| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem28.1 |  |-  ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) | 
						
							| 3 |  | poimirlem28.2 |  |-  ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) | 
						
							| 4 |  | poimirlem25.3 |  |-  ( ph -> T : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 5 |  | poimirlem25.4 |  |-  ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 6 |  | poimirlem24.5 |  |-  ( ph -> V e. ( 0 ... N ) ) | 
						
							| 7 |  | nfv |  |-  F/ j ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 8 |  | nfcsb1v |  |-  F/_ j [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 9 |  | nfcv |  |-  F/_ j ( 1 ... N ) | 
						
							| 10 |  | nfcv |  |-  F/_ j ( 0 ... K ) | 
						
							| 11 | 8 9 10 | nff |  |-  F/ j [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) | 
						
							| 12 | 7 11 | nfim |  |-  F/ j ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 13 |  | eleq1 |  |-  ( j = y -> ( j e. ( 0 ... ( N - 1 ) ) <-> y e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 14 | 13 | anbi2d |  |-  ( j = y -> ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) <-> ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) ) ) | 
						
							| 15 |  | csbeq1a |  |-  ( j = y -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 16 | 15 | feq1d |  |-  ( j = y -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) <-> [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) | 
						
							| 17 | 14 16 | imbi12d |  |-  ( j = y -> ( ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) <-> ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) ) | 
						
							| 18 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 19 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 20 | 18 19 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 21 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 22 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 24 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 25 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 26 | 23 24 25 | 3syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 27 | 20 26 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 28 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ph -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 30 | 29 | sselda |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. ( 0 ... N ) ) | 
						
							| 31 |  | elun |  |-  ( y e. ( { 1 } u. { 0 } ) <-> ( y e. { 1 } \/ y e. { 0 } ) ) | 
						
							| 32 |  | fzofzp1 |  |-  ( x e. ( 0 ..^ K ) -> ( x + 1 ) e. ( 0 ... K ) ) | 
						
							| 33 |  | elsni |  |-  ( y e. { 1 } -> y = 1 ) | 
						
							| 34 | 33 | oveq2d |  |-  ( y e. { 1 } -> ( x + y ) = ( x + 1 ) ) | 
						
							| 35 | 34 | eleq1d |  |-  ( y e. { 1 } -> ( ( x + y ) e. ( 0 ... K ) <-> ( x + 1 ) e. ( 0 ... K ) ) ) | 
						
							| 36 | 32 35 | syl5ibrcom |  |-  ( x e. ( 0 ..^ K ) -> ( y e. { 1 } -> ( x + y ) e. ( 0 ... K ) ) ) | 
						
							| 37 |  | elfzoelz |  |-  ( x e. ( 0 ..^ K ) -> x e. ZZ ) | 
						
							| 38 | 37 | zcnd |  |-  ( x e. ( 0 ..^ K ) -> x e. CC ) | 
						
							| 39 | 38 | addridd |  |-  ( x e. ( 0 ..^ K ) -> ( x + 0 ) = x ) | 
						
							| 40 |  | elfzofz |  |-  ( x e. ( 0 ..^ K ) -> x e. ( 0 ... K ) ) | 
						
							| 41 | 39 40 | eqeltrd |  |-  ( x e. ( 0 ..^ K ) -> ( x + 0 ) e. ( 0 ... K ) ) | 
						
							| 42 |  | elsni |  |-  ( y e. { 0 } -> y = 0 ) | 
						
							| 43 | 42 | oveq2d |  |-  ( y e. { 0 } -> ( x + y ) = ( x + 0 ) ) | 
						
							| 44 | 43 | eleq1d |  |-  ( y e. { 0 } -> ( ( x + y ) e. ( 0 ... K ) <-> ( x + 0 ) e. ( 0 ... K ) ) ) | 
						
							| 45 | 41 44 | syl5ibrcom |  |-  ( x e. ( 0 ..^ K ) -> ( y e. { 0 } -> ( x + y ) e. ( 0 ... K ) ) ) | 
						
							| 46 | 36 45 | jaod |  |-  ( x e. ( 0 ..^ K ) -> ( ( y e. { 1 } \/ y e. { 0 } ) -> ( x + y ) e. ( 0 ... K ) ) ) | 
						
							| 47 | 31 46 | biimtrid |  |-  ( x e. ( 0 ..^ K ) -> ( y e. ( { 1 } u. { 0 } ) -> ( x + y ) e. ( 0 ... K ) ) ) | 
						
