| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem23.1 |  |-  ( ph -> T : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 3 |  | poimirlem23.2 |  |-  ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 4 |  | poimirlem23.3 |  |-  ( ph -> V e. ( 0 ... N ) ) | 
						
							| 5 |  | ovex |  |-  ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 6 | 5 | csbex |  |-  [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 7 | 6 | rgenw |  |-  A. y e. ( 0 ... ( N - 1 ) ) [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 8 |  | eqid |  |-  ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 9 |  | fveq1 |  |-  ( p = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p ` N ) = ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) | 
						
							| 10 | 9 | neeq1d |  |-  ( p = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( p ` N ) =/= 0 <-> ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) ) | 
						
							| 11 |  | df-ne |  |-  ( ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 <-> -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) | 
						
							| 12 | 10 11 | bitrdi |  |-  ( p = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( p ` N ) =/= 0 <-> -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) | 
						
							| 13 | 8 12 | rexrnmptw |  |-  ( A. y e. ( 0 ... ( N - 1 ) ) [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V -> ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) | 
						
							| 14 | 7 13 | ax-mp |  |-  ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) | 
						
							| 15 |  | rexnal |  |-  ( E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) | 
						
							| 16 | 14 15 | bitri |  |-  ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) | 
						
							| 17 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 18 |  | elfzelz |  |-  ( V e. ( 0 ... N ) -> V e. ZZ ) | 
						
							| 19 | 4 18 | syl |  |-  ( ph -> V e. ZZ ) | 
						
							| 20 |  | zlem1lt |  |-  ( ( N e. ZZ /\ V e. ZZ ) -> ( N <_ V <-> ( N - 1 ) < V ) ) | 
						
							| 21 | 17 19 20 | syl2anc |  |-  ( ph -> ( N <_ V <-> ( N - 1 ) < V ) ) | 
						
							| 22 |  | elfzle2 |  |-  ( V e. ( 0 ... N ) -> V <_ N ) | 
						
							| 23 | 4 22 | syl |  |-  ( ph -> V <_ N ) | 
						
							| 24 | 19 | zred |  |-  ( ph -> V e. RR ) | 
						
							| 25 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 26 | 24 25 | letri3d |  |-  ( ph -> ( V = N <-> ( V <_ N /\ N <_ V ) ) ) | 
						
							| 27 | 26 | biimprd |  |-  ( ph -> ( ( V <_ N /\ N <_ V ) -> V = N ) ) | 
						
							| 28 | 23 27 | mpand |  |-  ( ph -> ( N <_ V -> V = N ) ) | 
						
							| 29 | 21 28 | sylbird |  |-  ( ph -> ( ( N - 1 ) < V -> V = N ) ) | 
						
							| 30 | 29 | necon3ad |  |-  ( ph -> ( V =/= N -> -. ( N - 1 ) < V ) ) | 
						
							| 31 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 32 | 1 31 | syl |  |-  ( ph -> ( N - 1 ) e. NN0 ) | 
						
							| 33 |  | nn0fz0 |  |-  ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 34 | 32 33 | sylib |  |-  ( ph -> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 36 |  | iffalse |  |-  ( -. ( N - 1 ) < V -> if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 37 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 38 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 39 | 37 38 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 40 | 36 39 | sylan9eqr |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) = N ) | 
						
							| 41 | 40 | csbeq1d |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ N / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 42 |  | oveq2 |  |-  ( j = N -> ( 1 ... j ) = ( 1 ... N ) ) | 
						
							| 43 | 42 | imaeq2d |  |-  ( j = N -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... N ) ) ) | 
						
							| 44 | 43 | xpeq1d |  |-  ( j = N -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... N ) ) X. { 1 } ) ) | 
						
							| 45 |  | oveq1 |  |-  ( j = N -> ( j + 1 ) = ( N + 1 ) ) | 
						
							| 46 | 45 | oveq1d |  |-  ( j = N -> ( ( j + 1 ) ... N ) = ( ( N + 1 ) ... N ) ) | 
						
							| 47 | 46 | imaeq2d |  |-  ( j = N -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( N + 1 ) ... N ) ) ) | 
						
