| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
poimirlem28.1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 ) |
| 3 |
|
poimirlem28.2 |
⊢ ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) |
| 4 |
|
poimirlem25.3 |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
| 5 |
|
poimirlem25.4 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 6 |
|
poimirlem24.5 |
⊢ ( 𝜑 → 𝑉 ∈ ( 0 ... 𝑁 ) ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 8 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 1 ... 𝑁 ) |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 0 ... 𝐾 ) |
| 11 |
8 9 10
|
nff |
⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) |
| 12 |
7 11
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 13 |
|
eleq1 |
⊢ ( 𝑗 = 𝑦 → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| 14 |
13
|
anbi2d |
⊢ ( 𝑗 = 𝑦 → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) ) |
| 15 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑦 → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 16 |
15
|
feq1d |
⊢ ( 𝑗 = 𝑦 → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
| 17 |
14 16
|
imbi12d |
⊢ ( 𝑗 = 𝑦 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) ) |
| 18 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 19 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 21 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 22 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
| 24 |
|
uzid |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 25 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 26 |
23 24 25
|
3syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 27 |
20 26
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 28 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
| 29 |
27 28
|
syl |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
| 30 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 31 |
|
elun |
⊢ ( 𝑦 ∈ ( { 1 } ∪ { 0 } ) ↔ ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ { 0 } ) ) |
| 32 |
|
fzofzp1 |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝐾 ) ) |
| 33 |
|
elsni |
⊢ ( 𝑦 ∈ { 1 } → 𝑦 = 1 ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝑦 ∈ { 1 } → ( 𝑥 + 𝑦 ) = ( 𝑥 + 1 ) ) |
| 35 |
34
|
eleq1d |
⊢ ( 𝑦 ∈ { 1 } → ( ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ↔ ( 𝑥 + 1 ) ∈ ( 0 ... 𝐾 ) ) ) |
| 36 |
32 35
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑦 ∈ { 1 } → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) ) |
| 37 |
|
elfzoelz |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → 𝑥 ∈ ℤ ) |
| 38 |
37
|
zcnd |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → 𝑥 ∈ ℂ ) |
| 39 |
38
|
addridd |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 40 |
|
elfzofz |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → 𝑥 ∈ ( 0 ... 𝐾 ) ) |
| 41 |
39 40
|
eqeltrd |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑥 + 0 ) ∈ ( 0 ... 𝐾 ) ) |
| 42 |
|
elsni |
⊢ ( 𝑦 ∈ { 0 } → 𝑦 = 0 ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝑦 ∈ { 0 } → ( 𝑥 + 𝑦 ) = ( 𝑥 + 0 ) ) |
| 44 |
43
|
eleq1d |
⊢ ( 𝑦 ∈ { 0 } → ( ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ↔ ( 𝑥 + 0 ) ∈ ( 0 ... 𝐾 ) ) ) |
| 45 |
41 44
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑦 ∈ { 0 } → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) ) |
| 46 |
36 45
|
jaod |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ { 0 } ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) ) |
| 47 |
31 46
|
biimtrid |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑦 ∈ ( { 1 } ∪ { 0 } ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) ) |
| 48 |
47
|
imp |
⊢ ( ( 𝑥 ∈ ( 0 ..^ 𝐾 ) ∧ 𝑦 ∈ ( { 1 } ∪ { 0 } ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) |
| 49 |
48
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) ∧ 𝑦 ∈ ( { 1 } ∪ { 0 } ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) |
| 50 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
| 51 |
|
1ex |
⊢ 1 ∈ V |
| 52 |
51
|
fconst |
⊢ ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } |
| 53 |
|
c0ex |
⊢ 0 ∈ V |
| 54 |
53
|
fconst |
⊢ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } |
| 55 |
52 54
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) |
| 56 |
|
dff1o3 |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ 𝑈 ) ) |
| 57 |
56
|
simprbi |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ 𝑈 ) |
| 58 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
| 59 |
5 57 58
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
| 60 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℕ0 ) |
| 61 |
60
|
nn0red |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℝ ) |
| 62 |
61
|
ltp1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 < ( 𝑗 + 1 ) ) |