							| 48 | 47 | imp |  |-  ( ( x e. ( 0 ..^ K ) /\ y e. ( { 1 } u. { 0 } ) ) -> ( x + y ) e. ( 0 ... K ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( ph /\ j e. ( 0 ... N ) ) /\ ( x e. ( 0 ..^ K ) /\ y e. ( { 1 } u. { 0 } ) ) ) -> ( x + y ) e. ( 0 ... K ) ) | 
						
							| 50 | 4 | adantr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> T : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 51 |  | 1ex |  |-  1 e. _V | 
						
							| 52 | 51 | fconst |  |-  ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } | 
						
							| 53 |  | c0ex |  |-  0 e. _V | 
						
							| 54 | 53 | fconst |  |-  ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } | 
						
							| 55 | 52 54 | pm3.2i |  |-  ( ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } ) | 
						
							| 56 |  | dff1o3 |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( U : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' U ) ) | 
						
							| 57 | 56 | simprbi |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' U ) | 
						
							| 58 |  | imain |  |-  ( Fun `' U -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) ) | 
						
							| 59 | 5 57 58 | 3syl |  |-  ( ph -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) ) | 
						
							| 60 |  | elfznn0 |  |-  ( j e. ( 0 ... N ) -> j e. NN0 ) | 
						
							| 61 | 60 | nn0red |  |-  ( j e. ( 0 ... N ) -> j e. RR ) | 
						
							| 62 | 61 | ltp1d |  |-  ( j e. ( 0 ... N ) -> j < ( j + 1 ) ) | 
						
							| 63 |  | fzdisj |  |-  ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) | 
						
							| 64 | 62 63 | syl |  |-  ( j e. ( 0 ... N ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) | 
						
							| 65 | 64 | imaeq2d |  |-  ( j e. ( 0 ... N ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( U " (/) ) ) | 
						
							| 66 |  | ima0 |  |-  ( U " (/) ) = (/) | 
						
							| 67 | 65 66 | eqtrdi |  |-  ( j e. ( 0 ... N ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) | 
						
							| 68 | 59 67 | sylan9req |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) | 
						
							| 69 |  | fun |  |-  ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } ) /\ ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 70 | 55 68 69 | sylancr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 71 |  | nn0p1nn |  |-  ( j e. NN0 -> ( j + 1 ) e. NN ) | 
						
							| 72 | 60 71 | syl |  |-  ( j e. ( 0 ... N ) -> ( j + 1 ) e. NN ) | 
						
							| 73 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 74 | 72 73 | eleqtrdi |  |-  ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 75 |  | elfzuz3 |  |-  ( j e. ( 0 ... N ) -> N e. ( ZZ>= ` j ) ) | 
						
							| 76 |  | fzsplit2 |  |-  ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` j ) ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) | 
						
							| 77 | 74 75 76 | syl2anc |  |-  ( j e. ( 0 ... N ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) | 
						
							| 78 | 77 | imaeq2d |  |-  ( j e. ( 0 ... N ) -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) ) | 
						
							| 79 |  | imaundi |  |-  ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) | 
						
							| 80 | 78 79 | eqtr2di |  |-  ( j e. ( 0 ... N ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) = ( U " ( 1 ... N ) ) ) | 
						
							| 81 |  | f1ofo |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 82 |  | foima |  |-  ( U : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 83 | 5 81 82 | 3syl |  |-  ( ph -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 84 | 80 83 | sylan9eqr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 85 | 84 | feq2d |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) | 
						
							| 86 | 70 85 | mpbid |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 87 |  | ovex |  |-  ( 1 ... N ) e. _V | 
						
							| 88 | 87 | a1i |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( 1 ... N ) e. _V ) | 
						
							| 89 |  | inidm |  |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) | 
						
							| 90 | 49 50 86 88 88 89 | off |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 91 | 30 90 | syldan |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 92 | 12 17 91 | chvarfv |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 93 |  | fzp1elp1 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( 0 ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 94 | 20 | oveq2d |  |-  ( ph -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) | 
						
							| 95 | 94 | eleq2d |  |-  ( ph -> ( ( y + 1 ) e. ( 0 ... ( ( N - 1 ) + 1 ) ) <-> ( y + 1 ) e. ( 0 ... N ) ) ) | 
						
							| 96 | 95 | biimpa |  |-  ( ( ph /\ ( y + 1 ) e. ( 0 ... ( ( N - 1 ) + 1 ) ) ) -> ( y + 1 ) e. ( 0 ... N ) ) | 
						
							| 97 | 93 96 | sylan2 |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( 0 ... N ) ) | 
						
