| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem23.1 |
|- ( ph -> T : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 3 |
|
poimirlem23.2 |
|- ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 4 |
|
poimirlem23.3 |
|- ( ph -> V e. ( 0 ... N ) ) |
| 5 |
|
ovex |
|- ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 6 |
5
|
csbex |
|- [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 7 |
6
|
rgenw |
|- A. y e. ( 0 ... ( N - 1 ) ) [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 8 |
|
eqid |
|- ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 9 |
|
fveq1 |
|- ( p = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p ` N ) = ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) |
| 10 |
9
|
neeq1d |
|- ( p = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( p ` N ) =/= 0 <-> ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) ) |
| 11 |
|
df-ne |
|- ( ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 <-> -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
| 12 |
10 11
|
bitrdi |
|- ( p = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( p ` N ) =/= 0 <-> -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
| 13 |
8 12
|
rexrnmptw |
|- ( A. y e. ( 0 ... ( N - 1 ) ) [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V -> ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
| 14 |
7 13
|
ax-mp |
|- ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
| 15 |
|
rexnal |
|- ( E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
| 16 |
14 15
|
bitri |
|- ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
| 17 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 18 |
|
elfzelz |
|- ( V e. ( 0 ... N ) -> V e. ZZ ) |
| 19 |
4 18
|
syl |
|- ( ph -> V e. ZZ ) |
| 20 |
|
zlem1lt |
|- ( ( N e. ZZ /\ V e. ZZ ) -> ( N <_ V <-> ( N - 1 ) < V ) ) |
| 21 |
17 19 20
|
syl2anc |
|- ( ph -> ( N <_ V <-> ( N - 1 ) < V ) ) |
| 22 |
|
elfzle2 |
|- ( V e. ( 0 ... N ) -> V <_ N ) |
| 23 |
4 22
|
syl |
|- ( ph -> V <_ N ) |
| 24 |
19
|
zred |
|- ( ph -> V e. RR ) |
| 25 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 26 |
24 25
|
letri3d |
|- ( ph -> ( V = N <-> ( V <_ N /\ N <_ V ) ) ) |
| 27 |
26
|
biimprd |
|- ( ph -> ( ( V <_ N /\ N <_ V ) -> V = N ) ) |
| 28 |
23 27
|
mpand |
|- ( ph -> ( N <_ V -> V = N ) ) |
| 29 |
21 28
|
sylbird |
|- ( ph -> ( ( N - 1 ) < V -> V = N ) ) |
| 30 |
29
|
necon3ad |
|- ( ph -> ( V =/= N -> -. ( N - 1 ) < V ) ) |
| 31 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 32 |
1 31
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
| 33 |
|
nn0fz0 |
|- ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 34 |
32 33
|
sylib |
|- ( ph -> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 36 |
|
iffalse |
|- ( -. ( N - 1 ) < V -> if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) = ( ( N - 1 ) + 1 ) ) |
| 37 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 38 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 39 |
37 38
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 40 |
36 39
|
sylan9eqr |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) = N ) |
| 41 |
40
|
csbeq1d |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ N / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 42 |
|
oveq2 |
|- ( j = N -> ( 1 ... j ) = ( 1 ... N ) ) |
| 43 |
42
|
imaeq2d |
|- ( j = N -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... N ) ) ) |
| 44 |
43
|
xpeq1d |
|- ( j = N -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... N ) ) X. { 1 } ) ) |
| 45 |
|
oveq1 |
|- ( j = N -> ( j + 1 ) = ( N + 1 ) ) |
| 46 |
45
|
oveq1d |
|- ( j = N -> ( ( j + 1 ) ... N ) = ( ( N + 1 ) ... N ) ) |
| 47 |
46
|
imaeq2d |
|- ( j = N -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( N + 1 ) ... N ) ) ) |
| 48 |
47
|
xpeq1d |
|- ( j = N -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) |
| 49 |
44 48
|
uneq12d |
|- ( j = N -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... N ) ) X. { 1 } ) u. ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 50 |
|
f1ofo |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
| 51 |
|
foima |
|- ( U : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 52 |
3 50 51
|
3syl |
|- ( ph -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 53 |
52
|
xpeq1d |
|- ( ph -> ( ( U " ( 1 ... N ) ) X. { 1 } ) = ( ( 1 ... N ) X. { 1 } ) ) |
| 54 |
25
|
ltp1d |
|- ( ph -> N < ( N + 1 ) ) |
| 55 |
17
|
peano2zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
| 56 |
|
fzn |
|- ( ( ( N + 1 ) e. ZZ /\ N e. ZZ ) -> ( N < ( N + 1 ) <-> ( ( N + 1 ) ... N ) = (/) ) ) |
| 57 |
55 17 56
|
syl2anc |
|- ( ph -> ( N < ( N + 1 ) <-> ( ( N + 1 ) ... N ) = (/) ) ) |
| 58 |
54 57
|
mpbid |
|- ( ph -> ( ( N + 1 ) ... N ) = (/) ) |
| 59 |
58
|
imaeq2d |
|- ( ph -> ( U " ( ( N + 1 ) ... N ) ) = ( U " (/) ) ) |
| 60 |
59
|
xpeq1d |
|- ( ph -> ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) = ( ( U " (/) ) X. { 0 } ) ) |
| 61 |
|
ima0 |
|- ( U " (/) ) = (/) |