| 63 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 64 |
62 63
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 65 |
64
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
| 66 |
|
ima0 |
⊢ ( 𝑈 “ ∅ ) = ∅ |
| 67 |
65 66
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 68 |
59 67
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 69 |
|
fun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) ∧ ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
| 70 |
55 68 69
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
| 71 |
|
nn0p1nn |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) |
| 72 |
60 71
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 73 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 74 |
72 73
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 75 |
|
elfzuz3 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 76 |
|
fzsplit2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 77 |
74 75 76
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 78 |
77
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
| 79 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 80 |
78 79
|
eqtr2di |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ( 1 ... 𝑁 ) ) ) |
| 81 |
|
f1ofo |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
| 82 |
|
foima |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 83 |
5 81 82
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 84 |
80 83
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
| 85 |
84
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) ) |
| 86 |
70 85
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) |
| 87 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
| 88 |
87
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ V ) |
| 89 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
| 90 |
49 50 86 88 88 89
|
off |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 91 |
30 90
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 92 |
12 17 91
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 93 |
|
fzp1elp1 |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 94 |
20
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 0 ... 𝑁 ) ) |
| 95 |
94
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑦 + 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) ↔ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
| 96 |
95
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 97 |
93 96
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 98 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 99 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 100 |
99 9 10
|
nff |
⊢ Ⅎ 𝑗 ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) |
| 101 |
98 100
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 102 |
|
ovex |
⊢ ( 𝑦 + 1 ) ∈ V |
| 103 |
|
eleq1 |
⊢ ( 𝑗 = ( 𝑦 + 1 ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
| 104 |
103
|
anbi2d |
⊢ ( 𝑗 = ( 𝑦 + 1 ) → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
| 105 |
|
csbeq1a |
⊢ ( 𝑗 = ( 𝑦 + 1 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 106 |
105
|
feq1d |
⊢ ( 𝑗 = ( 𝑦 + 1 ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
| 107 |
104 106
|
imbi12d |
⊢ ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ↔ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) ) |
| 108 |
101 102 107 90
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 109 |
97 108
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 110 |
|
csbeq1 |
⊢ ( 𝑦 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 111 |
110
|
feq1d |
⊢ ( 𝑦 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
| 112 |
|
csbeq1 |
⊢ ( ( 𝑦 + 1 ) = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 113 |
112
|
feq1d |
⊢ ( ( 𝑦 + 1 ) = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ( ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
| 114 |
111 113
|
ifboth |
⊢ ( ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 115 |
92 109 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 116 |
|
ovex |
⊢ ( 0 ... 𝐾 ) ∈ V |
| 117 |
116 87
|
elmap |
⊢ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↔ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
| 118 |
115 117
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
| 119 |
118
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
| 120 |
|
ovex |
⊢ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ V |
| 121 |
|
ovex |
⊢ ( 0 ... ( 𝑁 − 1 ) ) ∈ V |
| 122 |
120 121
|
elmap |
⊢ ( ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
| 123 |
119 122
|
sylibr |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| 124 |
|