							| 98 |  | nfv |  |-  F/ j ( ph /\ ( y + 1 ) e. ( 0 ... N ) ) | 
						
							| 99 |  | nfcsb1v |  |-  F/_ j [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 100 | 99 9 10 | nff |  |-  F/ j [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) | 
						
							| 101 | 98 100 | nfim |  |-  F/ j ( ( ph /\ ( y + 1 ) e. ( 0 ... N ) ) -> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 102 |  | ovex |  |-  ( y + 1 ) e. _V | 
						
							| 103 |  | eleq1 |  |-  ( j = ( y + 1 ) -> ( j e. ( 0 ... N ) <-> ( y + 1 ) e. ( 0 ... N ) ) ) | 
						
							| 104 | 103 | anbi2d |  |-  ( j = ( y + 1 ) -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ ( y + 1 ) e. ( 0 ... N ) ) ) ) | 
						
							| 105 |  | csbeq1a |  |-  ( j = ( y + 1 ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 106 | 105 | feq1d |  |-  ( j = ( y + 1 ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) <-> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) | 
						
							| 107 | 104 106 | imbi12d |  |-  ( j = ( y + 1 ) -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) <-> ( ( ph /\ ( y + 1 ) e. ( 0 ... N ) ) -> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) ) | 
						
							| 108 | 101 102 107 90 | vtoclf |  |-  ( ( ph /\ ( y + 1 ) e. ( 0 ... N ) ) -> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 109 | 97 108 | syldan |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 110 |  | csbeq1 |  |-  ( y = if ( y < V , y , ( y + 1 ) ) -> [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 111 | 110 | feq1d |  |-  ( y = if ( y < V , y , ( y + 1 ) ) -> ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) <-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) | 
						
							| 112 |  | csbeq1 |  |-  ( ( y + 1 ) = if ( y < V , y , ( y + 1 ) ) -> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 113 | 112 | feq1d |  |-  ( ( y + 1 ) = if ( y < V , y , ( y + 1 ) ) -> ( [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) <-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) | 
						
							| 114 | 111 113 | ifboth |  |-  ( ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 115 | 92 109 114 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 116 |  | ovex |  |-  ( 0 ... K ) e. _V | 
						
							| 117 | 116 87 | elmap |  |-  ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. ( ( 0 ... K ) ^m ( 1 ... N ) ) <-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 118 | 115 117 | sylibr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. ( ( 0 ... K ) ^m ( 1 ... N ) ) ) | 
						
							| 119 | 118 | fmpttd |  |-  ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) | 
						
							| 120 |  | ovex |  |-  ( ( 0 ... K ) ^m ( 1 ... N ) ) e. _V | 
						
							| 121 |  | ovex |  |-  ( 0 ... ( N - 1 ) ) e. _V | 
						
							| 122 | 120 121 | elmap |  |-  ( ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) <-> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) | 
						
							| 123 | 119 122 | sylibr |  |-  ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 124 |  | rneq |  |-  ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ran x = ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 125 | 124 | mpteq1d |  |-  ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( p e. ran x |-> B ) = ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) ) | 
						
							| 126 | 125 | rneqd |  |-  ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ran ( p e. ran x |-> B ) = ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) ) | 
						
							| 127 | 126 | sseq2d |  |-  ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) <-> ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) ) ) | 
						
							| 128 | 124 | rexeqdv |  |-  ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) ) | 
						
							| 129 | 127 128 | anbi12d |  |-  ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) <-> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) ) ) | 
						
							| 130 | 129 | ceqsrexv |  |-  ( ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) ) ) | 
						
							| 131 | 123 130 | syl |  |-  ( ph -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) ) ) | 
						
							| 132 |  | dfss3 |  |-  ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> A. i e. ( 0 ... ( N - 1 ) ) i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) ) | 
						
							| 133 |  | ovex |  |-  ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 134 | 133 2 | csbie |  |-  [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = C | 
						
							| 135 | 134 | csbeq2i |  |-  [_ <. T , U >. / s ]_ [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = [_ <. T , U >. / s ]_ C | 
						
							| 136 |  | opex |  |-  <. T , U >. e. _V | 
						
							| 137 | 136 | a1i |  |-  ( ph -> <. T , U >. e. _V ) | 
						
							| 138 |  | fveq2 |  |-  ( s = <. T , U >. -> ( 1st ` s ) = ( 1st ` <. T , U >. ) ) | 
						
							| 139 |  | fex |  |-  ( ( T : ( 1 ... N ) --> ( 0 ..^ K ) /\ ( 1 ... N ) e. _V ) -> T e. _V ) | 
						
							| 140 | 4 87 139 | sylancl |  |-  ( ph -> T e. _V ) | 
						
							| 141 |  | f1oexrnex |  |-  ( ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( 1 ... N ) e. _V ) -> U e. _V ) | 
						