							| 48 | 47 | xpeq1d |  |-  ( j = N -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 49 | 44 48 | uneq12d |  |-  ( j = N -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... N ) ) X. { 1 } ) u. ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 50 |  | f1ofo |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 51 |  | foima |  |-  ( U : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 52 | 3 50 51 | 3syl |  |-  ( ph -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 53 | 52 | xpeq1d |  |-  ( ph -> ( ( U " ( 1 ... N ) ) X. { 1 } ) = ( ( 1 ... N ) X. { 1 } ) ) | 
						
							| 54 | 25 | ltp1d |  |-  ( ph -> N < ( N + 1 ) ) | 
						
							| 55 | 17 | peano2zd |  |-  ( ph -> ( N + 1 ) e. ZZ ) | 
						
							| 56 |  | fzn |  |-  ( ( ( N + 1 ) e. ZZ /\ N e. ZZ ) -> ( N < ( N + 1 ) <-> ( ( N + 1 ) ... N ) = (/) ) ) | 
						
							| 57 | 55 17 56 | syl2anc |  |-  ( ph -> ( N < ( N + 1 ) <-> ( ( N + 1 ) ... N ) = (/) ) ) | 
						
							| 58 | 54 57 | mpbid |  |-  ( ph -> ( ( N + 1 ) ... N ) = (/) ) | 
						
							| 59 | 58 | imaeq2d |  |-  ( ph -> ( U " ( ( N + 1 ) ... N ) ) = ( U " (/) ) ) | 
						
							| 60 | 59 | xpeq1d |  |-  ( ph -> ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) = ( ( U " (/) ) X. { 0 } ) ) | 
						
							| 61 |  | ima0 |  |-  ( U " (/) ) = (/) | 
						
							| 62 | 61 | xpeq1i |  |-  ( ( U " (/) ) X. { 0 } ) = ( (/) X. { 0 } ) | 
						
							| 63 |  | 0xp |  |-  ( (/) X. { 0 } ) = (/) | 
						
							| 64 | 62 63 | eqtri |  |-  ( ( U " (/) ) X. { 0 } ) = (/) | 
						
							| 65 | 60 64 | eqtrdi |  |-  ( ph -> ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) = (/) ) | 
						
							| 66 | 53 65 | uneq12d |  |-  ( ph -> ( ( ( U " ( 1 ... N ) ) X. { 1 } ) u. ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( 1 ... N ) X. { 1 } ) u. (/) ) ) | 
						
							| 67 |  | un0 |  |-  ( ( ( 1 ... N ) X. { 1 } ) u. (/) ) = ( ( 1 ... N ) X. { 1 } ) | 
						
							| 68 | 66 67 | eqtrdi |  |-  ( ph -> ( ( ( U " ( 1 ... N ) ) X. { 1 } ) u. ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) = ( ( 1 ... N ) X. { 1 } ) ) | 
						
							| 69 | 49 68 | sylan9eqr |  |-  ( ( ph /\ j = N ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( 1 ... N ) X. { 1 } ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( ( ph /\ j = N ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) | 
						
							| 71 | 1 70 | csbied |  |-  ( ph -> [_ N / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> [_ N / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) | 
						
							| 73 | 41 72 | eqtrd |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) | 
						
							| 74 | 73 | fveq1d |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ` N ) ) | 
						
							| 75 |  | elfzonn0 |  |-  ( j e. ( 0 ..^ K ) -> j e. NN0 ) | 
						
							| 76 |  | nn0p1nn |  |-  ( j e. NN0 -> ( j + 1 ) e. NN ) | 
						
							| 77 | 75 76 | syl |  |-  ( j e. ( 0 ..^ K ) -> ( j + 1 ) e. NN ) | 
						
							| 78 |  | elsni |  |-  ( y e. { 1 } -> y = 1 ) | 
						
							| 79 | 78 | oveq2d |  |-  ( y e. { 1 } -> ( j + y ) = ( j + 1 ) ) | 
						
							| 80 | 79 | eleq1d |  |-  ( y e. { 1 } -> ( ( j + y ) e. NN <-> ( j + 1 ) e. NN ) ) | 
						
							| 81 | 77 80 | syl5ibrcom |  |-  ( j e. ( 0 ..^ K ) -> ( y e. { 1 } -> ( j + y ) e. NN ) ) | 
						
							| 82 | 81 | imp |  |-  ( ( j e. ( 0 ..^ K ) /\ y e. { 1 } ) -> ( j + y ) e. NN ) | 
						
							| 83 | 82 | adantl |  |-  ( ( ph /\ ( j e. ( 0 ..^ K ) /\ y e. { 1 } ) ) -> ( j + y ) e. NN ) | 
						