rneq |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ran 𝑥 = ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
| 125 |
124
|
mpteq1d |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) = ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) |
| 126 |
125
|
rneqd |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) = ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) |
| 127 |
126
|
sseq2d |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ↔ ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) ) |
| 128 |
124
|
rexeqdv |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) |
| 129 |
127 128
|
anbi12d |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
| 130 |
129
|
ceqsrexv |
⊢ ( ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
| 131 |
123 130
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
| 132 |
|
dfss3 |
⊢ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) |
| 133 |
|
ovex |
⊢ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
| 134 |
133 2
|
csbie |
⊢ ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = 𝐶 |
| 135 |
134
|
csbeq2i |
⊢ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
| 136 |
|
opex |
⊢ 〈 𝑇 , 𝑈 〉 ∈ V |
| 137 |
136
|
a1i |
⊢ ( 𝜑 → 〈 𝑇 , 𝑈 〉 ∈ V ) |
| 138 |
|
fveq2 |
⊢ ( 𝑠 = 〈 𝑇 , 𝑈 〉 → ( 1st ‘ 𝑠 ) = ( 1st ‘ 〈 𝑇 , 𝑈 〉 ) ) |
| 139 |
|
fex |
⊢ ( ( 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ∧ ( 1 ... 𝑁 ) ∈ V ) → 𝑇 ∈ V ) |
| 140 |
4 87 139
|
sylancl |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 141 |
|
f1oexrnex |
⊢ ( ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ ( 1 ... 𝑁 ) ∈ V ) → 𝑈 ∈ V ) |
| 142 |
5 87 141
|
sylancl |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 143 |
|
op1stg |
⊢ ( ( 𝑇 ∈ V ∧ 𝑈 ∈ V ) → ( 1st ‘ 〈 𝑇 , 𝑈 〉 ) = 𝑇 ) |
| 144 |
140 142 143
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝑇 , 𝑈 〉 ) = 𝑇 ) |
| 145 |
138 144
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑠 = 〈 𝑇 , 𝑈 〉 ) → ( 1st ‘ 𝑠 ) = 𝑇 ) |
| 146 |
|
fveq2 |
⊢ ( 𝑠 = 〈 𝑇 , 𝑈 〉 → ( 2nd ‘ 𝑠 ) = ( 2nd ‘ 〈 𝑇 , 𝑈 〉 ) ) |
| 147 |
|
op2ndg |
⊢ ( ( 𝑇 ∈ V ∧ 𝑈 ∈ V ) → ( 2nd ‘ 〈 𝑇 , 𝑈 〉 ) = 𝑈 ) |
| 148 |
140 142 147
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑇 , 𝑈 〉 ) = 𝑈 ) |
| 149 |
146 148
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑠 = 〈 𝑇 , 𝑈 〉 ) → ( 2nd ‘ 𝑠 ) = 𝑈 ) |
| 150 |
|
imaeq1 |
⊢ ( ( 2nd ‘ 𝑠 ) = 𝑈 → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... 𝑗 ) ) ) |
| 151 |
150
|
xpeq1d |
⊢ ( ( 2nd ‘ 𝑠 ) = 𝑈 → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
| 152 |
|
imaeq1 |
⊢ ( ( 2nd ‘ 𝑠 ) = 𝑈 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 153 |
152
|
xpeq1d |
⊢ ( ( 2nd ‘ 𝑠 ) = 𝑈 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 154 |
151 153
|
uneq12d |
⊢ ( ( 2nd ‘ 𝑠 ) = 𝑈 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 155 |
149 154
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 = 〈 𝑇 , 𝑈 〉 ) → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 156 |
145 155
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑠 = 〈 𝑇 , 𝑈 〉 ) → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 157 |
156
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑠 = 〈 𝑇 , 𝑈 〉 ) → ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
| 158 |
137 157
|
csbied |
⊢ ( 𝜑 → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
| 159 |
135 158
|
eqtr3id |
⊢ ( 𝜑 → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
| 160 |
159
|
csbeq2dv |
⊢ ( 𝜑 → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
| 161 |
160
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 162 |
161
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 163 |
|
vex |
⊢ 𝑖 ∈ V |
| 164 |
|
eqid |
⊢ ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) = ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) |
| 165 |
164
|
elrnmpt |
⊢ ( 𝑖 ∈ V → ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝐵 ) ) |
| 166 |
163 165
|
ax-mp |
⊢ ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝐵 ) |
| 167 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 = 𝐵 |
| 168 |
|
nfcsb1v |
⊢ Ⅎ 𝑝 ⦋ 𝑘 / 𝑝 ⦌ 𝐵 |
| 169 |
168
|
nfeq2 |
⊢ Ⅎ 𝑝 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 |
| 170 |
|
csbeq1a |
⊢ ( 𝑝 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ) |
| 171 |
170
|
eqeq2d |
⊢ ( 𝑝 = 𝑘 → ( 𝑖 = 𝐵 ↔ 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ) ) |
| 172 |
167 169 171
|
cbvrexw |
⊢ ( ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝐵 ↔ ∃ 𝑘 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ) |
| 173 |
|
ovex |
⊢ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
| 174 |
173
|
csbex |
⊢ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
| 175 |
174
|
rgenw |
⊢ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
