  𝑉 ) | 
						
							| 256 |  | lenlt | ⊢ ( ( 𝑉  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( 𝑉  ≤  𝑗  ↔  ¬  𝑗  <  𝑉 ) ) | 
						
							| 257 | 200 229 256 | syl2an | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑉  ≤  𝑗  ↔  ¬  𝑗  <  𝑉 ) ) | 
						
							| 258 | 257 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  𝑉  ≤  𝑗 ) | 
						
							| 259 |  | eldifsni | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  𝑗  ≠  𝑉 ) | 
						
							| 260 | 259 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  𝑗  ≠  𝑉 ) | 
						
							| 261 |  | ltlen | ⊢ ( ( 𝑉  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( 𝑉  <  𝑗  ↔  ( 𝑉  ≤  𝑗  ∧  𝑗  ≠  𝑉 ) ) ) | 
						
							| 262 | 200 229 261 | syl2an | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑉  <  𝑗  ↔  ( 𝑉  ≤  𝑗  ∧  𝑗  ≠  𝑉 ) ) ) | 
						
							| 263 | 262 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  ( 𝑉  <  𝑗  ↔  ( 𝑉  ≤  𝑗  ∧  𝑗  ≠  𝑉 ) ) ) | 
						
							| 264 | 258 260 263 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  𝑉  <  𝑗 ) | 
						
							| 265 | 250 251 252 255 264 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  0  <  𝑗 ) | 
						
							| 266 |  | zgt0ge1 | ⊢ ( 𝑗  ∈  ℤ  →  ( 0  <  𝑗  ↔  1  ≤  𝑗 ) ) | 
						
							| 267 | 239 266 | syl | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  ( 0  <  𝑗  ↔  1  ≤  𝑗 ) ) | 
						
							| 268 | 267 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  ( 0  <  𝑗  ↔  1  ≤  𝑗 ) ) | 
						
							| 269 | 265 268 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  1  ≤  𝑗 ) | 
						
							| 270 |  | elfzle2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ≤  𝑁 ) | 
						
							| 271 | 225 270 | syl | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  𝑗  ≤  𝑁 ) | 
						
							| 272 | 271 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  𝑗  ≤  𝑁 ) | 
						
							| 273 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 274 |  | elfz | ⊢ ( ( 𝑗  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 275 | 273 274 | mp3an2 | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 276 | 239 21 275 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 277 | 276 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 278 | 269 272 277 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 279 |  | elfzmlbm | ⊢ ( 𝑗  ∈  ( 1 ... 𝑁 )  →  ( 𝑗  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 280 | 278 279 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  ( 𝑗  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 281 | 249 280 | ifclda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 282 |  | breq1 | ⊢ ( 𝑗  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ( 𝑗  <  𝑉  ↔  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ) ) | 
						
							| 283 |  | id | ⊢ ( 𝑗  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  𝑗  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ) | 
						
							| 284 |  | oveq1 | ⊢ ( 𝑗  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ( 𝑗  +  1 )  =  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) ) | 
						
							| 285 | 282 283 284 | ifbieq12d | ⊢ ( 𝑗  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  +  1 ) )  =  if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) ) ) | 
						
							| 286 | 285 | eqeq2d | ⊢ ( 𝑗  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ( 𝑗  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  +  1 ) )  ↔  𝑗  =  if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) ) ) ) | 
						
							| 287 |  | breq1 | ⊢ ( ( 𝑗  −  1 )  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ( ( 𝑗  −  1 )  <  𝑉  ↔  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ) ) | 
						
							| 288 |  | id | ⊢ ( ( 𝑗  −  1 )  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ( 𝑗  −  1 )  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ) | 
						
							| 289 |  | oveq1 | ⊢ ( ( 𝑗  −  1 )  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ( ( 𝑗  −  1 )  +  1 )  =  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) ) | 
						
							| 290 | 287 288 289 | ifbieq12d | ⊢ ( ( 𝑗  −  1 )  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  if ( ( 𝑗  −  1 )  <  𝑉 ,  ( 𝑗  −  1 ) ,  ( ( 𝑗  −  1 )  +  1 ) )  =  if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) ) ) | 
						
							| 291 | 290 | eqeq2d | ⊢ ( ( 𝑗  −  1 )  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ( 𝑗  =  if ( ( 𝑗  −  1 )  <  𝑉 ,  ( 𝑗  −  1 ) ,  ( ( 𝑗  −  1 )  +  1 ) )  ↔  𝑗  =  if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) ) ) ) | 
						
							| 292 |  | iftrue | ⊢ ( 𝑗  <  𝑉  →  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  +  1 ) )  =  𝑗 ) | 
						
							| 293 | 292 | eqcomd | ⊢ ( 𝑗  <  𝑉  →  𝑗  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  +  1 ) ) ) | 
						
							| 294 | 293 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  𝑗  <  𝑉 )  →  𝑗  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  +  1 ) ) ) | 
						
							| 295 |  | zlem1lt | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑉  ∈  ℤ )  →  ( 𝑗  ≤  𝑉  ↔  ( 𝑗  −  1 )  <  𝑉 ) ) | 
						
							| 296 | 239 199 295 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑗  ≤  𝑉  ↔  ( 𝑗  −  1 )  <  𝑉 ) ) | 
						
							| 297 | 259 | necomd | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  𝑉  ≠  𝑗 ) | 
						