							| 84 |  | 1ex |  |-  1 e. _V | 
						
							| 85 | 84 | fconst |  |-  ( ( 1 ... N ) X. { 1 } ) : ( 1 ... N ) --> { 1 } | 
						
							| 86 | 85 | a1i |  |-  ( ph -> ( ( 1 ... N ) X. { 1 } ) : ( 1 ... N ) --> { 1 } ) | 
						
							| 87 |  | ovexd |  |-  ( ph -> ( 1 ... N ) e. _V ) | 
						
							| 88 |  | inidm |  |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) | 
						
							| 89 | 83 2 86 87 87 88 | off |  |-  ( ph -> ( T oF + ( ( 1 ... N ) X. { 1 } ) ) : ( 1 ... N ) --> NN ) | 
						
							| 90 |  | elfz1end |  |-  ( N e. NN <-> N e. ( 1 ... N ) ) | 
						
							| 91 | 1 90 | sylib |  |-  ( ph -> N e. ( 1 ... N ) ) | 
						
							| 92 | 89 91 | ffvelcdmd |  |-  ( ph -> ( ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ` N ) e. NN ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> ( ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ` N ) e. NN ) | 
						
							| 94 | 74 93 | eqeltrd |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) e. NN ) | 
						
							| 95 | 94 | nnne0d |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) | 
						
							| 96 |  | breq1 |  |-  ( y = ( N - 1 ) -> ( y < V <-> ( N - 1 ) < V ) ) | 
						
							| 97 |  | id |  |-  ( y = ( N - 1 ) -> y = ( N - 1 ) ) | 
						
							| 98 |  | oveq1 |  |-  ( y = ( N - 1 ) -> ( y + 1 ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 99 | 96 97 98 | ifbieq12d |  |-  ( y = ( N - 1 ) -> if ( y < V , y , ( y + 1 ) ) = if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) ) | 
						
							| 100 | 99 | csbeq1d |  |-  ( y = ( N - 1 ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 101 | 100 | fveq1d |  |-  ( y = ( N - 1 ) -> ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) | 
						
							| 102 | 101 | neeq1d |  |-  ( y = ( N - 1 ) -> ( ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 <-> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) ) | 
						
							| 103 | 11 102 | bitr3id |  |-  ( y = ( N - 1 ) -> ( -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) ) | 
						
							| 104 | 103 | rspcev |  |-  ( ( ( N - 1 ) e. ( 0 ... ( N - 1 ) ) /\ ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) -> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) | 
						
							| 105 | 35 95 104 | syl2anc |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) | 
						
							| 106 | 105 15 | sylib |  |-  ( ( ph /\ -. ( N - 1 ) < V ) -> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) | 
						
							| 107 | 106 | ex |  |-  ( ph -> ( -. ( N - 1 ) < V -> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) | 
						
							| 108 | 30 107 | syld |  |-  ( ph -> ( V =/= N -> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) | 
						
							| 109 | 108 | necon4ad |  |-  ( ph -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 -> V = N ) ) | 
						
							| 110 | 109 | pm4.71rd |  |-  ( ph -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( V = N /\ A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) ) | 
						
							| 111 | 32 | nn0zd |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 112 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 113 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 114 | 111 112 113 | 3syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 115 | 39 114 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 116 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 117 | 115 116 | syl |  |-  ( ph -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 118 | 117 | sselda |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. ( 0 ... N ) ) | 
						
							| 119 | 91 | adantr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> N e. ( 1 ... N ) ) | 
						
							| 120 | 2 | ffnd |  |-  ( ph -> T Fn ( 1 ... N ) ) | 
						
							| 121 | 120 | adantr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> T Fn ( 1 ... N ) ) | 
						
							| 122 | 84 | fconst |  |-  ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } | 
						
							| 123 |  | c0ex |  |-  0 e. _V | 
						
							| 124 | 123 | fconst |  |-  ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } | 
						
							| 125 | 122 124 | pm3.2i |  |-  ( ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } ) | 
						
							| 126 |  | dff1o3 |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( U : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' U ) ) | 
						
							| 127 | 126 | simprbi |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' U ) | 
						
							| 128 |  | imain |  |-  ( Fun `' U -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) ) | 
						
							| 129 | 3 127 128 | 3syl |  |-  ( ph -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) ) | 
						