							| 142 | 5 87 141 | sylancl |  |-  ( ph -> U e. _V ) | 
						
							| 143 |  | op1stg |  |-  ( ( T e. _V /\ U e. _V ) -> ( 1st ` <. T , U >. ) = T ) | 
						
							| 144 | 140 142 143 | syl2anc |  |-  ( ph -> ( 1st ` <. T , U >. ) = T ) | 
						
							| 145 | 138 144 | sylan9eqr |  |-  ( ( ph /\ s = <. T , U >. ) -> ( 1st ` s ) = T ) | 
						
							| 146 |  | fveq2 |  |-  ( s = <. T , U >. -> ( 2nd ` s ) = ( 2nd ` <. T , U >. ) ) | 
						
							| 147 |  | op2ndg |  |-  ( ( T e. _V /\ U e. _V ) -> ( 2nd ` <. T , U >. ) = U ) | 
						
							| 148 | 140 142 147 | syl2anc |  |-  ( ph -> ( 2nd ` <. T , U >. ) = U ) | 
						
							| 149 | 146 148 | sylan9eqr |  |-  ( ( ph /\ s = <. T , U >. ) -> ( 2nd ` s ) = U ) | 
						
							| 150 |  | imaeq1 |  |-  ( ( 2nd ` s ) = U -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( U " ( 1 ... j ) ) ) | 
						
							| 151 | 150 | xpeq1d |  |-  ( ( 2nd ` s ) = U -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 152 |  | imaeq1 |  |-  ( ( 2nd ` s ) = U -> ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) = ( U " ( ( j + 1 ) ... N ) ) ) | 
						
							| 153 | 152 | xpeq1d |  |-  ( ( 2nd ` s ) = U -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 154 | 151 153 | uneq12d |  |-  ( ( 2nd ` s ) = U -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 155 | 149 154 | syl |  |-  ( ( ph /\ s = <. T , U >. ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 156 | 145 155 | oveq12d |  |-  ( ( ph /\ s = <. T , U >. ) -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 157 | 156 | csbeq1d |  |-  ( ( ph /\ s = <. T , U >. ) -> [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) | 
						
							| 158 | 137 157 | csbied |  |-  ( ph -> [_ <. T , U >. / s ]_ [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) | 
						
							| 159 | 135 158 | eqtr3id |  |-  ( ph -> [_ <. T , U >. / s ]_ C = [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) | 
						
							| 160 | 159 | csbeq2dv |  |-  ( ph -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) | 
						
							| 161 | 160 | eqeq2d |  |-  ( ph -> ( i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C <-> i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) ) | 
						
							| 162 | 161 | rexbidv |  |-  ( ph -> ( E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C <-> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) ) | 
						
							| 163 |  | vex |  |-  i e. _V | 
						
							| 164 |  | eqid |  |-  ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) = ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) | 
						
							| 165 | 164 | elrnmpt |  |-  ( i e. _V -> ( i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = B ) ) | 
						
							| 166 | 163 165 | ax-mp |  |-  ( i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = B ) | 
						
							| 167 |  | nfv |  |-  F/ k i = B | 
						
							| 168 |  | nfcsb1v |  |-  F/_ p [_ k / p ]_ B | 
						
							| 169 | 168 | nfeq2 |  |-  F/ p i = [_ k / p ]_ B | 
						
							| 170 |  | csbeq1a |  |-  ( p = k -> B = [_ k / p ]_ B ) | 
						
							| 171 | 170 | eqeq2d |  |-  ( p = k -> ( i = B <-> i = [_ k / p ]_ B ) ) | 
						
							| 172 | 167 169 171 | cbvrexw |  |-  ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = B <-> E. k e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = [_ k / p ]_ B ) | 
						
							| 173 |  | ovex |  |-  ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 174 | 173 | csbex |  |-  [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 175 | 174 | rgenw |  |-  A. y e. ( 0 ... ( N - 1 ) ) [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 176 |  | eqid |  |-  ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 177 |  | csbeq1 |  |-  ( k = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> [_ k / p ]_ B = [_ [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) | 
						
							| 178 |  | vex |  |-  y e. _V | 
						
							| 179 | 178 102 | ifex |  |-  if ( y < V , y , ( y + 1 ) ) e. _V | 
						
							| 180 |  | csbnestgw |  |-  ( if ( y < V , y , ( y + 1 ) ) e. _V -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = [_ [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) | 
						
							| 181 | 179 180 | ax-mp |  |-  [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = [_ [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B | 
						