| 176 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 177 |
|
csbeq1 |
⊢ ( 𝑘 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ⦋ 𝑘 / 𝑝 ⦌ 𝐵 = ⦋ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
| 178 |
|
vex |
⊢ 𝑦 ∈ V |
| 179 |
178 102
|
ifex |
⊢ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V |
| 180 |
|
csbnestgw |
⊢ ( if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = ⦋ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
| 181 |
179 180
|
ax-mp |
⊢ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = ⦋ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 |
| 182 |
177 181
|
eqtr4di |
⊢ ( 𝑘 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ⦋ 𝑘 / 𝑝 ⦌ 𝐵 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
| 183 |
182
|
eqeq2d |
⊢ ( 𝑘 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 184 |
176 183
|
rexrnmptw |
⊢ ( ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V → ( ∃ 𝑘 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) ) |
| 185 |
175 184
|
ax-mp |
⊢ ( ∃ 𝑘 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
| 186 |
166 172 185
|
3bitri |
⊢ ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
| 187 |
162 186
|
bitr4di |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) ) |
| 188 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ( 0 ... 𝑁 ) ) |
| 189 |
188
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑦 < 𝑉 ) → 𝑦 ∈ ( 0 ... 𝑁 ) ) |
| 190 |
|
elfzelz |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℤ ) |
| 191 |
190
|
zred |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℝ ) |
| 192 |
191
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ℝ ) |
| 193 |
|
ltne |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝑉 ) → 𝑉 ≠ 𝑦 ) |
| 194 |
193
|
necomd |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝑉 ) → 𝑦 ≠ 𝑉 ) |
| 195 |
192 194
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑦 < 𝑉 ) → 𝑦 ≠ 𝑉 ) |
| 196 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ↔ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ 𝑦 ≠ 𝑉 ) ) |
| 197 |
189 195 196
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑦 < 𝑉 ) → 𝑦 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) |
| 198 |
97
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 199 |
6
|
elfzelzd |
⊢ ( 𝜑 → 𝑉 ∈ ℤ ) |
| 200 |
199
|
zred |
⊢ ( 𝜑 → 𝑉 ∈ ℝ ) |
| 201 |
200
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → 𝑉 ∈ ℝ ) |
| 202 |
|
zre |
⊢ ( 𝑉 ∈ ℤ → 𝑉 ∈ ℝ ) |
| 203 |
|
zre |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) |
| 204 |
|
lenlt |
⊢ ( ( 𝑉 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑉 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑉 ) ) |
| 205 |
202 203 204
|
syl2an |
⊢ ( ( 𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑉 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑉 ) ) |
| 206 |
|
zleltp1 |
⊢ ( ( 𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑉 ≤ 𝑦 ↔ 𝑉 < ( 𝑦 + 1 ) ) ) |
| 207 |
205 206
|
bitr3d |
⊢ ( ( 𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ¬ 𝑦 < 𝑉 ↔ 𝑉 < ( 𝑦 + 1 ) ) ) |
| 208 |
199 190 207
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ¬ 𝑦 < 𝑉 ↔ 𝑉 < ( 𝑦 + 1 ) ) ) |
| 209 |
208
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → 𝑉 < ( 𝑦 + 1 ) ) |
| 210 |
201 209
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → ( 𝑦 + 1 ) ≠ 𝑉 ) |
| 211 |
|
eldifsn |
⊢ ( ( 𝑦 + 1 ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ↔ ( ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑦 + 1 ) ≠ 𝑉 ) ) |
| 212 |
198 210 211
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → ( 𝑦 + 1 ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) |
| 213 |
197 212
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) |
| 214 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
| 215 |
214
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
| 216 |
|
csbeq1a |
⊢ ( 𝑗 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
| 217 |
216
|
eqeq2d |
⊢ ( 𝑗 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 218 |
215 217
|
rspce |
⊢ ( ( if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ∧ 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
| 219 |
218
|
ex |
⊢ ( if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 220 |
213 219
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 221 |
220
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 222 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
| 223 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 0 ... ( 𝑁 − 1 ) ) |
| 224 |
223 215
|
nfrexw |
⊢ Ⅎ 𝑗 ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
| 225 |
|
eldifi |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 226 |
225 60
|
syl |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℕ0 ) |