							| 130 |  | elfzelz |  |-  ( j e. ( 0 ... N ) -> j e. ZZ ) | 
						
							| 131 | 130 | zred |  |-  ( j e. ( 0 ... N ) -> j e. RR ) | 
						
							| 132 | 131 | ltp1d |  |-  ( j e. ( 0 ... N ) -> j < ( j + 1 ) ) | 
						
							| 133 |  | fzdisj |  |-  ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) | 
						
							| 134 | 132 133 | syl |  |-  ( j e. ( 0 ... N ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) | 
						
							| 135 | 134 | imaeq2d |  |-  ( j e. ( 0 ... N ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( U " (/) ) ) | 
						
							| 136 | 135 61 | eqtrdi |  |-  ( j e. ( 0 ... N ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) | 
						
							| 137 | 129 136 | sylan9req |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) | 
						
							| 138 |  | fun |  |-  ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } ) /\ ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 139 | 125 137 138 | sylancr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 140 |  | elfznn0 |  |-  ( j e. ( 0 ... N ) -> j e. NN0 ) | 
						
							| 141 | 140 76 | syl |  |-  ( j e. ( 0 ... N ) -> ( j + 1 ) e. NN ) | 
						
							| 142 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 143 | 141 142 | eleqtrdi |  |-  ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 144 |  | elfzuz3 |  |-  ( j e. ( 0 ... N ) -> N e. ( ZZ>= ` j ) ) | 
						
							| 145 |  | fzsplit2 |  |-  ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` j ) ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) | 
						
							| 146 | 143 144 145 | syl2anc |  |-  ( j e. ( 0 ... N ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) | 
						
							| 147 | 146 | imaeq2d |  |-  ( j e. ( 0 ... N ) -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) ) | 
						
							| 148 |  | imaundi |  |-  ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) | 
						
							| 149 | 147 148 | eqtr2di |  |-  ( j e. ( 0 ... N ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) = ( U " ( 1 ... N ) ) ) | 
						
							| 150 | 149 52 | sylan9eqr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 151 | 150 | feq2d |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) | 
						
							| 152 | 139 151 | mpbid |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 153 | 152 | ffnd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 154 |  | ovexd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( 1 ... N ) e. _V ) | 
						
							| 155 |  | eqidd |  |-  ( ( ( ph /\ j e. ( 0 ... N ) ) /\ N e. ( 1 ... N ) ) -> ( T ` N ) = ( T ` N ) ) | 
						
							| 156 |  | eqidd |  |-  ( ( ( ph /\ j e. ( 0 ... N ) ) /\ N e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) | 
						
							| 157 | 121 153 154 154 88 155 156 | ofval |  |-  ( ( ( ph /\ j e. ( 0 ... N ) ) /\ N e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) ) | 
						
							| 158 | 119 157 | mpdan |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) ) | 
						
							| 159 | 158 | eqeq1d |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) = 0 ) ) | 
						
							| 160 | 2 91 | ffvelcdmd |  |-  ( ph -> ( T ` N ) e. ( 0 ..^ K ) ) | 
						
							| 161 |  | elfzonn0 |  |-  ( ( T ` N ) e. ( 0 ..^ K ) -> ( T ` N ) e. NN0 ) | 
						
							| 162 | 160 161 | syl |  |-  ( ph -> ( T ` N ) e. NN0 ) | 
						
							| 163 | 162 | nn0red |  |-  ( ph -> ( T ` N ) e. RR ) | 
						
							| 164 | 163 | adantr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( T ` N ) e. RR ) | 
						
							| 165 | 162 | nn0ge0d |  |-  ( ph -> 0 <_ ( T ` N ) ) | 
						
							| 166 | 165 | adantr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> 0 <_ ( T ` N ) ) | 
						
							| 167 |  | 1re |  |-  1 e. RR | 
						
							| 168 |  | snssi |  |-  ( 1 e. RR -> { 1 } C_ RR ) | 
						
							| 169 | 167 168 | ax-mp |  |-  { 1 } C_ RR | 
						
							| 170 |  | 0re |  |-  0 e. RR | 
						
							| 171 |  | snssi |  |-  ( 0 e. RR -> { 0 } C_ RR ) | 
						
							| 172 | 170 171 | ax-mp |  |-  { 0 } C_ RR | 
						
							| 173 | 169 172 | unssi |  |-  ( { 1 } u. { 0 } ) C_ RR | 
						
							| 174 | 152 119 | ffvelcdmd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. ( { 1 } u. { 0 } ) ) | 
						
