Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimirlem28.1 |
⊢ ( 𝑝 = ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → 𝐵 = 𝐶 ) |
3 |
|
poimirlem28.2 |
⊢ ( ( 𝜑 ∧ 𝑝 : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → 𝐵 ∈ ( 0 ... 𝑁 ) ) |
4 |
|
poimirlem25.3 |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
5 |
|
poimirlem25.4 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
6 |
|
poimirlem24.5 |
⊢ ( 𝜑 → 𝑉 ∈ ( 0 ... 𝑁 ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
8 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 1 ... 𝑁 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 0 ... 𝐾 ) |
11 |
8 9 10
|
nff |
⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) |
12 |
7 11
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
13 |
|
eleq1 |
⊢ ( 𝑗 = 𝑦 → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑗 = 𝑦 → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) ) |
15 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑦 → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
16 |
15
|
feq1d |
⊢ ( 𝑗 = 𝑦 → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑗 = 𝑦 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) ) |
18 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
19 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
21 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
22 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
24 |
|
uzid |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
25 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
26 |
23 24 25
|
3syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
27 |
20 26
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
28 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
29 |
27 28
|
syl |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
30 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
31 |
|
elun |
⊢ ( 𝑦 ∈ ( { 1 } ∪ { 0 } ) ↔ ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ { 0 } ) ) |
32 |
|
fzofzp1 |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝐾 ) ) |
33 |
|
elsni |
⊢ ( 𝑦 ∈ { 1 } → 𝑦 = 1 ) |
34 |
33
|
oveq2d |
⊢ ( 𝑦 ∈ { 1 } → ( 𝑥 + 𝑦 ) = ( 𝑥 + 1 ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝑦 ∈ { 1 } → ( ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ↔ ( 𝑥 + 1 ) ∈ ( 0 ... 𝐾 ) ) ) |
36 |
32 35
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑦 ∈ { 1 } → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) ) |
37 |
|
elfzoelz |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → 𝑥 ∈ ℤ ) |
38 |
37
|
zcnd |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → 𝑥 ∈ ℂ ) |
39 |
38
|
addid1d |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑥 + 0 ) = 𝑥 ) |
40 |
|
elfzofz |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → 𝑥 ∈ ( 0 ... 𝐾 ) ) |
41 |
39 40
|
eqeltrd |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑥 + 0 ) ∈ ( 0 ... 𝐾 ) ) |
42 |
|
elsni |
⊢ ( 𝑦 ∈ { 0 } → 𝑦 = 0 ) |
43 |
42
|
oveq2d |
⊢ ( 𝑦 ∈ { 0 } → ( 𝑥 + 𝑦 ) = ( 𝑥 + 0 ) ) |
44 |
43
|
eleq1d |
⊢ ( 𝑦 ∈ { 0 } → ( ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ↔ ( 𝑥 + 0 ) ∈ ( 0 ... 𝐾 ) ) ) |
45 |
41 44
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑦 ∈ { 0 } → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) ) |
46 |
36 45
|
jaod |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ { 0 } ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) ) |
47 |
31 46
|
syl5bi |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) → ( 𝑦 ∈ ( { 1 } ∪ { 0 } ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) ) |
48 |
47
|
imp |
⊢ ( ( 𝑥 ∈ ( 0 ..^ 𝐾 ) ∧ 𝑦 ∈ ( { 1 } ∪ { 0 } ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) |
49 |
48
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑥 ∈ ( 0 ..^ 𝐾 ) ∧ 𝑦 ∈ ( { 1 } ∪ { 0 } ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 ... 𝐾 ) ) |
50 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
51 |
|
1ex |
⊢ 1 ∈ V |
52 |
51
|
fconst |
⊢ ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } |
53 |
|
c0ex |
⊢ 0 ∈ V |
54 |
53
|
fconst |
⊢ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } |
55 |
52 54
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) |
56 |
|
dff1o3 |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ 𝑈 ) ) |
57 |
56
|
simprbi |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ 𝑈 ) |
58 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
59 |
5 57 58
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
60 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℕ0 ) |
61 |
60
|
nn0red |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℝ ) |
62 |
61
|
ltp1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 < ( 𝑗 + 1 ) ) |
63 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
64 |
62 63
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
65 |
64
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