							| 182 | 177 181 | eqtr4di |  |-  ( k = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> [_ k / p ]_ B = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) | 
						
							| 183 | 182 | eqeq2d |  |-  ( k = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( i = [_ k / p ]_ B <-> i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) ) | 
						
							| 184 | 176 183 | rexrnmptw |  |-  ( A. y e. ( 0 ... ( N - 1 ) ) [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V -> ( E. k e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = [_ k / p ]_ B <-> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) ) | 
						
							| 185 | 175 184 | ax-mp |  |-  ( E. k e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = [_ k / p ]_ B <-> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) | 
						
							| 186 | 166 172 185 | 3bitri |  |-  ( i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) | 
						
							| 187 | 162 186 | bitr4di |  |-  ( ph -> ( E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C <-> i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) ) ) | 
						
							| 188 | 29 | sselda |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. ( 0 ... N ) ) | 
						
							| 189 | 188 | adantr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < V ) -> y e. ( 0 ... N ) ) | 
						
							| 190 |  | elfzelz |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ ) | 
						
							| 191 | 190 | zred |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) | 
						
							| 192 | 191 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR ) | 
						
							| 193 |  | ltne |  |-  ( ( y e. RR /\ y < V ) -> V =/= y ) | 
						
							| 194 | 193 | necomd |  |-  ( ( y e. RR /\ y < V ) -> y =/= V ) | 
						
							| 195 | 192 194 | sylan |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < V ) -> y =/= V ) | 
						
							| 196 |  | eldifsn |  |-  ( y e. ( ( 0 ... N ) \ { V } ) <-> ( y e. ( 0 ... N ) /\ y =/= V ) ) | 
						
							| 197 | 189 195 196 | sylanbrc |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < V ) -> y e. ( ( 0 ... N ) \ { V } ) ) | 
						
							| 198 | 97 | adantr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < V ) -> ( y + 1 ) e. ( 0 ... N ) ) | 
						
							| 199 | 6 | elfzelzd |  |-  ( ph -> V e. ZZ ) | 
						
							| 200 | 199 | zred |  |-  ( ph -> V e. RR ) | 
						
							| 201 | 200 | ad2antrr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < V ) -> V e. RR ) | 
						
							| 202 |  | zre |  |-  ( V e. ZZ -> V e. RR ) | 
						
							| 203 |  | zre |  |-  ( y e. ZZ -> y e. RR ) | 
						
							| 204 |  | lenlt |  |-  ( ( V e. RR /\ y e. RR ) -> ( V <_ y <-> -. y < V ) ) | 
						
							| 205 | 202 203 204 | syl2an |  |-  ( ( V e. ZZ /\ y e. ZZ ) -> ( V <_ y <-> -. y < V ) ) | 
						
							| 206 |  | zleltp1 |  |-  ( ( V e. ZZ /\ y e. ZZ ) -> ( V <_ y <-> V < ( y + 1 ) ) ) | 
						
							| 207 | 205 206 | bitr3d |  |-  ( ( V e. ZZ /\ y e. ZZ ) -> ( -. y < V <-> V < ( y + 1 ) ) ) | 
						
							| 208 | 199 190 207 | syl2an |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( -. y < V <-> V < ( y + 1 ) ) ) | 
						
							| 209 | 208 | biimpa |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < V ) -> V < ( y + 1 ) ) | 
						
							| 210 | 201 209 | gtned |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < V ) -> ( y + 1 ) =/= V ) | 
						
							| 211 |  | eldifsn |  |-  ( ( y + 1 ) e. ( ( 0 ... N ) \ { V } ) <-> ( ( y + 1 ) e. ( 0 ... N ) /\ ( y + 1 ) =/= V ) ) | 
						
							| 212 | 198 210 211 | sylanbrc |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < V ) -> ( y + 1 ) e. ( ( 0 ... N ) \ { V } ) ) | 
						
							| 213 | 197 212 | ifclda |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < V , y , ( y + 1 ) ) e. ( ( 0 ... N ) \ { V } ) ) | 
						
							| 214 |  | nfcsb1v |  |-  F/_ j [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C | 
						
							| 215 | 214 | nfeq2 |  |-  F/ j i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C | 
						
							| 216 |  | csbeq1a |  |-  ( j = if ( y < V , y , ( y + 1 ) ) -> [_ <. T , U >. / s ]_ C = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 217 | 216 | eqeq2d |  |-  ( j = if ( y < V , y , ( y + 1 ) ) -> ( i = [_ <. T , U >. / s ]_ C <-> i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 218 | 215 217 | rspce |  |-  ( ( if ( y < V , y , ( y + 1 ) ) e. ( ( 0 ... N ) \ { V } ) /\ i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) | 
						
							| 219 | 218 | ex |  |-  ( if ( y < V , y , ( y + 1 ) ) e. ( ( 0 ... N ) \ { V } ) -> ( i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C -> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 220 | 213 219 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C -> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 221 | 220 | rexlimdva |  |-  ( ph -> ( E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C -> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 222 |  | nfv |  |-  F/ j ph | 
						
							| 223 |  | nfcv |  |-  F/_ j ( 0 ... ( N - 1 ) ) | 
						
							| 224 | 223 215 | nfrexw |  |-  F/ j E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C | 
						
							| 225 |  | eldifi |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> j e. ( 0 ... N ) ) | 
						
							| 226 | 225 60 | syl |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> j e. NN0 ) | 
						
							| 227 | 226 | nn0ge0d |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> 0 <_ j ) | 
						
							| 228 | 227 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> 0 <_ j ) | 
						
							| 229 | 226 | nn0red |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> j e. RR ) | 
						
							| 230 | 229 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j e. RR ) | 
						
							| 231 | 200 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> V e. RR ) | 
						
							| 232 | 21 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 233 | 232 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> N e. RR ) | 
						
							| 234 |  | simpr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j < V ) | 
						
							| 235 |  | elfzle2 |  |-  ( V e. ( 0 ... N ) -> V <_ N ) | 
						
							| 236 | 6 235 | syl |  |-  ( ph -> V <_ N ) | 
						
							| 237 | 236 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> V <_ N ) | 
						
							| 238 | 230 231 233 234 237 | ltletrd |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j < N ) | 
						
							| 239 | 225 | elfzelzd |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> j e. ZZ ) | 
						
							| 240 |  | zltlem1 |  |-  ( ( j e. ZZ /\ N e. ZZ ) -> ( j < N <-> j <_ ( N - 1 ) ) ) | 
						
							| 241 | 239 21 240 | syl2anr |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j < N <-> j <_ ( N - 1 ) ) ) | 
						
							| 242 | 241 | adantr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> ( j < N <-> j <_ ( N - 1 ) ) ) | 
						
							| 243 | 238 242 | mpbid |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j <_ ( N - 1 ) ) | 
						
							| 244 |  | 0z |  |-  0 e. ZZ | 
						
							| 245 |  | elfz |  |-  ( ( j e. ZZ /\ 0 e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( j e. ( 0 ... ( N - 1 ) ) <-> ( 0 <_ j /\ j <_ ( N - 1 ) ) ) ) | 
						
							| 246 | 244 245 | mp3an2 |  |-  ( ( j e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( j e. ( 0 ... ( N - 1 ) ) <-> ( 0 <_ j /\ j <_ ( N - 1 ) ) ) ) | 
						
							| 247 | 239 23 246 | syl2anr |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j e. ( 0 ... ( N - 1 ) ) <-> ( 0 <_ j /\ j <_ ( N - 1 ) ) ) ) | 
						
							| 248 | 247 | adantr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> ( j e. ( 0 ... ( N - 1 ) ) <-> ( 0 <_ j /\ j <_ ( N - 1 ) ) ) ) | 
						
							| 249 | 228 243 248 | mpbir2and |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 250 |  | 0red |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> 0 e. RR ) | 
						
							| 251 | 200 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> V e. RR ) | 
						
							| 252 | 229 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> j e. RR ) | 
						
							| 253 |  | elfzle1 |  |-  ( V e. ( 0 ... N ) -> 0 <_ V ) | 
						
							| 254 | 6 253 | syl |  |-  ( ph -> 0 <_ V ) | 
						
							| 255 | 254 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> 0 <_ V ) | 
						
							| 256 |  | lenlt |  |-  ( ( V e. RR /\ j e. RR ) -> ( V <_ j <-> -. j < V ) ) | 
						
							| 257 | 200 229 256 | syl2an |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( V <_ j <-> -. j < V ) ) | 
						
							| 258 | 257 | biimpar |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> V <_ j ) | 
						
							| 259 |  | eldifsni |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> j =/= V ) | 
						
							| 260 | 259 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> j =/= V ) | 
						
							| 261 |  | ltlen |  |-  ( ( V e. RR /\ j e. RR ) -> ( V < j <-> ( V <_ j /\ j =/= V ) ) ) | 
						
							| 262 | 200 229 261 | syl2an |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( V < j <-> ( V <_ j /\ j =/= V ) ) ) | 
						
							| 263 | 262 | adantr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> ( V < j <-> ( V <_ j /\ j =/= V ) ) ) | 
						
							| 264 | 258 260 263 | mpbir2and |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> V < j ) | 
						
							| 265 | 250 251 252 255 264 | lelttrd |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> 0 < j ) | 
						
							| 266 |  | zgt0ge1 |  |-  ( j e. ZZ -> ( 0 < j <-> 1 <_ j ) ) | 
						
							| 267 | 239 266 | syl |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> ( 0 < j <-> 1 <_ j ) ) | 
						
							| 268 | 267 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> ( 0 < j <-> 1 <_ j ) ) | 
						
							| 269 | 265 268 | mpbid |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> 1 <_ j ) | 
						
							| 270 |  | elfzle2 |  |-  ( j e. ( 0 ... N ) -> j <_ N ) | 
						
							| 271 | 225 270 | syl |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> j <_ N ) | 
						
							| 272 | 271 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> j <_ N ) | 
						
							| 273 |  | 1z |  |-  1 e. ZZ | 
						
							| 274 |  | elfz |  |-  ( ( j e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( j e. ( 1 ... N ) <-> ( 1 <_ j /\ j <_ N ) ) ) | 
						
							| 275 | 273 274 | mp3an2 |  |-  ( ( j e. ZZ /\ N e. ZZ ) -> ( j e. ( 1 ... N ) <-> ( 1 <_ j /\ j <_ N ) ) ) | 
						
							| 276 | 239 21 275 | syl2anr |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j e. ( 1 ... N ) <-> ( 1 <_ j /\ j <_ N ) ) ) | 
						
							| 277 | 276 | adantr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> ( j e. ( 1 ... N ) <-> ( 1 <_ j /\ j <_ N ) ) ) | 
						
							| 278 | 269 272 277 | mpbir2and |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> j e. ( 1 ... N ) ) | 
						
							| 279 |  | elfzmlbm |  |-  ( j e. ( 1 ... N ) -> ( j - 1 ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 280 | 278 279 | syl |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> ( j - 1 ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 281 | 249 280 | ifclda |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> if ( j < V , j , ( j - 1 ) ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 282 |  | breq1 |  |-  ( j = if ( j < V , j , ( j - 1 ) ) -> ( j < V <-> if ( j < V , j , ( j - 1 ) ) < V ) ) | 
						
							| 283 |  | id |  |-  ( j = if ( j < V , j , ( j - 1 ) ) -> j = if ( j < V , j , ( j - 1 ) ) ) | 
						
							| 284 |  | oveq1 |  |-  ( j = if ( j < V , j , ( j - 1 ) ) -> ( j + 1 ) = ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) | 
						
							| 285 | 282 283 284 | ifbieq12d |  |-  ( j = if ( j < V , j , ( j - 1 ) ) -> if ( j < V , j , ( j + 1 ) ) = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) | 
						
							| 286 | 285 | eqeq2d |  |-  ( j = if ( j < V , j , ( j - 1 ) ) -> ( j = if ( j < V , j , ( j + 1 ) ) <-> j = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) ) | 
						
							| 287 |  | breq1 |  |-  ( ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) -> ( ( j - 1 ) < V <-> if ( j < V , j , ( j - 1 ) ) < V ) ) | 
						
							| 288 |  | id |  |-  ( ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) -> ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) ) | 
						
							| 289 |  | oveq1 |  |-  ( ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) -> ( ( j - 1 ) + 1 ) = ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) | 
						
							| 290 | 287 288 289 | ifbieq12d |  |-  ( ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) -> if ( ( j - 1 ) < V , ( j - 1 ) , ( ( j - 1 ) + 1 ) ) = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) | 
						
							| 291 | 290 | eqeq2d |  |-  ( ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) -> ( j = if ( ( j - 1 ) < V , ( j - 1 ) , ( ( j - 1 ) + 1 ) ) <-> j = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) ) | 
						
							| 292 |  | iftrue |  |-  ( j < V -> if ( j < V , j , ( j + 1 ) ) = j ) | 
						
							| 293 | 292 | eqcomd |  |-  ( j < V -> j = if ( j < V , j , ( j + 1 ) ) ) | 
						
							| 294 | 293 | adantl |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j = if ( j < V , j , ( j + 1 ) ) ) | 
						
							| 295 |  | zlem1lt |  |-  ( ( j e. ZZ /\ V e. ZZ ) -> ( j <_ V <-> ( j - 1 ) < V ) ) | 
						
							| 296 | 239 199 295 | syl2anr |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j <_ V <-> ( j - 1 ) < V ) ) | 
						
							| 297 | 259 | necomd |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> V =/= j ) | 
						
							| 298 | 297 | adantl |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> V =/= j ) | 
						
							| 299 |  | ltlen |  |-  ( ( j e. RR /\ V e. RR ) -> ( j < V <-> ( j <_ V /\ V =/= j ) ) ) | 
						
							| 300 | 229 200 299 | syl2anr |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j < V <-> ( j <_ V /\ V =/= j ) ) ) | 
						
							| 301 | 300 | biimprd |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( ( j <_ V /\ V =/= j ) -> j < V ) ) | 
						
							| 302 | 298 301 | mpan2d |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j <_ V -> j < V ) ) | 
						
							| 303 | 296 302 | sylbird |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( ( j - 1 ) < V -> j < V ) ) | 
						
							| 304 | 303 | con3dimp |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> -. ( j - 1 ) < V ) | 
						
							| 305 | 304 | iffalsed |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> if ( ( j - 1 ) < V , ( j - 1 ) , ( ( j - 1 ) + 1 ) ) = ( ( j - 1 ) + 1 ) ) | 
						
							| 306 | 226 | nn0cnd |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> j e. CC ) | 
						
							| 307 |  | npcan1 |  |-  ( j e. CC -> ( ( j - 1 ) + 1 ) = j ) | 
						
							| 308 | 306 307 | syl |  |-  ( j e. ( ( 0 ... N ) \ { V } ) -> ( ( j - 1 ) + 1 ) = j ) | 
						
							| 309 | 308 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> ( ( j - 1 ) + 1 ) = j ) | 
						
							| 310 | 305 309 | eqtr2d |  |-  ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> j = if ( ( j - 1 ) < V , ( j - 1 ) , ( ( j - 1 ) + 1 ) ) ) | 
						
							| 311 | 286 291 294 310 | ifbothda |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> j = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) | 
						
							| 312 |  | csbeq1a |  |-  ( j = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) -> [_ <. T , U >. / s ]_ C = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 313 | 311 312 | syl |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> [_ <. T , U >. / s ]_ C = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 314 | 313 | eqeq2d |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( i = [_ <. T , U >. / s ]_ C <-> i = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 315 | 314 | biimpd |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( i = [_ <. T , U >. / s ]_ C -> i = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 316 |  | breq1 |  |-  ( y = if ( j < V , j , ( j - 1 ) ) -> ( y < V <-> if ( j < V , j , ( j - 1 ) ) < V ) ) | 
						
							| 317 |  | id |  |-  ( y = if ( j < V , j , ( j - 1 ) ) -> y = if ( j < V , j , ( j - 1 ) ) ) | 
						
							| 318 |  | oveq1 |  |-  ( y = if ( j < V , j , ( j - 1 ) ) -> ( y + 1 ) = ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) | 
						
							| 319 | 316 317 318 | ifbieq12d |  |-  ( y = if ( j < V , j , ( j - 1 ) ) -> if ( y < V , y , ( y + 1 ) ) = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) | 
						
							| 320 | 319 | csbeq1d |  |-  ( y = if ( j < V , j , ( j - 1 ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 321 | 320 | eqeq2d |  |-  ( y = if ( j < V , j , ( j - 1 ) ) -> ( i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C <-> i = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 322 | 321 | rspcev |  |-  ( ( if ( j < V , j , ( j - 1 ) ) e. ( 0 ... ( N - 1 ) ) /\ i = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) -> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 323 | 281 315 322 | syl6an |  |-  ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( i = [_ <. T , U >. / s ]_ C -> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 324 | 323 | ex |  |-  ( ph -> ( j e. ( ( 0 ... N ) \ { V } ) -> ( i = [_ <. T , U >. / s ]_ C -> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 325 | 222 224 324 | rexlimd |  |-  ( ph -> ( E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C -> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 326 | 221 325 | impbid |  |-  ( ph -> ( E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 327 | 187 326 | bitr3d |  |-  ( ph -> ( i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 328 | 327 | ralbidv |  |-  ( ph -> ( A. i e. ( 0 ... ( N - 1 ) ) i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 329 | 132 328 | bitrid |  |-  ( ph -> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 330 | 329 | anbi1d |  |-  ( ph -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) ) ) | 
						
							| 331 | 1 4 5 6 | poimirlem23 |  |-  ( ph -> ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) | 
						
							| 332 | 331 | anbi2d |  |-  ( ph -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C /\ -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) ) | 
						
							| 333 | 131 330 332 | 3bitrd |  |-  ( ph -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C /\ -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) ) |