| 227 |
226
|
nn0ge0d |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 0 ≤ 𝑗 ) |
| 228 |
227
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 0 ≤ 𝑗 ) |
| 229 |
226
|
nn0red |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℝ ) |
| 230 |
229
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 ∈ ℝ ) |
| 231 |
200
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑉 ∈ ℝ ) |
| 232 |
21
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 233 |
232
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑁 ∈ ℝ ) |
| 234 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 < 𝑉 ) |
| 235 |
|
elfzle2 |
⊢ ( 𝑉 ∈ ( 0 ... 𝑁 ) → 𝑉 ≤ 𝑁 ) |
| 236 |
6 235
|
syl |
⊢ ( 𝜑 → 𝑉 ≤ 𝑁 ) |
| 237 |
236
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑉 ≤ 𝑁 ) |
| 238 |
230 231 233 234 237
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 < 𝑁 ) |
| 239 |
225
|
elfzelzd |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℤ ) |
| 240 |
|
zltlem1 |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 < 𝑁 ↔ 𝑗 ≤ ( 𝑁 − 1 ) ) ) |
| 241 |
239 21 240
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 < 𝑁 ↔ 𝑗 ≤ ( 𝑁 − 1 ) ) ) |
| 242 |
241
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → ( 𝑗 < 𝑁 ↔ 𝑗 ≤ ( 𝑁 − 1 ) ) ) |
| 243 |
238 242
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 ≤ ( 𝑁 − 1 ) ) |
| 244 |
|
0z |
⊢ 0 ∈ ℤ |
| 245 |
|
elfz |
⊢ ( ( 𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 ≤ ( 𝑁 − 1 ) ) ) ) |
| 246 |
244 245
|
mp3an2 |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 ≤ ( 𝑁 − 1 ) ) ) ) |
| 247 |
239 23 246
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 ≤ ( 𝑁 − 1 ) ) ) ) |
| 248 |
247
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 ≤ ( 𝑁 − 1 ) ) ) ) |
| 249 |
228 243 248
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 250 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 0 ∈ ℝ ) |
| 251 |
200
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑉 ∈ ℝ ) |
| 252 |
229
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 ∈ ℝ ) |
| 253 |
|
elfzle1 |
⊢ ( 𝑉 ∈ ( 0 ... 𝑁 ) → 0 ≤ 𝑉 ) |
| 254 |
6 253
|
syl |
⊢ ( 𝜑 → 0 ≤ 𝑉 ) |
| 255 |
254
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 0 ≤ 𝑉 ) |
| 256 |
|
lenlt |
⊢ ( ( 𝑉 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑉 ≤ 𝑗 ↔ ¬ 𝑗 < 𝑉 ) ) |
| 257 |
200 229 256
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑉 ≤ 𝑗 ↔ ¬ 𝑗 < 𝑉 ) ) |
| 258 |
257
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑉 ≤ 𝑗 ) |
| 259 |
|
eldifsni |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ≠ 𝑉 ) |
| 260 |
259
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 ≠ 𝑉 ) |
| 261 |
|
ltlen |
⊢ ( ( 𝑉 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑉 < 𝑗 ↔ ( 𝑉 ≤ 𝑗 ∧ 𝑗 ≠ 𝑉 ) ) ) |
| 262 |
200 229 261
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑉 < 𝑗 ↔ ( 𝑉 ≤ 𝑗 ∧ 𝑗 ≠ 𝑉 ) ) ) |
| 263 |
262
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 𝑉 < 𝑗 ↔ ( 𝑉 ≤ 𝑗 ∧ 𝑗 ≠ 𝑉 ) ) ) |
| 264 |
258 260 263
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑉 < 𝑗 ) |
| 265 |
250 251 252 255 264
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 0 < 𝑗 ) |
| 266 |
|
zgt0ge1 |
⊢ ( 𝑗 ∈ ℤ → ( 0 < 𝑗 ↔ 1 ≤ 𝑗 ) ) |
| 267 |
239 266
|
syl |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( 0 < 𝑗 ↔ 1 ≤ 𝑗 ) ) |
| 268 |
267
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 0 < 𝑗 ↔ 1 ≤ 𝑗 ) ) |
| 269 |
265 268
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 1 ≤ 𝑗 ) |
| 270 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ≤ 𝑁 ) |
| 271 |
225 270
|
syl |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ≤ 𝑁 ) |
| 272 |
271
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 ≤ 𝑁 ) |
| 273 |
|
1z |
⊢ 1 ∈ ℤ |
| 274 |
|
elfz |
⊢ ( ( 𝑗 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 275 |
273 274
|
mp3an2 |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 276 |
239 21 275
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 277 |
276
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 278 |
269 272 277
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
| 279 |
|
elfzmlbm |
⊢ ( 𝑗 ∈ ( 1 ... 𝑁 ) → ( 𝑗 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 280 |
278 279
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 𝑗 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 281 |
249 280
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 282 |
|
breq1 |
⊢ ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 < 𝑉 ↔ if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 ) ) |
| 283 |
|
id |
⊢ ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ) |
| 284 |
|
oveq1 |
⊢ ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 + 1 ) = ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) |