66 |
|
ima0 |
⊢ ( 𝑈 “ ∅ ) = ∅ |
67 |
65 66
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
68 |
59 67
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
69 |
|
fun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) ∧ ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
70 |
55 68 69
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
71 |
|
nn0p1nn |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) |
72 |
60 71
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
73 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
74 |
72 73
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
75 |
|
elfzuz3 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
76 |
|
fzsplit2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
77 |
74 75 76
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
78 |
77
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
79 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
80 |
78 79
|
eqtr2di |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ( 1 ... 𝑁 ) ) ) |
81 |
|
f1ofo |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
82 |
|
foima |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
83 |
5 81 82
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
84 |
80 83
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
85 |
84
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) ) |
86 |
70 85
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) |
87 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
88 |
87
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ V ) |
89 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
90 |
49 50 86 88 88 89
|
off |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
91 |
30 90
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
92 |
12 17 91
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
93 |
|
fzp1elp1 |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
94 |
20
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 0 ... 𝑁 ) ) |
95 |
94
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑦 + 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) ↔ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
96 |
95
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
97 |
93 96
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
98 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
99 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
100 |
99 9 10
|
nff |
⊢ Ⅎ 𝑗 ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) |
101 |
98 100
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
102 |
|
ovex |
⊢ ( 𝑦 + 1 ) ∈ V |
103 |
|
eleq1 |
⊢ ( 𝑗 = ( 𝑦 + 1 ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
104 |
103
|
anbi2d |
⊢ ( 𝑗 = ( 𝑦 + 1 ) → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
105 |
|
csbeq1a |
⊢ ( 𝑗 = ( 𝑦 + 1 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
106 |
105
|
feq1d |
⊢ ( 𝑗 = ( 𝑦 + 1 ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
107 |
104 106
|
imbi12d |
⊢ ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ↔ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) ) |
108 |
101 102 107 90
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
109 |
97 108
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
110 |
|
csbeq1 |
⊢ ( 𝑦 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
111 |
110
|
feq1d |
⊢ ( 𝑦 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
112 |
|
csbeq1 |
⊢ ( ( 𝑦 + 1 ) = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
113 |
112
|
feq1d |
⊢ ( ( 𝑦 + 1 ) = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ( ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ↔ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) ) |
114 |
111 113
|
ifboth |
⊢ ( ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ∧ ⦋ ( 𝑦 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
115 |
92 109 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
116 |
|
ovex |
⊢ ( 0 ... 𝐾 ) ∈ V |
117 |
116 87
|
elmap |
⊢ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↔ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ... 𝐾 ) ) |
118 |
115 117
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
119 |
118
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
120 |
|
ovex |
⊢ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ∈ V |
121 |
|
ovex |
⊢ ( 0 ... ( 𝑁 − 1 ) ) ∈ V |
122 |
120 121
|
elmap |
⊢ ( ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ↔ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
123 |
119 122
|
sylibr |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ) |
124 |
|
rneq |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ran 𝑥 = ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
125 |
124
|
mpteq1d |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) = ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) |
126 |
125
|
rneqd |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) = ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) |
127 |
126
|
sseq2d |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ↔ ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) ) |
128 |
124
|
rexeqdv |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) |
129 |
127 128
|
anbi12d |
⊢ ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
130 |
129
|
ceqsrexv |
⊢ ( ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
131 |
123 130
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
132 |
|
dfss3 |
⊢ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) |
133 |
|
ovex |
⊢ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
134 |
133 2
|
csbie |
⊢ ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = 𝐶 |
135 |
134
|
csbeq2i |
⊢ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
136 |
|
opex |
⊢ 〈 𝑇 , 𝑈 〉 ∈ V |
137 |
136
|
a1i |
⊢ ( 𝜑 → 〈 𝑇 , 𝑈 〉 ∈ V ) |
138 |
|
fveq2 |
⊢ ( 𝑠 = 〈 𝑇 , 𝑈 〉 → ( 1st ‘ 𝑠 ) = ( 1st ‘ 〈 𝑇 , 𝑈 〉 ) ) |
139 |
|
fex |
⊢ ( ( 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ∧ ( 1 ... 𝑁 ) ∈ V ) → 𝑇 ∈ V ) |
140 |
4 87 139
|
sylancl |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
141 |
|
f1oexrnex |
⊢ ( ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ ( 1 ... 𝑁 ) ∈ V ) → 𝑈 ∈ V ) |
142 |
5 87 141
|
sylancl |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
143 |
|
op1stg |
⊢ ( ( 𝑇 ∈ V ∧ 𝑈 ∈ V ) → ( 1st ‘ 〈 𝑇 , 𝑈 〉 ) = 𝑇 ) |
144 |
140 142 143
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝑇 , 𝑈 〉 ) = 𝑇 ) |
145 |
138 144
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑠 = 〈 𝑇 , 𝑈 〉 ) → ( 1st ‘ 𝑠 ) = 𝑇 ) |
146 |
|
fveq2 |
⊢ ( 𝑠 = 〈 𝑇 , 𝑈 〉 → ( 2nd ‘ 𝑠 ) = ( 2nd ‘ 〈 𝑇 , 𝑈 〉 ) ) |
147 |
|
op2ndg |
⊢ ( ( 𝑇 ∈ V ∧ 𝑈 ∈ V ) → ( 2nd ‘ 〈 𝑇 , 𝑈 〉 ) = 𝑈 ) |
148 |
140 142 147
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑇 , 𝑈 〉 ) = 𝑈 ) |
149 |
146 148
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑠 = 〈 𝑇 , 𝑈 〉 ) → ( 2nd ‘ 𝑠 ) = 𝑈 ) |
150 |
|
imaeq1 |
⊢ ( ( 2nd ‘ 𝑠 ) = 𝑈 → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... 𝑗 ) ) ) |
151 |
150
|
xpeq1d |
⊢ ( ( 2nd ‘ 𝑠 ) = 𝑈 → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
152 |
|
imaeq1 |
⊢ ( ( 2nd ‘ 𝑠 ) = 𝑈 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
153 |
152
|
xpeq1d |
⊢ ( ( 2nd ‘ 𝑠 ) = 𝑈 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
154 |
151 153
|
uneq12d |
⊢ ( ( 2nd ‘ 𝑠 ) = 𝑈 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
155 |
149 154
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 = 〈 𝑇 , 𝑈 〉 ) → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
156 |
145 155
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑠 = 〈 𝑇 , 𝑈 〉 ) → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
157 |
156
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑠 = 〈 𝑇 , 𝑈 〉 ) → ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
158 |
137 157
|
csbied |
⊢ ( 𝜑 → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ ⦋ ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
159 |
135 158
|
eqtr3id |
⊢ ( 𝜑 → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
160 |
159
|
csbeq2dv |
⊢ ( 𝜑 → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
161 |
160
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) ) |
162 |
161
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) ) |
163 |
|
vex |
⊢ 𝑖 ∈ V |
164 |
|
eqid |
⊢ ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) = ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) |
165 |
164
|
elrnmpt |
⊢ ( 𝑖 ∈ V → ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝐵 ) ) |
166 |
163 165
|
ax-mp |
⊢ ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝐵 ) |
167 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 = 𝐵 |
168 |
|
nfcsb1v |
⊢ Ⅎ 𝑝 ⦋ 𝑘 / 𝑝 ⦌ 𝐵 |
169 |
168
|
nfeq2 |
⊢ Ⅎ 𝑝 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 |
170 |
|
csbeq1a |
⊢ ( 𝑝 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ) |
171 |
170
|
eqeq2d |
⊢ ( 𝑝 = 𝑘 → ( 𝑖 = 𝐵 ↔ 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ) ) |
172 |
167 169 171
|
cbvrexw |
⊢ ( ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = 𝐵 ↔ ∃ 𝑘 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ) |
173 |
|
ovex |
⊢ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
174 |
173
|
csbex |
⊢ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
175 |
174
|
rgenw |
⊢ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
176 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
177 |
|
csbeq1 |
⊢ ( 𝑘 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ⦋ 𝑘 / 𝑝 ⦌ 𝐵 = ⦋ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
178 |
|
vex |
⊢ 𝑦 ∈ V |
179 |
178 102
|
ifex |
⊢ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V |
180 |
|
csbnestgw |