							| 175 | 173 174 | sselid |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. RR ) | 
						
							| 176 |  | elun |  |-  ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. ( { 1 } u. { 0 } ) <-> ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } \/ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } ) ) | 
						
							| 177 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 178 |  | elsni |  |-  ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 1 ) | 
						
							| 179 | 177 178 | breqtrrid |  |-  ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) | 
						
							| 180 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 181 |  | elsni |  |-  ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) | 
						
							| 182 | 180 181 | breqtrrid |  |-  ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) | 
						
							| 183 | 179 182 | jaoi |  |-  ( ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } \/ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } ) -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) | 
						
							| 184 | 176 183 | sylbi |  |-  ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. ( { 1 } u. { 0 } ) -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) | 
						
							| 185 | 174 184 | syl |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) | 
						
							| 186 |  | add20 |  |-  ( ( ( ( T ` N ) e. RR /\ 0 <_ ( T ` N ) ) /\ ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. RR /\ 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) ) -> ( ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) | 
						
							| 187 | 164 166 175 185 186 | syl22anc |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) | 
						
							| 188 | 159 187 | bitrd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) | 
						
							| 189 | 118 188 | syldan |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) | 
						
							| 190 | 189 | ralbidva |  |-  ( ph -> ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) | 
						
							| 191 | 190 | adantr |  |-  ( ( ph /\ V = N ) -> ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) | 
						
							| 192 |  | breq2 |  |-  ( V = N -> ( y < V <-> y < N ) ) | 
						
							| 193 | 192 | ifbid |  |-  ( V = N -> if ( y < V , y , ( y + 1 ) ) = if ( y < N , y , ( y + 1 ) ) ) | 
						
							| 194 |  | elfzelz |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ ) | 
						
							| 195 | 194 | zred |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) | 
						
							| 196 | 195 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR ) | 
						
							| 197 | 32 | nn0red |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 198 | 197 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR ) | 
						
							| 199 | 25 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. RR ) | 
						
							| 200 |  | elfzle2 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( N - 1 ) ) | 
						
							| 201 | 200 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y <_ ( N - 1 ) ) | 
						
							| 202 | 25 | ltm1d |  |-  ( ph -> ( N - 1 ) < N ) | 
						
							| 203 | 202 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) < N ) | 
						
							| 204 | 196 198 199 201 203 | lelttrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N ) | 
						
							| 205 | 204 | iftrued |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < N , y , ( y + 1 ) ) = y ) | 
						
							| 206 | 193 205 | sylan9eqr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ V = N ) -> if ( y < V , y , ( y + 1 ) ) = y ) | 
						
							| 207 | 206 | an32s |  |-  ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < V , y , ( y + 1 ) ) = y ) | 
						
							| 208 | 207 | csbeq1d |  |-  ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 209 | 208 | fveq1d |  |-  ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) | 
						
							| 210 | 209 | eqeq1d |  |-  ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) | 
						
							| 211 | 210 | ralbidva |  |-  ( ( ph /\ V = N ) -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. y e. ( 0 ... ( N - 1 ) ) ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) | 
						
							| 212 |  | nfv |  |-  F/ y ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 | 
						
							| 213 |  | nfcsb1v |  |-  F/_ j [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 214 |  | nfcv |  |-  F/_ j N | 
						
							| 215 | 213 214 | nffv |  |-  F/_ j ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) | 
						
							| 216 | 215 | nfeq1 |  |-  F/ j ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 | 
						
							| 217 |  | csbeq1a |  |-  ( j = y -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 218 | 217 | fveq1d |  |-  ( j = y -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) | 
						
							| 219 | 218 | eqeq1d |  |-  ( j = y -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) | 
						
							| 220 | 212 216 219 | cbvralw |  |-  ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. y e. ( 0 ... ( N - 1 ) ) ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) | 
						
							| 221 | 211 220 | bitr4di |  |-  ( ( ph /\ V = N ) -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) | 
						
							| 222 |  | ne0i |  |-  ( ( N - 1 ) e. ( 0 ... ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) =/= (/) ) | 
						
							| 223 |  | r19.3rzv |  |-  ( ( 0 ... ( N - 1 ) ) =/= (/) -> ( ( T ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 ) ) | 
						
							| 224 | 34 222 223 | 3syl |  |-  ( ph -> ( ( T ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 ) ) | 
						