| 285 |
282 283 284
|
ifbieq12d |
⊢ ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) |
| 286 |
285
|
eqeq2d |
⊢ ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) ↔ 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) ) |
| 287 |
|
breq1 |
⊢ ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( ( 𝑗 − 1 ) < 𝑉 ↔ if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 ) ) |
| 288 |
|
id |
⊢ ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ) |
| 289 |
|
oveq1 |
⊢ ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( ( 𝑗 − 1 ) + 1 ) = ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) |
| 290 |
287 288 289
|
ifbieq12d |
⊢ ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) |
| 291 |
290
|
eqeq2d |
⊢ ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 = if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) ↔ 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) ) |
| 292 |
|
iftrue |
⊢ ( 𝑗 < 𝑉 → if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) = 𝑗 ) |
| 293 |
292
|
eqcomd |
⊢ ( 𝑗 < 𝑉 → 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) ) |
| 294 |
293
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) ) |
| 295 |
|
zlem1lt |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑉 ∈ ℤ ) → ( 𝑗 ≤ 𝑉 ↔ ( 𝑗 − 1 ) < 𝑉 ) ) |
| 296 |
239 199 295
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 ≤ 𝑉 ↔ ( 𝑗 − 1 ) < 𝑉 ) ) |
| 297 |
259
|
necomd |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑉 ≠ 𝑗 ) |
| 298 |
297
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → 𝑉 ≠ 𝑗 ) |
| 299 |
|
ltlen |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑉 ∈ ℝ ) → ( 𝑗 < 𝑉 ↔ ( 𝑗 ≤ 𝑉 ∧ 𝑉 ≠ 𝑗 ) ) ) |
| 300 |
229 200 299
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 < 𝑉 ↔ ( 𝑗 ≤ 𝑉 ∧ 𝑉 ≠ 𝑗 ) ) ) |
| 301 |
300
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( ( 𝑗 ≤ 𝑉 ∧ 𝑉 ≠ 𝑗 ) → 𝑗 < 𝑉 ) ) |
| 302 |
298 301
|
mpan2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 ≤ 𝑉 → 𝑗 < 𝑉 ) ) |
| 303 |
296 302
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( ( 𝑗 − 1 ) < 𝑉 → 𝑗 < 𝑉 ) ) |
| 304 |
303
|
con3dimp |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ¬ ( 𝑗 − 1 ) < 𝑉 ) |
| 305 |
304
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) = ( ( 𝑗 − 1 ) + 1 ) ) |
| 306 |
226
|
nn0cnd |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℂ ) |
| 307 |
|
npcan1 |
⊢ ( 𝑗 ∈ ℂ → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
| 308 |
306 307
|
syl |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
| 309 |
308
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
| 310 |
305 309
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 = if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) ) |
| 311 |
286 291 294 310
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) |
| 312 |
|
csbeq1a |
⊢ ( 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
| 313 |
311 312
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
| 314 |
313
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 315 |
314
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑖 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 316 |
|
breq1 |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑦 < 𝑉 ↔ if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 ) ) |
| 317 |
|
id |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ) |
| 318 |
|
oveq1 |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑦 + 1 ) = ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) |
| 319 |
316 317 318
|
ifbieq12d |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) |
| 320 |
319
|
csbeq1d |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
| 321 |
320
|
eqeq2d |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 322 |
321
|
rspcev |
⊢ ( ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑖 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
| 323 |
281 315 322
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 324 |
323
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
| 325 |
222 224 324
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 326 |
221 325
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 327 |
187 326
|
bitr3d |
⊢ ( 𝜑 → ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 328 |
327
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 329 |
132 328
|
bitrid |
⊢ ( 𝜑 → ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
| 330 |
329
|
anbi1d |
⊢ ( 𝜑 → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
| 331 |
1 4 5 6
|
poimirlem23 |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) ) |
| 332 |
331
|
anbi2d |
⊢ ( 𝜑 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |
| 333 |
131 330 332
|
3bitrd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |