| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem28.1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) |
| 3 |
|
poimirlem28.2 |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
| 4 |
|
poimirlem25.3 |
|- ( ph -> T : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 5 |
|
poimirlem25.4 |
|- ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 6 |
|
poimirlem24.5 |
|- ( ph -> V e. ( 0 ... N ) ) |
| 7 |
|
nfv |
|- F/ j ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) |
| 8 |
|
nfcsb1v |
|- F/_ j [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 9 |
|
nfcv |
|- F/_ j ( 1 ... N ) |
| 10 |
|
nfcv |
|- F/_ j ( 0 ... K ) |
| 11 |
8 9 10
|
nff |
|- F/ j [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) |
| 12 |
7 11
|
nfim |
|- F/ j ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 13 |
|
eleq1 |
|- ( j = y -> ( j e. ( 0 ... ( N - 1 ) ) <-> y e. ( 0 ... ( N - 1 ) ) ) ) |
| 14 |
13
|
anbi2d |
|- ( j = y -> ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) <-> ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) ) ) |
| 15 |
|
csbeq1a |
|- ( j = y -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 16 |
15
|
feq1d |
|- ( j = y -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) <-> [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
| 17 |
14 16
|
imbi12d |
|- ( j = y -> ( ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) <-> ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) ) |
| 18 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 19 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 20 |
18 19
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 21 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 22 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 23 |
21 22
|
syl |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 24 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 25 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 26 |
23 24 25
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 27 |
20 26
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 28 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 29 |
27 28
|
syl |
|- ( ph -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 30 |
29
|
sselda |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. ( 0 ... N ) ) |
| 31 |
|
elun |
|- ( y e. ( { 1 } u. { 0 } ) <-> ( y e. { 1 } \/ y e. { 0 } ) ) |
| 32 |
|
fzofzp1 |
|- ( x e. ( 0 ..^ K ) -> ( x + 1 ) e. ( 0 ... K ) ) |
| 33 |
|
elsni |
|- ( y e. { 1 } -> y = 1 ) |
| 34 |
33
|
oveq2d |
|- ( y e. { 1 } -> ( x + y ) = ( x + 1 ) ) |
| 35 |
34
|
eleq1d |
|- ( y e. { 1 } -> ( ( x + y ) e. ( 0 ... K ) <-> ( x + 1 ) e. ( 0 ... K ) ) ) |
| 36 |
32 35
|
syl5ibrcom |
|- ( x e. ( 0 ..^ K ) -> ( y e. { 1 } -> ( x + y ) e. ( 0 ... K ) ) ) |
| 37 |
|
elfzoelz |
|- ( x e. ( 0 ..^ K ) -> x e. ZZ ) |
| 38 |
37
|
zcnd |
|- ( x e. ( 0 ..^ K ) -> x e. CC ) |
| 39 |
38
|
addridd |
|- ( x e. ( 0 ..^ K ) -> ( x + 0 ) = x ) |
| 40 |
|
elfzofz |
|- ( x e. ( 0 ..^ K ) -> x e. ( 0 ... K ) ) |
| 41 |
39 40
|
eqeltrd |
|- ( x e. ( 0 ..^ K ) -> ( x + 0 ) e. ( 0 ... K ) ) |
| 42 |
|
elsni |
|- ( y e. { 0 } -> y = 0 ) |
| 43 |
42
|
oveq2d |
|- ( y e. { 0 } -> ( x + y ) = ( x + 0 ) ) |
| 44 |
43
|
eleq1d |
|- ( y e. { 0 } -> ( ( x + y ) e. ( 0 ... K ) <-> ( x + 0 ) e. ( 0 ... K ) ) ) |
| 45 |
41 44
|
syl5ibrcom |
|- ( x e. ( 0 ..^ K ) -> ( y e. { 0 } -> ( x + y ) e. ( 0 ... K ) ) ) |
| 46 |
36 45
|
jaod |
|- ( x e. ( 0 ..^ K ) -> ( ( y e. { 1 } \/ y e. { 0 } ) -> ( x + y ) e. ( 0 ... K ) ) ) |
| 47 |
31 46
|
biimtrid |
|- ( x e. ( 0 ..^ K ) -> ( y e. ( { 1 } u. { 0 } ) -> ( x + y ) e. ( 0 ... K ) ) ) |
| 48 |
47
|
imp |
|- ( ( x e. ( 0 ..^ K ) /\ y e. ( { 1 } u. { 0 } ) ) -> ( x + y ) e. ( 0 ... K ) ) |
| 49 |
48
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ ( x e. ( 0 ..^ K ) /\ y e. ( { 1 } u. { 0 } ) ) ) -> ( x + y ) e. ( 0 ... K ) ) |
| 50 |
4
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> T : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 51 |
|
1ex |
|- 1 e. _V |
| 52 |
51
|
fconst |
|- ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } |
| 53 |
|
c0ex |
|- 0 e. _V |
| 54 |
53
|
fconst |
|- ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } |
| 55 |
52 54
|
pm3.2i |
|- ( ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } ) |
| 56 |
|
dff1o3 |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( U : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' U ) ) |
| 57 |
56
|
simprbi |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' U ) |
| 58 |
|
imain |
|- ( Fun `' U -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) ) |
| 59 |
5 57 58
|
3syl |
|- ( ph -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) ) |
| 60 |
|
elfznn0 |
|- ( j e. ( 0 ... N ) -> j e. NN0 ) |
| 61 |
60
|
nn0red |
|- ( j e. ( 0 ... N ) -> j e. RR ) |
| 62 |
61
|
ltp1d |
|- ( j e. ( 0 ... N ) -> j < ( j + 1 ) ) |
| 63 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 64 |
62 63
|
syl |
|- ( j e. ( 0 ... N ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 65 |
64
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( U " (/) ) ) |
| 66 |
|
ima0 |
|- ( U " (/) ) = (/) |
| 67 |
65 66
|
eqtrdi |
|- ( j e. ( 0 ... N ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 68 |
59 67
|
sylan9req |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 69 |
|
fun |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } ) /\ ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
| 70 |
55 68 69
|
sylancr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
| 71 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
| 72 |
60 71
|
syl |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. NN ) |
| 73 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 74 |
72 73
|
eleqtrdi |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
| 75 |
|
elfzuz3 |
|- ( j e. ( 0 ... N ) -> N e. ( ZZ>= ` j ) ) |
| 76 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` j ) ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
| 77 |
74 75 76
|
syl2anc |
|- ( j e. ( 0 ... N ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
| 78 |
77
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) ) |
| 79 |
|
imaundi |
|- ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) |
| 80 |
78 79
|
eqtr2di |
|- ( j e. ( 0 ... N ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) = ( U " ( 1 ... N ) ) ) |
| 81 |
|
f1ofo |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
| 82 |
|
foima |
|- ( U : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 83 |
5 81 82
|
3syl |
|- ( ph -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 84 |
80 83
|
sylan9eqr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 85 |
84
|
feq2d |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) |
| 86 |
70 85
|
mpbid |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) |
| 87 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 88 |
87
|
a1i |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( 1 ... N ) e. _V ) |
| 89 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 90 |
49 50 86 88 88 89
|
off |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 91 |
30 90
|
syldan |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 92 |
12 17 91
|
chvarfv |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 93 |
|
fzp1elp1 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( 0 ... ( ( N - 1 ) + 1 ) ) ) |
| 94 |
20
|
oveq2d |
|- ( ph -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) |
| 95 |
94
|
eleq2d |
|- ( ph -> ( ( y + 1 ) e. ( 0 ... ( ( N - 1 ) + 1 ) ) <-> ( y + 1 ) e. ( 0 ... N ) ) ) |
| 96 |
95
|
biimpa |
|- ( ( ph /\ ( y + 1 ) e. ( 0 ... ( ( N - 1 ) + 1 ) ) ) -> ( y + 1 ) e. ( 0 ... N ) ) |
| 97 |
93 96
|
sylan2 |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( 0 ... N ) ) |
| 98 |
|
nfv |
|- F/ j ( ph /\ ( y + 1 ) e. ( 0 ... N ) ) |
| 99 |
|
nfcsb1v |
|- F/_ j [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 100 |
99 9 10
|
nff |
|- F/ j [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) |
| 101 |
98 100
|
nfim |
|- F/ j ( ( ph /\ ( y + 1 ) e. ( 0 ... N ) ) -> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 102 |
|
ovex |
|- ( y + 1 ) e. _V |
| 103 |
|
eleq1 |
|- ( j = ( y + 1 ) -> ( j e. ( 0 ... N ) <-> ( y + 1 ) e. ( 0 ... N ) ) ) |
| 104 |
103
|
anbi2d |
|- ( j = ( y + 1 ) -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ ( y + 1 ) e. ( 0 ... N ) ) ) ) |