							| 225 |  | elfzelz |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> j e. ZZ ) | 
						
							| 226 | 225 | zred |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> j e. RR ) | 
						
							| 227 | 226 | ltp1d |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> j < ( j + 1 ) ) | 
						
							| 228 | 227 133 | syl |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) | 
						
							| 229 | 228 | imaeq2d |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( U " (/) ) ) | 
						
							| 230 | 229 61 | eqtrdi |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) | 
						
							| 231 | 129 230 | sylan9req |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) | 
						
							| 232 | 231 | adantlr |  |-  ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) | 
						
							| 233 |  | simplr |  |-  ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( U ` N ) = N ) | 
						
							| 234 |  | f1ofn |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U Fn ( 1 ... N ) ) | 
						
							| 235 | 3 234 | syl |  |-  ( ph -> U Fn ( 1 ... N ) ) | 
						
							| 236 | 235 | adantr |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> U Fn ( 1 ... N ) ) | 
						
							| 237 |  | elfznn0 |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> j e. NN0 ) | 
						
							| 238 | 237 76 | syl |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> ( j + 1 ) e. NN ) | 
						
							| 239 | 238 142 | eleqtrdi |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 240 |  | fzss1 |  |-  ( ( j + 1 ) e. ( ZZ>= ` 1 ) -> ( ( j + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 241 | 239 240 | syl |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> ( ( j + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 242 | 241 | adantl |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 243 | 39 | adantr |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 244 |  | elfzuz3 |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` j ) ) | 
						
							| 245 |  | eluzp1p1 |  |-  ( ( N - 1 ) e. ( ZZ>= ` j ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) | 
						
							| 246 | 244 245 | syl |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) | 
						
							| 247 | 246 | adantl |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) | 
						
							| 248 | 243 247 | eqeltrrd |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( j + 1 ) ) ) | 
						
							| 249 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` ( j + 1 ) ) -> N e. ( ( j + 1 ) ... N ) ) | 
						
							| 250 | 248 249 | syl |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( j + 1 ) ... N ) ) | 
						
							| 251 |  | fnfvima |  |-  ( ( U Fn ( 1 ... N ) /\ ( ( j + 1 ) ... N ) C_ ( 1 ... N ) /\ N e. ( ( j + 1 ) ... N ) ) -> ( U ` N ) e. ( U " ( ( j + 1 ) ... N ) ) ) | 
						
							| 252 | 236 242 250 251 | syl3anc |  |-  ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( U ` N ) e. ( U " ( ( j + 1 ) ... N ) ) ) | 
						
							| 253 | 252 | adantlr |  |-  ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( U ` N ) e. ( U " ( ( j + 1 ) ... N ) ) ) | 
						
							| 254 | 233 253 | eqeltrrd |  |-  ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> N e. ( U " ( ( j + 1 ) ... N ) ) ) | 
						
							| 255 |  | fnconstg |  |-  ( 1 e. _V -> ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) ) | 
						
							| 256 | 84 255 | ax-mp |  |-  ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) | 
						
							| 257 |  | fnconstg |  |-  ( 0 e. _V -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... N ) ) ) | 
						
							| 258 | 123 257 | ax-mp |  |-  ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... N ) ) | 
						
							| 259 |  | fvun2 |  |-  ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( ( j + 1 ) ... N ) ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) ) | 
						
							| 260 | 256 258 259 | mp3an12 |  |-  ( ( ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( ( j + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) ) | 
						
							| 261 | 232 254 260 | syl2anc |  |-  ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) ) | 
						
							| 262 | 123 | fvconst2 |  |-  ( N e. ( U " ( ( j + 1 ) ... N ) ) -> ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) = 0 ) | 
						
							| 263 | 254 262 | syl |  |-  ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) = 0 ) | 
						
							| 264 | 261 263 | eqtrd |  |-  ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) | 
						
							| 265 | 264 | ralrimiva |  |-  ( ( ph /\ ( U ` N ) = N ) -> A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) | 
						
							| 266 | 265 | ex |  |-  ( ph -> ( ( U ` N ) = N -> A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) | 
						
							| 267 | 34 | adantr |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 268 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 269 |  | imain |  |-  ( Fun `' U -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 270 | 3 127 269 | 3syl |  |-  ( ph -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 271 | 202 39 | breqtrrd |  |-  ( ph -> ( N - 1 ) < ( ( N - 1 ) + 1 ) ) | 
						
							| 272 |  | fzdisj |  |-  ( ( N - 1 ) < ( ( N - 1 ) + 1 ) -> ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 273 | 271 272 | syl |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 274 | 273 | imaeq2d |  |-  ( ph -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = ( U " (/) ) ) | 
						
							| 275 | 274 61 | eqtrdi |  |-  ( ph -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 276 | 270 275 | eqtr3d |  |-  ( ph -> ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 277 | 276 | adantr |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 278 | 91 | adantr |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> N e. ( 1 ... N ) ) | 
						
							| 279 |  | elimasni |  |-  ( N e. ( U " { N } ) -> N U N ) | 
						
							| 280 |  | fnbrfvb |  |-  ( ( U Fn ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> ( ( U ` N ) = N <-> N U N ) ) | 
						
							| 281 | 235 91 280 | syl2anc |  |-  ( ph -> ( ( U ` N ) = N <-> N U N ) ) | 
						
							| 282 | 279 281 | imbitrrid |  |-  ( ph -> ( N e. ( U " { N } ) -> ( U ` N ) = N ) ) | 
						
							| 283 | 282 | necon3ad |  |-  ( ph -> ( ( U ` N ) =/= N -> -. N e. ( U " { N } ) ) ) | 
						
							| 284 | 283 | imp |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> -. N e. ( U " { N } ) ) | 
						
							| 285 | 278 284 | eldifd |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> N e. ( ( 1 ... N ) \ ( U " { N } ) ) ) | 
						
							| 286 |  | imadif |  |-  ( Fun `' U -> ( U " ( ( 1 ... N ) \ { N } ) ) = ( ( U " ( 1 ... N ) ) \ ( U " { N } ) ) ) | 
						
							| 287 | 3 127 286 | 3syl |  |-  ( ph -> ( U " ( ( 1 ... N ) \ { N } ) ) = ( ( U " ( 1 ... N ) ) \ ( U " { N } ) ) ) | 
						
							| 288 |  | difun2 |  |-  ( ( ( 1 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 1 ... ( N - 1 ) ) \ { N } ) | 
						
							| 289 |  | elun |  |-  ( j e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j e. { N } ) ) | 
						
							| 290 |  | velsn |  |-  ( j e. { N } <-> j = N ) | 
						
							| 291 | 290 | orbi2i |  |-  ( ( j e. ( 1 ... ( N - 1 ) ) \/ j e. { N } ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) | 
						
							| 292 | 289 291 | bitri |  |-  ( j e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) | 
						
							| 293 | 1 142 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 294 |  | fzm1 |  |-  ( N e. ( ZZ>= ` 1 ) -> ( j e. ( 1 ... N ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) ) | 
						
							| 295 | 293 294 | syl |  |-  ( ph -> ( j e. ( 1 ... N ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) ) | 
						
							| 296 | 292 295 | bitr4id |  |-  ( ph -> ( j e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> j e. ( 1 ... N ) ) ) | 
						
							| 297 | 296 | eqrdv |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) ) | 
						
							| 298 | 297 | difeq1d |  |-  ( ph -> ( ( ( 1 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 1 ... N ) \ { N } ) ) | 
						
							| 299 | 197 25 | ltnled |  |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) | 
						
							| 300 | 202 299 | mpbid |  |-  ( ph -> -. N <_ ( N - 1 ) ) | 
						
							| 301 |  | elfzle2 |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) | 
						
							| 302 | 300 301 | nsyl |  |-  ( ph -> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 303 |  | difsn |  |-  ( -. N e. ( 1 ... ( N - 1 ) ) -> ( ( 1 ... ( N - 1 ) ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 304 | 302 303 | syl |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 305 | 288 298 304 | 3eqtr3a |  |-  ( ph -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 306 | 305 | imaeq2d |  |-  ( ph -> ( U " ( ( 1 ... N ) \ { N } ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 307 | 52 | difeq1d |  |-  ( ph -> ( ( U " ( 1 ... N ) ) \ ( U " { N } ) ) = ( ( 1 ... N ) \ ( U " { N } ) ) ) | 
						
							| 308 | 287 306 307 | 3eqtr3rd |  |-  ( ph -> ( ( 1 ... N ) \ ( U " { N } ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 309 | 308 | adantr |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> ( ( 1 ... N ) \ ( U " { N } ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 310 | 285 309 | eleqtrd |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> N e. ( U " ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 311 |  | fnconstg |  |-  ( 1 e. _V -> ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 312 | 84 311 | ax-mp |  |-  ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( N - 1 ) ) ) | 
						