⊢ ( if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = ⦋ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
181 |
179 180
|
ax-mp |
⊢ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 = ⦋ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 |
182 |
177 181
|
eqtr4di |
⊢ ( 𝑘 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ⦋ 𝑘 / 𝑝 ⦌ 𝐵 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
183 |
182
|
eqeq2d |
⊢ ( 𝑘 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) ) |
184 |
176 183
|
rexrnmptw |
⊢ ( ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V → ( ∃ 𝑘 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) ) |
185 |
175 184
|
ax-mp |
⊢ ( ∃ 𝑘 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) 𝑖 = ⦋ 𝑘 / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
186 |
166 172 185
|
3bitri |
⊢ ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) / 𝑝 ⦌ 𝐵 ) |
187 |
162 186
|
bitr4di |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ) ) |
188 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ( 0 ... 𝑁 ) ) |
189 |
188
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑦 < 𝑉 ) → 𝑦 ∈ ( 0 ... 𝑁 ) ) |
190 |
|
elfzelz |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℤ ) |
191 |
190
|
zred |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℝ ) |
192 |
191
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ℝ ) |
193 |
|
ltne |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝑉 ) → 𝑉 ≠ 𝑦 ) |
194 |
193
|
necomd |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝑉 ) → 𝑦 ≠ 𝑉 ) |
195 |
192 194
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑦 < 𝑉 ) → 𝑦 ≠ 𝑉 ) |
196 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ↔ ( 𝑦 ∈ ( 0 ... 𝑁 ) ∧ 𝑦 ≠ 𝑉 ) ) |
197 |
189 195 196
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑦 < 𝑉 ) → 𝑦 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) |
198 |
97
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
199 |
6
|
elfzelzd |
⊢ ( 𝜑 → 𝑉 ∈ ℤ ) |
200 |
199
|
zred |
⊢ ( 𝜑 → 𝑉 ∈ ℝ ) |
201 |
200
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → 𝑉 ∈ ℝ ) |
202 |
|
zre |
⊢ ( 𝑉 ∈ ℤ → 𝑉 ∈ ℝ ) |
203 |
|
zre |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) |
204 |
|
lenlt |
⊢ ( ( 𝑉 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑉 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑉 ) ) |
205 |
202 203 204
|
syl2an |
⊢ ( ( 𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑉 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑉 ) ) |
206 |
|
zleltp1 |
⊢ ( ( 𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑉 ≤ 𝑦 ↔ 𝑉 < ( 𝑦 + 1 ) ) ) |
207 |
205 206
|
bitr3d |
⊢ ( ( 𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ¬ 𝑦 < 𝑉 ↔ 𝑉 < ( 𝑦 + 1 ) ) ) |
208 |
199 190 207
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ¬ 𝑦 < 𝑉 ↔ 𝑉 < ( 𝑦 + 1 ) ) ) |
209 |
208
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → 𝑉 < ( 𝑦 + 1 ) ) |
210 |
201 209
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → ( 𝑦 + 1 ) ≠ 𝑉 ) |
211 |
|
eldifsn |
⊢ ( ( 𝑦 + 1 ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ↔ ( ( 𝑦 + 1 ) ∈ ( 0 ... 𝑁 ) ∧ ( 𝑦 + 1 ) ≠ 𝑉 ) ) |
212 |
198 210 211
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑦 < 𝑉 ) → ( 𝑦 + 1 ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) |
213 |
197 212
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) |
214 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
215 |
214
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
216 |
|
csbeq1a |
⊢ ( 𝑗 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
217 |
216
|
eqeq2d |
⊢ ( 𝑗 = if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
218 |
215 217
|
rspce |
⊢ ( ( if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ∧ 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
219 |
218
|
ex |
⊢ ( if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
220 |
213 219
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
221 |
220
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
222 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
223 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 0 ... ( 𝑁 − 1 ) ) |
224 |
223 215
|
nfrex |
⊢ Ⅎ 𝑗 ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 |
225 |
|
eldifi |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
226 |
225 60
|
syl |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℕ0 ) |
227 |
226
|
nn0ge0d |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 0 ≤ 𝑗 ) |
228 |
227
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 0 ≤ 𝑗 ) |
229 |
226
|
nn0red |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℝ ) |
230 |
229
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 ∈ ℝ ) |
231 |
200
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑉 ∈ ℝ ) |
232 |
21
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
233 |
232
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑁 ∈ ℝ ) |