| 105 |
|
csbeq1a |
|- ( j = ( y + 1 ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 106 |
105
|
feq1d |
|- ( j = ( y + 1 ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) <-> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
| 107 |
104 106
|
imbi12d |
|- ( j = ( y + 1 ) -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) <-> ( ( ph /\ ( y + 1 ) e. ( 0 ... N ) ) -> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) ) |
| 108 |
101 102 107 90
|
vtoclf |
|- ( ( ph /\ ( y + 1 ) e. ( 0 ... N ) ) -> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 109 |
97 108
|
syldan |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 110 |
|
csbeq1 |
|- ( y = if ( y < V , y , ( y + 1 ) ) -> [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 111 |
110
|
feq1d |
|- ( y = if ( y < V , y , ( y + 1 ) ) -> ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) <-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
| 112 |
|
csbeq1 |
|- ( ( y + 1 ) = if ( y < V , y , ( y + 1 ) ) -> [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 113 |
112
|
feq1d |
|- ( ( y + 1 ) = if ( y < V , y , ( y + 1 ) ) -> ( [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) <-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
| 114 |
111 113
|
ifboth |
|- ( ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) /\ [_ ( y + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 115 |
92 109 114
|
syl2anc |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 116 |
|
ovex |
|- ( 0 ... K ) e. _V |
| 117 |
116 87
|
elmap |
|- ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. ( ( 0 ... K ) ^m ( 1 ... N ) ) <-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 118 |
115 117
|
sylibr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
| 119 |
118
|
fmpttd |
|- ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
| 120 |
|
ovex |
|- ( ( 0 ... K ) ^m ( 1 ... N ) ) e. _V |
| 121 |
|
ovex |
|- ( 0 ... ( N - 1 ) ) e. _V |
| 122 |
120 121
|
elmap |
|- ( ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) <-> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
| 123 |
119 122
|
sylibr |
|- ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ) |
| 124 |
|
rneq |
|- ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ran x = ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 125 |
124
|
mpteq1d |
|- ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( p e. ran x |-> B ) = ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) ) |
| 126 |
125
|
rneqd |
|- ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ran ( p e. ran x |-> B ) = ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) ) |
| 127 |
126
|
sseq2d |
|- ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) <-> ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) ) ) |
| 128 |
124
|
rexeqdv |
|- ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( E. p e. ran x ( p ` N ) =/= 0 <-> E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) ) |
| 129 |
127 128
|
anbi12d |
|- ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) <-> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) ) ) |
| 130 |
129
|
ceqsrexv |
|- ( ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) ) ) |
| 131 |
123 130
|
syl |
|- ( ph -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) ) ) |
| 132 |
|
dfss3 |
|- ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> A. i e. ( 0 ... ( N - 1 ) ) i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) ) |
| 133 |
|
ovex |
|- ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 134 |
133 2
|
csbie |
|- [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = C |
| 135 |
134
|
csbeq2i |
|- [_ <. T , U >. / s ]_ [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = [_ <. T , U >. / s ]_ C |
| 136 |
|
opex |
|- <. T , U >. e. _V |
| 137 |
136
|
a1i |
|- ( ph -> <. T , U >. e. _V ) |
| 138 |
|
fveq2 |
|- ( s = <. T , U >. -> ( 1st ` s ) = ( 1st ` <. T , U >. ) ) |
| 139 |
|
fex |
|- ( ( T : ( 1 ... N ) --> ( 0 ..^ K ) /\ ( 1 ... N ) e. _V ) -> T e. _V ) |
| 140 |
4 87 139
|
sylancl |
|- ( ph -> T e. _V ) |
| 141 |
|
f1oexrnex |
|- ( ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( 1 ... N ) e. _V ) -> U e. _V ) |
| 142 |
5 87 141
|
sylancl |
|- ( ph -> U e. _V ) |
| 143 |
|
op1stg |
|- ( ( T e. _V /\ U e. _V ) -> ( 1st ` <. T , U >. ) = T ) |
| 144 |
140 142 143
|
syl2anc |
|- ( ph -> ( 1st ` <. T , U >. ) = T ) |
| 145 |
138 144
|
sylan9eqr |
|- ( ( ph /\ s = <. T , U >. ) -> ( 1st ` s ) = T ) |
| 146 |
|
fveq2 |
|- ( s = <. T , U >. -> ( 2nd ` s ) = ( 2nd ` <. T , U >. ) ) |
| 147 |
|
op2ndg |
|- ( ( T e. _V /\ U e. _V ) -> ( 2nd ` <. T , U >. ) = U ) |
| 148 |
140 142 147
|
syl2anc |
|- ( ph -> ( 2nd ` <. T , U >. ) = U ) |
| 149 |
146 148
|
sylan9eqr |
|- ( ( ph /\ s = <. T , U >. ) -> ( 2nd ` s ) = U ) |
| 150 |
|
imaeq1 |
|- ( ( 2nd ` s ) = U -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( U " ( 1 ... j ) ) ) |
| 151 |
150
|
xpeq1d |
|- ( ( 2nd ` s ) = U -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... j ) ) X. { 1 } ) ) |
| 152 |
|
imaeq1 |
|- ( ( 2nd ` s ) = U -> ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) = ( U " ( ( j + 1 ) ... N ) ) ) |
| 153 |
152
|
xpeq1d |
|- ( ( 2nd ` s ) = U -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 154 |
151 153
|
uneq12d |
|- ( ( 2nd ` s ) = U -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 155 |
149 154
|
syl |
|- ( ( ph /\ s = <. T , U >. ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 156 |
145 155
|
oveq12d |
|- ( ( ph /\ s = <. T , U >. ) -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 157 |
156
|
csbeq1d |
|- ( ( ph /\ s = <. T , U >. ) -> [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
| 158 |
137 157
|
csbied |
|- ( ph -> [_ <. T , U >. / s ]_ [_ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
| 159 |
135 158
|
eqtr3id |
|- ( ph -> [_ <. T , U >. / s ]_ C = [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
| 160 |
159
|
csbeq2dv |
|- ( ph -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
| 161 |
160
|
eqeq2d |
|- ( ph -> ( i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C <-> i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) ) |
| 162 |
161
|
rexbidv |
|- ( ph -> ( E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C <-> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) ) |
| 163 |
|
vex |
|- i e. _V |
| 164 |
|
eqid |
|- ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) = ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) |
| 165 |
164
|
elrnmpt |
|- ( i e. _V -> ( i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = B ) ) |
| 166 |
163 165
|
ax-mp |
|- ( i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = B ) |
| 167 |
|
nfv |
|- F/ k i = B |
| 168 |
|
nfcsb1v |
|- F/_ p [_ k / p ]_ B |
| 169 |
168
|
nfeq2 |
|- F/ p i = [_ k / p ]_ B |
| 170 |
|
csbeq1a |
|- ( p = k -> B = [_ k / p ]_ B ) |
| 171 |
170
|
eqeq2d |
|- ( p = k -> ( i = B <-> i = [_ k / p ]_ B ) ) |
| 172 |
167 169 171
|
cbvrexw |
|- ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = B <-> E. k e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = [_ k / p ]_ B ) |
| 173 |
|
ovex |
|- ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 174 |
173
|
csbex |
|- [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 175 |
174
|
rgenw |
|- A. y e. ( 0 ... ( N - 1 ) ) [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 176 |
|
eqid |
|- ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 177 |
|
csbeq1 |
|- ( k = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> [_ k / p ]_ B = [_ [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
| 178 |
|
vex |
|- y e. _V |
| 179 |
178 102
|
ifex |
|- if ( y < V , y , ( y + 1 ) ) e. _V |
| 180 |
|
csbnestgw |
|- ( if ( y < V , y , ( y + 1 ) ) e. _V -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = [_ [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
| 181 |
179 180
|
ax-mp |
|- [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B = [_ [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B |
| 182 |
177 181
|
eqtr4di |
|- ( k = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> [_ k / p ]_ B = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
| 183 |
182
|
eqeq2d |
|- ( k = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( i = [_ k / p ]_ B <-> i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) ) |