							| 298 | 297 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  𝑉  ≠  𝑗 ) | 
						
							| 299 |  | ltlen | ⊢ ( ( 𝑗  ∈  ℝ  ∧  𝑉  ∈  ℝ )  →  ( 𝑗  <  𝑉  ↔  ( 𝑗  ≤  𝑉  ∧  𝑉  ≠  𝑗 ) ) ) | 
						
							| 300 | 229 200 299 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑗  <  𝑉  ↔  ( 𝑗  ≤  𝑉  ∧  𝑉  ≠  𝑗 ) ) ) | 
						
							| 301 | 300 | biimprd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( ( 𝑗  ≤  𝑉  ∧  𝑉  ≠  𝑗 )  →  𝑗  <  𝑉 ) ) | 
						
							| 302 | 298 301 | mpan2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑗  ≤  𝑉  →  𝑗  <  𝑉 ) ) | 
						
							| 303 | 296 302 | sylbird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( ( 𝑗  −  1 )  <  𝑉  →  𝑗  <  𝑉 ) ) | 
						
							| 304 | 303 | con3dimp | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  ¬  ( 𝑗  −  1 )  <  𝑉 ) | 
						
							| 305 | 304 | iffalsed | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  if ( ( 𝑗  −  1 )  <  𝑉 ,  ( 𝑗  −  1 ) ,  ( ( 𝑗  −  1 )  +  1 ) )  =  ( ( 𝑗  −  1 )  +  1 ) ) | 
						
							| 306 | 226 | nn0cnd | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  𝑗  ∈  ℂ ) | 
						
							| 307 |  | npcan1 | ⊢ ( 𝑗  ∈  ℂ  →  ( ( 𝑗  −  1 )  +  1 )  =  𝑗 ) | 
						
							| 308 | 306 307 | syl | ⊢ ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  ( ( 𝑗  −  1 )  +  1 )  =  𝑗 ) | 
						
							| 309 | 308 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  ( ( 𝑗  −  1 )  +  1 )  =  𝑗 ) | 
						
							| 310 | 305 309 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  ∧  ¬  𝑗  <  𝑉 )  →  𝑗  =  if ( ( 𝑗  −  1 )  <  𝑉 ,  ( 𝑗  −  1 ) ,  ( ( 𝑗  −  1 )  +  1 ) ) ) | 
						
							| 311 | 286 291 294 310 | ifbothda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  𝑗  =  if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) ) ) | 
						
							| 312 |  | csbeq1a | ⊢ ( 𝑗  =  if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 313 | 311 312 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 314 | 313 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 315 | 314 | biimpd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  𝑖  =  ⦋ if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 316 |  | breq1 | ⊢ ( 𝑦  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ( 𝑦  <  𝑉  ↔  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ) ) | 
						
							| 317 |  | id | ⊢ ( 𝑦  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  𝑦  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ) | 
						
							| 318 |  | oveq1 | ⊢ ( 𝑦  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ( 𝑦  +  1 )  =  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) ) | 
						
							| 319 | 316 317 318 | ifbieq12d | ⊢ ( 𝑦  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) ) ) | 
						
							| 320 | 319 | csbeq1d | ⊢ ( 𝑦  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  =  ⦋ if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 321 | 320 | eqeq2d | ⊢ ( 𝑦  =  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  →  ( 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  𝑖  =  ⦋ if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 322 | 321 | rspcev | ⊢ ( ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  𝑖  =  ⦋ if ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  <  𝑉 ,  if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) ) ,  ( if ( 𝑗  <  𝑉 ,  𝑗 ,  ( 𝑗  −  1 ) )  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 )  →  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) | 
						
							| 323 | 281 315 322 | syl6an | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) )  →  ( 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 324 | 323 | ex | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  ( 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) ) | 
						
							| 325 | 222 224 324 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  →  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 326 | 221 325 | impbid | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 327 | 187 326 | bitr3d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ↔  ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 328 | 327 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) 𝑖  ∈  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 329 | 132 328 | bitrid | ⊢ ( 𝜑  →  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ↔  ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶 ) ) | 
						
							| 330 | 329 | anbi1d | ⊢ ( 𝜑  →  ( ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0 ) ) ) | 
						
							| 331 | 1 4 5 6 | poimirlem23 | ⊢ ( 𝜑  →  ( ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ¬  ( 𝑉  =  𝑁  ∧  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 332 | 331 | anbi2d | ⊢ ( 𝜑  →  ( ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0 )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  ¬  ( 𝑉  =  𝑁  ∧  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) ) ) ) ) | 
						
							| 333 | 131 330 332 | 3bitrd | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( ( ( 0 ... 𝐾 )  ↑m  ( 1 ... 𝑁 ) )  ↑m  ( 0 ... ( 𝑁  −  1 ) ) ) ( 𝑥  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  ∧  ( ( 0 ... ( 𝑁  −  1 ) )  ⊆  ran  ( 𝑝  ∈  ran  𝑥  ↦  𝐵 )  ∧  ∃ 𝑝  ∈  ran  𝑥 ( 𝑝 ‘ 𝑁 )  ≠  0 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ... ( 𝑁  −  1 ) ) ∃ 𝑗  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) 𝑖  =  ⦋ 〈 𝑇 ,  𝑈 〉  /  𝑠 ⦌ 𝐶  ∧  ¬  ( 𝑉  =  𝑁  ∧  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) ) ) ) ) |