							| 313 |  | fnconstg |  |-  ( 0 e. _V -> ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 314 | 123 313 | ax-mp |  |-  ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) | 
						
							| 315 |  | fvun1 |  |-  ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( N - 1 ) ) ) /\ ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( 1 ... ( N - 1 ) ) ) ) ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) ) | 
						
							| 316 | 312 314 315 | mp3an12 |  |-  ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( 1 ... ( N - 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) ) | 
						
							| 317 | 277 310 316 | syl2anc |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) ) | 
						
							| 318 | 84 | fvconst2 |  |-  ( N e. ( U " ( 1 ... ( N - 1 ) ) ) -> ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) = 1 ) | 
						
							| 319 | 310 318 | syl |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) = 1 ) | 
						
							| 320 | 317 319 | eqtrd |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 1 ) | 
						
							| 321 | 320 | neeq1d |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 <-> 1 =/= 0 ) ) | 
						
							| 322 | 268 321 | mpbiri |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) | 
						
							| 323 |  | df-ne |  |-  ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 <-> -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) | 
						
							| 324 |  | oveq2 |  |-  ( j = ( N - 1 ) -> ( 1 ... j ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 325 | 324 | imaeq2d |  |-  ( j = ( N - 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 326 | 325 | xpeq1d |  |-  ( j = ( N - 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ) | 
						
							| 327 |  | oveq1 |  |-  ( j = ( N - 1 ) -> ( j + 1 ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 328 | 327 | oveq1d |  |-  ( j = ( N - 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( N - 1 ) + 1 ) ... N ) ) | 
						
							| 329 | 328 | imaeq2d |  |-  ( j = ( N - 1 ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 330 | 329 | xpeq1d |  |-  ( j = ( N - 1 ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 331 | 326 330 | uneq12d |  |-  ( j = ( N - 1 ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 332 | 331 | fveq1d |  |-  ( j = ( N - 1 ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) | 
						
							| 333 | 332 | neeq1d |  |-  ( j = ( N - 1 ) -> ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 <-> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) ) | 
						
							| 334 | 323 333 | bitr3id |  |-  ( j = ( N - 1 ) -> ( -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 <-> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) ) | 
						
							| 335 | 334 | rspcev |  |-  ( ( ( N - 1 ) e. ( 0 ... ( N - 1 ) ) /\ ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) -> E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) | 
						
							| 336 | 267 322 335 | syl2anc |  |-  ( ( ph /\ ( U ` N ) =/= N ) -> E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) | 
						
							| 337 | 336 | ex |  |-  ( ph -> ( ( U ` N ) =/= N -> E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) | 
						
							| 338 |  | rexnal |  |-  ( E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 <-> -. A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) | 
						
							| 339 | 337 338 | imbitrdi |  |-  ( ph -> ( ( U ` N ) =/= N -> -. A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) | 
						
							| 340 | 339 | necon4ad |  |-  ( ph -> ( A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 -> ( U ` N ) = N ) ) | 
						
							| 341 | 266 340 | impbid |  |-  ( ph -> ( ( U ` N ) = N <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) | 
						
							| 342 | 224 341 | anbi12d |  |-  ( ph -> ( ( ( T ` N ) = 0 /\ ( U ` N ) = N ) <-> ( A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 /\ A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) | 
						
							| 343 |  | r19.26 |  |-  ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) <-> ( A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 /\ A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) | 
						
							| 344 | 342 343 | bitr4di |  |-  ( ph -> ( ( ( T ` N ) = 0 /\ ( U ` N ) = N ) <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) | 
						
							| 345 | 344 | adantr |  |-  ( ( ph /\ V = N ) -> ( ( ( T ` N ) = 0 /\ ( U ` N ) = N ) <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) | 
						
							| 346 | 191 221 345 | 3bitr4d |  |-  ( ( ph /\ V = N ) -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) | 
						
							| 347 | 346 | pm5.32da |  |-  ( ph -> ( ( V = N /\ A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) <-> ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) | 
						
							| 348 | 110 347 | bitrd |  |-  ( ph -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) | 
						
							| 349 | 348 | notbid |  |-  ( ph -> ( -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) | 
						
							| 350 | 16 349 | bitrid |  |-  ( ph -> ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) |