| 184 |
176 183
|
rexrnmptw |
|- ( A. y e. ( 0 ... ( N - 1 ) ) [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V -> ( E. k e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = [_ k / p ]_ B <-> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) ) |
| 185 |
175 184
|
ax-mp |
|- ( E. k e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) i = [_ k / p ]_ B <-> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
| 186 |
166 172 185
|
3bitri |
|- ( i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) / p ]_ B ) |
| 187 |
162 186
|
bitr4di |
|- ( ph -> ( E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C <-> i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) ) ) |
| 188 |
29
|
sselda |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. ( 0 ... N ) ) |
| 189 |
188
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < V ) -> y e. ( 0 ... N ) ) |
| 190 |
|
elfzelz |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ ) |
| 191 |
190
|
zred |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) |
| 192 |
191
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR ) |
| 193 |
|
ltne |
|- ( ( y e. RR /\ y < V ) -> V =/= y ) |
| 194 |
193
|
necomd |
|- ( ( y e. RR /\ y < V ) -> y =/= V ) |
| 195 |
192 194
|
sylan |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < V ) -> y =/= V ) |
| 196 |
|
eldifsn |
|- ( y e. ( ( 0 ... N ) \ { V } ) <-> ( y e. ( 0 ... N ) /\ y =/= V ) ) |
| 197 |
189 195 196
|
sylanbrc |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < V ) -> y e. ( ( 0 ... N ) \ { V } ) ) |
| 198 |
97
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < V ) -> ( y + 1 ) e. ( 0 ... N ) ) |
| 199 |
6
|
elfzelzd |
|- ( ph -> V e. ZZ ) |
| 200 |
199
|
zred |
|- ( ph -> V e. RR ) |
| 201 |
200
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < V ) -> V e. RR ) |
| 202 |
|
zre |
|- ( V e. ZZ -> V e. RR ) |
| 203 |
|
zre |
|- ( y e. ZZ -> y e. RR ) |
| 204 |
|
lenlt |
|- ( ( V e. RR /\ y e. RR ) -> ( V <_ y <-> -. y < V ) ) |
| 205 |
202 203 204
|
syl2an |
|- ( ( V e. ZZ /\ y e. ZZ ) -> ( V <_ y <-> -. y < V ) ) |
| 206 |
|
zleltp1 |
|- ( ( V e. ZZ /\ y e. ZZ ) -> ( V <_ y <-> V < ( y + 1 ) ) ) |
| 207 |
205 206
|
bitr3d |
|- ( ( V e. ZZ /\ y e. ZZ ) -> ( -. y < V <-> V < ( y + 1 ) ) ) |
| 208 |
199 190 207
|
syl2an |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( -. y < V <-> V < ( y + 1 ) ) ) |
| 209 |
208
|
biimpa |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < V ) -> V < ( y + 1 ) ) |
| 210 |
201 209
|
gtned |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < V ) -> ( y + 1 ) =/= V ) |
| 211 |
|
eldifsn |
|- ( ( y + 1 ) e. ( ( 0 ... N ) \ { V } ) <-> ( ( y + 1 ) e. ( 0 ... N ) /\ ( y + 1 ) =/= V ) ) |
| 212 |
198 210 211
|
sylanbrc |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < V ) -> ( y + 1 ) e. ( ( 0 ... N ) \ { V } ) ) |
| 213 |
197 212
|
ifclda |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < V , y , ( y + 1 ) ) e. ( ( 0 ... N ) \ { V } ) ) |
| 214 |
|
nfcsb1v |
|- F/_ j [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C |
| 215 |
214
|
nfeq2 |
|- F/ j i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C |
| 216 |
|
csbeq1a |
|- ( j = if ( y < V , y , ( y + 1 ) ) -> [_ <. T , U >. / s ]_ C = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) |
| 217 |
216
|
eqeq2d |
|- ( j = if ( y < V , y , ( y + 1 ) ) -> ( i = [_ <. T , U >. / s ]_ C <-> i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 218 |
215 217
|
rspce |
|- ( ( if ( y < V , y , ( y + 1 ) ) e. ( ( 0 ... N ) \ { V } ) /\ i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) |
| 219 |
218
|
ex |
|- ( if ( y < V , y , ( y + 1 ) ) e. ( ( 0 ... N ) \ { V } ) -> ( i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C -> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 220 |
213 219
|
syl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C -> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 221 |
220
|
rexlimdva |
|- ( ph -> ( E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C -> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 222 |
|
nfv |
|- F/ j ph |
| 223 |
|
nfcv |
|- F/_ j ( 0 ... ( N - 1 ) ) |
| 224 |
223 215
|
nfrexw |
|- F/ j E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C |
| 225 |
|
eldifi |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> j e. ( 0 ... N ) ) |
| 226 |
225 60
|
syl |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> j e. NN0 ) |
| 227 |
226
|
nn0ge0d |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> 0 <_ j ) |
| 228 |
227
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> 0 <_ j ) |
| 229 |
226
|
nn0red |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> j e. RR ) |
| 230 |
229
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j e. RR ) |
| 231 |
200
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> V e. RR ) |
| 232 |
21
|
zred |
|- ( ph -> N e. RR ) |
| 233 |
232
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> N e. RR ) |
| 234 |
|
simpr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j < V ) |
| 235 |
|
elfzle2 |
|- ( V e. ( 0 ... N ) -> V <_ N ) |
| 236 |
6 235
|
syl |
|- ( ph -> V <_ N ) |
| 237 |
236
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> V <_ N ) |
| 238 |
230 231 233 234 237
|
ltletrd |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j < N ) |
| 239 |
225
|
elfzelzd |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> j e. ZZ ) |
| 240 |
|
zltlem1 |
|- ( ( j e. ZZ /\ N e. ZZ ) -> ( j < N <-> j <_ ( N - 1 ) ) ) |
| 241 |
239 21 240
|
syl2anr |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j < N <-> j <_ ( N - 1 ) ) ) |
| 242 |
241
|
adantr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> ( j < N <-> j <_ ( N - 1 ) ) ) |
| 243 |
238 242
|
mpbid |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j <_ ( N - 1 ) ) |
| 244 |
|
0z |
|- 0 e. ZZ |
| 245 |
|
elfz |
|- ( ( j e. ZZ /\ 0 e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( j e. ( 0 ... ( N - 1 ) ) <-> ( 0 <_ j /\ j <_ ( N - 1 ) ) ) ) |
| 246 |
244 245
|
mp3an2 |
|- ( ( j e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( j e. ( 0 ... ( N - 1 ) ) <-> ( 0 <_ j /\ j <_ ( N - 1 ) ) ) ) |
| 247 |
239 23 246
|
syl2anr |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j e. ( 0 ... ( N - 1 ) ) <-> ( 0 <_ j /\ j <_ ( N - 1 ) ) ) ) |
| 248 |
247
|
adantr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> ( j e. ( 0 ... ( N - 1 ) ) <-> ( 0 <_ j /\ j <_ ( N - 1 ) ) ) ) |
| 249 |
228 243 248
|
mpbir2and |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j e. ( 0 ... ( N - 1 ) ) ) |
| 250 |
|
0red |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> 0 e. RR ) |
| 251 |
200
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> V e. RR ) |
| 252 |
229
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> j e. RR ) |
| 253 |
|
elfzle1 |
|- ( V e. ( 0 ... N ) -> 0 <_ V ) |
| 254 |
6 253
|
syl |
|- ( ph -> 0 <_ V ) |
| 255 |
254
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> 0 <_ V ) |
| 256 |
|
lenlt |
|- ( ( V e. RR /\ j e. RR ) -> ( V <_ j <-> -. j < V ) ) |
| 257 |
200 229 256
|
syl2an |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( V <_ j <-> -. j < V ) ) |
| 258 |
257
|
biimpar |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> V <_ j ) |
| 259 |
|
eldifsni |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> j =/= V ) |
| 260 |
259
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> j =/= V ) |
| 261 |
|
ltlen |
|- ( ( V e. RR /\ j e. RR ) -> ( V < j <-> ( V <_ j /\ j =/= V ) ) ) |
| 262 |
200 229 261
|
syl2an |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( V < j <-> ( V <_ j /\ j =/= V ) ) ) |
| 263 |
262
|
adantr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> ( V < j <-> ( V <_ j /\ j =/= V ) ) ) |
| 264 |
258 260 263
|
mpbir2and |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> V < j ) |
| 265 |
250 251 252 255 264
|
lelttrd |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> 0 < j ) |
| 266 |
|
zgt0ge1 |
|- ( j e. ZZ -> ( 0 < j <-> 1 <_ j ) ) |
| 267 |
239 266
|
syl |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> ( 0 < j <-> 1 <_ j ) ) |
| 268 |
267
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> ( 0 < j <-> 1 <_ j ) ) |
| 269 |
265 268
|
mpbid |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> 1 <_ j ) |
| 270 |
|
elfzle2 |
|- ( j e. ( 0 ... N ) -> j <_ N ) |
| 271 |
225 270
|
syl |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> j <_ N ) |
| 272 |
271
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> j <_ N ) |
| 273 |
|
1z |
|- 1 e. ZZ |
| 274 |
|
elfz |
|- ( ( j e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( j e. ( 1 ... N ) <-> ( 1 <_ j /\ j <_ N ) ) ) |
| 275 |
273 274
|
mp3an2 |
|- ( ( j e. ZZ /\ N e. ZZ ) -> ( j e. ( 1 ... N ) <-> ( 1 <_ j /\ j <_ N ) ) ) |
| 276 |
239 21 275
|
syl2anr |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j e. ( 1 ... N ) <-> ( 1 <_ j /\ j <_ N ) ) ) |
| 277 |
276
|
adantr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> ( j e. ( 1 ... N ) <-> ( 1 <_ j /\ j <_ N ) ) ) |
| 278 |
269 272 277
|
mpbir2and |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> j e. ( 1 ... N ) ) |
| 279 |
|
elfzmlbm |
|- ( j e. ( 1 ... N ) -> ( j - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 280 |
278 279
|
syl |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> ( j - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 281 |
249 280
|
ifclda |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> if ( j < V , j , ( j - 1 ) ) e. ( 0 ... ( N - 1 ) ) ) |
| 282 |
|
breq1 |
|- ( j = if ( j < V , j , ( j - 1 ) ) -> ( j < V <-> if ( j < V , j , ( j - 1 ) ) < V ) ) |
| 283 |
|
id |
|- ( j = if ( j < V , j , ( j - 1 ) ) -> j = if ( j < V , j , ( j - 1 ) ) ) |
| 284 |
|
oveq1 |
|- ( j = if ( j < V , j , ( j - 1 ) ) -> ( j + 1 ) = ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) |
| 285 |
282 283 284
|
ifbieq12d |
|- ( j = if ( j < V , j , ( j - 1 ) ) -> if ( j < V , j , ( j + 1 ) ) = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) |
| 286 |
285
|
eqeq2d |
|- ( j = if ( j < V , j , ( j - 1 ) ) -> ( j = if ( j < V , j , ( j + 1 ) ) <-> j = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) ) |
| 287 |
|
breq1 |
|- ( ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) -> ( ( j - 1 ) < V <-> if ( j < V , j , ( j - 1 ) ) < V ) ) |
| 288 |
|
id |
|- ( ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) -> ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) ) |
| 289 |
|
oveq1 |
|- ( ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) -> ( ( j - 1 ) + 1 ) = ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) |
| 290 |
287 288 289
|
ifbieq12d |
|- ( ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) -> if ( ( j - 1 ) < V , ( j - 1 ) , ( ( j - 1 ) + 1 ) ) = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) |
| 291 |
290
|
eqeq2d |
|- ( ( j - 1 ) = if ( j < V , j , ( j - 1 ) ) -> ( j = if ( ( j - 1 ) < V , ( j - 1 ) , ( ( j - 1 ) + 1 ) ) <-> j = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) ) |
| 292 |
|
iftrue |
|- ( j < V -> if ( j < V , j , ( j + 1 ) ) = j ) |
| 293 |
292
|
eqcomd |
|- ( j < V -> j = if ( j < V , j , ( j + 1 ) ) ) |
| 294 |
293
|
adantl |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ j < V ) -> j = if ( j < V , j , ( j + 1 ) ) ) |
| 295 |
|
zlem1lt |
|- ( ( j e. ZZ /\ V e. ZZ ) -> ( j <_ V <-> ( j - 1 ) < V ) ) |
| 296 |
239 199 295
|
syl2anr |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j <_ V <-> ( j - 1 ) < V ) ) |
| 297 |
259
|
necomd |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> V =/= j ) |
| 298 |
297
|
adantl |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> V =/= j ) |
| 299 |
|
ltlen |
|- ( ( j e. RR /\ V e. RR ) -> ( j < V <-> ( j <_ V /\ V =/= j ) ) ) |
| 300 |
229 200 299
|
syl2anr |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j < V <-> ( j <_ V /\ V =/= j ) ) ) |
| 301 |
300
|
biimprd |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( ( j <_ V /\ V =/= j ) -> j < V ) ) |
| 302 |
298 301
|
mpan2d |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( j <_ V -> j < V ) ) |
| 303 |
296 302
|
sylbird |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( ( j - 1 ) < V -> j < V ) ) |
| 304 |
303
|
con3dimp |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> -. ( j - 1 ) < V ) |
| 305 |
304
|
iffalsed |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> if ( ( j - 1 ) < V , ( j - 1 ) , ( ( j - 1 ) + 1 ) ) = ( ( j - 1 ) + 1 ) ) |
| 306 |
226
|
nn0cnd |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> j e. CC ) |
| 307 |
|
npcan1 |
|- ( j e. CC -> ( ( j - 1 ) + 1 ) = j ) |
| 308 |
306 307
|
syl |
|- ( j e. ( ( 0 ... N ) \ { V } ) -> ( ( j - 1 ) + 1 ) = j ) |
| 309 |
308
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> ( ( j - 1 ) + 1 ) = j ) |
| 310 |
305 309
|
eqtr2d |
|- ( ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) /\ -. j < V ) -> j = if ( ( j - 1 ) < V , ( j - 1 ) , ( ( j - 1 ) + 1 ) ) ) |
| 311 |
286 291 294 310
|
ifbothda |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> j = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) |
| 312 |
|
csbeq1a |
|- ( j = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) -> [_ <. T , U >. / s ]_ C = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) |
| 313 |
311 312
|
syl |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> [_ <. T , U >. / s ]_ C = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) |
| 314 |
313
|
eqeq2d |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( i = [_ <. T , U >. / s ]_ C <-> i = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 315 |
314
|
biimpd |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( i = [_ <. T , U >. / s ]_ C -> i = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 316 |
|
breq1 |
|- ( y = if ( j < V , j , ( j - 1 ) ) -> ( y < V <-> if ( j < V , j , ( j - 1 ) ) < V ) ) |
| 317 |
|
id |
|- ( y = if ( j < V , j , ( j - 1 ) ) -> y = if ( j < V , j , ( j - 1 ) ) ) |
| 318 |
|
oveq1 |
|- ( y = if ( j < V , j , ( j - 1 ) ) -> ( y + 1 ) = ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) |
| 319 |
316 317 318
|
ifbieq12d |
|- ( y = if ( j < V , j , ( j - 1 ) ) -> if ( y < V , y , ( y + 1 ) ) = if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) ) |
| 320 |
319
|
csbeq1d |
|- ( y = if ( j < V , j , ( j - 1 ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) |
| 321 |
320
|
eqeq2d |
|- ( y = if ( j < V , j , ( j - 1 ) ) -> ( i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C <-> i = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 322 |
321
|
rspcev |
|- ( ( if ( j < V , j , ( j - 1 ) ) e. ( 0 ... ( N - 1 ) ) /\ i = [_ if ( if ( j < V , j , ( j - 1 ) ) < V , if ( j < V , j , ( j - 1 ) ) , ( if ( j < V , j , ( j - 1 ) ) + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) -> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) |
| 323 |
281 315 322
|
syl6an |
|- ( ( ph /\ j e. ( ( 0 ... N ) \ { V } ) ) -> ( i = [_ <. T , U >. / s ]_ C -> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 324 |
323
|
ex |
|- ( ph -> ( j e. ( ( 0 ... N ) \ { V } ) -> ( i = [_ <. T , U >. / s ]_ C -> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) ) |
| 325 |
222 224 324
|
rexlimd |
|- ( ph -> ( E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C -> E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 326 |
221 325
|
impbid |
|- ( ph -> ( E. y e. ( 0 ... ( N - 1 ) ) i = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 327 |
187 326
|
bitr3d |
|- ( ph -> ( i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 328 |
327
|
ralbidv |
|- ( ph -> ( A. i e. ( 0 ... ( N - 1 ) ) i e. ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 329 |
132 328
|
bitrid |
|- ( ph -> ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 330 |
329
|
anbi1d |
|- ( ph -> ( ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |-> B ) /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) ) ) |
| 331 |
1 4 5 6
|
poimirlem23 |
|- ( ph -> ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) |
| 332 |
331
|
anbi2d |
|- ( ph -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C /\ E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C /\ -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) ) |
| 333 |
131 330 332
|
3bitrd |
|- ( ph -> ( E. x e. ( ( ( 0 ... K ) ^m ( 1 ... N ) ) ^m ( 0 ... ( N - 1 ) ) ) ( x = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) /\ ( ( 0 ... ( N - 1 ) ) C_ ran ( p e. ran x |-> B ) /\ E. p e. ran x ( p ` N ) =/= 0 ) ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { V } ) i = [_ <. T , U >. / s ]_ C /\ -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) ) |