234 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 < 𝑉 ) |
235 |
|
elfzle2 |
⊢ ( 𝑉 ∈ ( 0 ... 𝑁 ) → 𝑉 ≤ 𝑁 ) |
236 |
6 235
|
syl |
⊢ ( 𝜑 → 𝑉 ≤ 𝑁 ) |
237 |
236
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑉 ≤ 𝑁 ) |
238 |
230 231 233 234 237
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 < 𝑁 ) |
239 |
225
|
elfzelzd |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℤ ) |
240 |
|
zltlem1 |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 < 𝑁 ↔ 𝑗 ≤ ( 𝑁 − 1 ) ) ) |
241 |
239 21 240
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 < 𝑁 ↔ 𝑗 ≤ ( 𝑁 − 1 ) ) ) |
242 |
241
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → ( 𝑗 < 𝑁 ↔ 𝑗 ≤ ( 𝑁 − 1 ) ) ) |
243 |
238 242
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 ≤ ( 𝑁 − 1 ) ) |
244 |
|
0z |
⊢ 0 ∈ ℤ |
245 |
|
elfz |
⊢ ( ( 𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 ≤ ( 𝑁 − 1 ) ) ) ) |
246 |
244 245
|
mp3an2 |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 ≤ ( 𝑁 − 1 ) ) ) ) |
247 |
239 23 246
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 ≤ ( 𝑁 − 1 ) ) ) ) |
248 |
247
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑗 ∧ 𝑗 ≤ ( 𝑁 − 1 ) ) ) ) |
249 |
228 243 248
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
250 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 0 ∈ ℝ ) |
251 |
200
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑉 ∈ ℝ ) |
252 |
229
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 ∈ ℝ ) |
253 |
|
elfzle1 |
⊢ ( 𝑉 ∈ ( 0 ... 𝑁 ) → 0 ≤ 𝑉 ) |
254 |
6 253
|
syl |
⊢ ( 𝜑 → 0 ≤ 𝑉 ) |
255 |
254
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 0 ≤ 𝑉 ) |
256 |
|
lenlt |
⊢ ( ( 𝑉 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑉 ≤ 𝑗 ↔ ¬ 𝑗 < 𝑉 ) ) |
257 |
200 229 256
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑉 ≤ 𝑗 ↔ ¬ 𝑗 < 𝑉 ) ) |
258 |
257
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑉 ≤ 𝑗 ) |
259 |
|
eldifsni |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ≠ 𝑉 ) |
260 |
259
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 ≠ 𝑉 ) |
261 |
|
ltlen |
⊢ ( ( 𝑉 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑉 < 𝑗 ↔ ( 𝑉 ≤ 𝑗 ∧ 𝑗 ≠ 𝑉 ) ) ) |
262 |
200 229 261
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑉 < 𝑗 ↔ ( 𝑉 ≤ 𝑗 ∧ 𝑗 ≠ 𝑉 ) ) ) |
263 |
262
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 𝑉 < 𝑗 ↔ ( 𝑉 ≤ 𝑗 ∧ 𝑗 ≠ 𝑉 ) ) ) |
264 |
258 260 263
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑉 < 𝑗 ) |
265 |
250 251 252 255 264
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 0 < 𝑗 ) |
266 |
|
zgt0ge1 |
⊢ ( 𝑗 ∈ ℤ → ( 0 < 𝑗 ↔ 1 ≤ 𝑗 ) ) |
267 |
239 266
|
syl |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( 0 < 𝑗 ↔ 1 ≤ 𝑗 ) ) |
268 |
267
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 0 < 𝑗 ↔ 1 ≤ 𝑗 ) ) |
269 |
265 268
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 1 ≤ 𝑗 ) |
270 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ≤ 𝑁 ) |
271 |
225 270
|
syl |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ≤ 𝑁 ) |
272 |
271
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 ≤ 𝑁 ) |
273 |
|
1z |
⊢ 1 ∈ ℤ |
274 |
|
elfz |
⊢ ( ( 𝑗 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
275 |
273 274
|
mp3an2 |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
276 |
239 21 275
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
277 |
276
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
278 |
269 272 277
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
279 |
|
elfzmlbm |
⊢ ( 𝑗 ∈ ( 1 ... 𝑁 ) → ( 𝑗 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
280 |
278 279
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( 𝑗 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
281 |
249 280
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
282 |
|
breq1 |
⊢ ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 < 𝑉 ↔ if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 ) ) |
283 |
|
id |
⊢ ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ) |
284 |
|
oveq1 |
⊢ ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 + 1 ) = ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) |
285 |
282 283 284
|
ifbieq12d |
⊢ ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) |
286 |
285
|
eqeq2d |
⊢ ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) ↔ 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) ) |
287 |
|
breq1 |
⊢ ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( ( 𝑗 − 1 ) < 𝑉 ↔ if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 ) ) |
288 |
|
id |
⊢ ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ) |
289 |
|
oveq1 |
⊢ ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( ( 𝑗 − 1 ) + 1 ) = ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) |
290 |
287 288 289
|
ifbieq12d |
⊢ ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) |
291 |
290
|
eqeq2d |
⊢ ( ( 𝑗 − 1 ) = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑗 = if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) ↔ 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) ) |
292 |
|
iftrue |
⊢ ( 𝑗 < 𝑉 → if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) = 𝑗 ) |
293 |
292
|
eqcomd |
⊢ ( 𝑗 < 𝑉 → 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) ) |
294 |
293
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ 𝑗 < 𝑉 ) → 𝑗 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 + 1 ) ) ) |
295 |
|
zlem1lt |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑉 ∈ ℤ ) → ( 𝑗 ≤ 𝑉 ↔ ( 𝑗 − 1 ) < 𝑉 ) ) |
296 |
239 199 295
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 ≤ 𝑉 ↔ ( 𝑗 − 1 ) < 𝑉 ) ) |
297 |
259
|
necomd |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑉 ≠ 𝑗 ) |
298 |
297
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → 𝑉 ≠ 𝑗 ) |
299 |
|
ltlen |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑉 ∈ ℝ ) → ( 𝑗 < 𝑉 ↔ ( 𝑗 ≤ 𝑉 ∧ 𝑉 ≠ 𝑗 ) ) ) |
300 |
229 200 299
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 < 𝑉 ↔ ( 𝑗 ≤ 𝑉 ∧ 𝑉 ≠ 𝑗 ) ) ) |
301 |
300
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( ( 𝑗 ≤ 𝑉 ∧ 𝑉 ≠ 𝑗 ) → 𝑗 < 𝑉 ) ) |
302 |
298 301
|
mpan2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑗 ≤ 𝑉 → 𝑗 < 𝑉 ) ) |
303 |
296 302
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( ( 𝑗 − 1 ) < 𝑉 → 𝑗 < 𝑉 ) ) |
304 |
303
|
con3dimp |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ¬ ( 𝑗 − 1 ) < 𝑉 ) |
305 |
304
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) = ( ( 𝑗 − 1 ) + 1 ) ) |
306 |
226
|
nn0cnd |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑗 ∈ ℂ ) |
307 |
|
npcan1 |
⊢ ( 𝑗 ∈ ℂ → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
308 |
306 307
|
syl |
⊢ ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
309 |
308
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
310 |
305 309
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) ∧ ¬ 𝑗 < 𝑉 ) → 𝑗 = if ( ( 𝑗 − 1 ) < 𝑉 , ( 𝑗 − 1 ) , ( ( 𝑗 − 1 ) + 1 ) ) ) |
311 |
286 291 294 310
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) |
312 |
|
csbeq1a |
⊢ ( 𝑗 = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
313 |
311 312
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
314 |
313
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
315 |
314
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → 𝑖 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
316 |
|
breq1 |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑦 < 𝑉 ↔ if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 ) ) |
317 |
|
id |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ) |
318 |
|
oveq1 |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑦 + 1 ) = ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) |
319 |
316 317 318
|
ifbieq12d |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) = if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) ) |
320 |
319
|
csbeq1d |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
321 |
320
|
eqeq2d |
⊢ ( 𝑦 = if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) → ( 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ 𝑖 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
322 |
321
|
rspcev |
⊢ ( ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑖 = ⦋ if ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) < 𝑉 , if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) , ( if ( 𝑗 < 𝑉 , 𝑗 , ( 𝑗 − 1 ) ) + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) |
323 |
281 315 322
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
324 |
323
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → ( 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) ) |
325 |
222 224 324
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
326 |
221 325
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
327 |
187 326
|
bitr3d |
⊢ ( 𝜑 → ( 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
328 |
327
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑖 ∈ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
329 |
132 328
|
syl5bb |
⊢ ( 𝜑 → ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ) ) |
330 |
329
|
anbi1d |
⊢ ( 𝜑 → ( ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ) |
331 |
1 4 5 6
|
poimirlem23 |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) ) |
332 |
331
|
anbi2d |
⊢ ( 𝜑 → ( ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |
333 |
131 330 332
|
3bitrd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↑m ( 0 ... ( 𝑁 − 1 ) ) ) ( 𝑥 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ∧ ( ( 0 ... ( 𝑁 − 1 ) ) ⊆ ran ( 𝑝 ∈ ran 𝑥 ↦ 𝐵 ) ∧ ∃ 𝑝 ∈ ran 𝑥 ( 𝑝 ‘ 𝑁 ) ≠ 0 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∃ 𝑗 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) 𝑖 = ⦋ 〈 𝑇 , 𝑈 〉 / 𝑠 ⦌ 𝐶 ∧ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) ) ) |