| 62 |
61
|
xpeq1i |
|- ( ( U " (/) ) X. { 0 } ) = ( (/) X. { 0 } ) |
| 63 |
|
0xp |
|- ( (/) X. { 0 } ) = (/) |
| 64 |
62 63
|
eqtri |
|- ( ( U " (/) ) X. { 0 } ) = (/) |
| 65 |
60 64
|
eqtrdi |
|- ( ph -> ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) = (/) ) |
| 66 |
53 65
|
uneq12d |
|- ( ph -> ( ( ( U " ( 1 ... N ) ) X. { 1 } ) u. ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( 1 ... N ) X. { 1 } ) u. (/) ) ) |
| 67 |
|
un0 |
|- ( ( ( 1 ... N ) X. { 1 } ) u. (/) ) = ( ( 1 ... N ) X. { 1 } ) |
| 68 |
66 67
|
eqtrdi |
|- ( ph -> ( ( ( U " ( 1 ... N ) ) X. { 1 } ) u. ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) = ( ( 1 ... N ) X. { 1 } ) ) |
| 69 |
49 68
|
sylan9eqr |
|- ( ( ph /\ j = N ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( 1 ... N ) X. { 1 } ) ) |
| 70 |
69
|
oveq2d |
|- ( ( ph /\ j = N ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) |
| 71 |
1 70
|
csbied |
|- ( ph -> [_ N / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> [_ N / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) |
| 73 |
41 72
|
eqtrd |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) |
| 74 |
73
|
fveq1d |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ` N ) ) |
| 75 |
|
elfzonn0 |
|- ( j e. ( 0 ..^ K ) -> j e. NN0 ) |
| 76 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
| 77 |
75 76
|
syl |
|- ( j e. ( 0 ..^ K ) -> ( j + 1 ) e. NN ) |
| 78 |
|
elsni |
|- ( y e. { 1 } -> y = 1 ) |
| 79 |
78
|
oveq2d |
|- ( y e. { 1 } -> ( j + y ) = ( j + 1 ) ) |
| 80 |
79
|
eleq1d |
|- ( y e. { 1 } -> ( ( j + y ) e. NN <-> ( j + 1 ) e. NN ) ) |
| 81 |
77 80
|
syl5ibrcom |
|- ( j e. ( 0 ..^ K ) -> ( y e. { 1 } -> ( j + y ) e. NN ) ) |
| 82 |
81
|
imp |
|- ( ( j e. ( 0 ..^ K ) /\ y e. { 1 } ) -> ( j + y ) e. NN ) |
| 83 |
82
|
adantl |
|- ( ( ph /\ ( j e. ( 0 ..^ K ) /\ y e. { 1 } ) ) -> ( j + y ) e. NN ) |
| 84 |
|
1ex |
|- 1 e. _V |
| 85 |
84
|
fconst |
|- ( ( 1 ... N ) X. { 1 } ) : ( 1 ... N ) --> { 1 } |
| 86 |
85
|
a1i |
|- ( ph -> ( ( 1 ... N ) X. { 1 } ) : ( 1 ... N ) --> { 1 } ) |
| 87 |
|
ovexd |
|- ( ph -> ( 1 ... N ) e. _V ) |
| 88 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 89 |
83 2 86 87 87 88
|
off |
|- ( ph -> ( T oF + ( ( 1 ... N ) X. { 1 } ) ) : ( 1 ... N ) --> NN ) |
| 90 |
|
elfz1end |
|- ( N e. NN <-> N e. ( 1 ... N ) ) |
| 91 |
1 90
|
sylib |
|- ( ph -> N e. ( 1 ... N ) ) |
| 92 |
89 91
|
ffvelcdmd |
|- ( ph -> ( ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ` N ) e. NN ) |
| 93 |
92
|
adantr |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> ( ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ` N ) e. NN ) |
| 94 |
74 93
|
eqeltrd |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) e. NN ) |
| 95 |
94
|
nnne0d |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) |
| 96 |
|
breq1 |
|- ( y = ( N - 1 ) -> ( y < V <-> ( N - 1 ) < V ) ) |
| 97 |
|
id |
|- ( y = ( N - 1 ) -> y = ( N - 1 ) ) |
| 98 |
|
oveq1 |
|- ( y = ( N - 1 ) -> ( y + 1 ) = ( ( N - 1 ) + 1 ) ) |
| 99 |
96 97 98
|
ifbieq12d |
|- ( y = ( N - 1 ) -> if ( y < V , y , ( y + 1 ) ) = if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) ) |
| 100 |
99
|
csbeq1d |
|- ( y = ( N - 1 ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 101 |
100
|
fveq1d |
|- ( y = ( N - 1 ) -> ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) |
| 102 |
101
|
neeq1d |
|- ( y = ( N - 1 ) -> ( ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 <-> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) ) |
| 103 |
11 102
|
bitr3id |
|- ( y = ( N - 1 ) -> ( -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) ) |
| 104 |
103
|
rspcev |
|- ( ( ( N - 1 ) e. ( 0 ... ( N - 1 ) ) /\ ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) -> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
| 105 |
35 95 104
|
syl2anc |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
| 106 |
105 15
|
sylib |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
| 107 |
106
|
ex |
|- ( ph -> ( -. ( N - 1 ) < V -> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
| 108 |
30 107
|
syld |
|- ( ph -> ( V =/= N -> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
| 109 |
108
|
necon4ad |
|- ( ph -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 -> V = N ) ) |
| 110 |
109
|
pm4.71rd |
|- ( ph -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( V = N /\ A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) ) |
| 111 |
32
|
nn0zd |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 112 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 113 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 114 |
111 112 113
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 115 |
39 114
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 116 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 117 |
115 116
|
syl |
|- ( ph -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 118 |
117
|
sselda |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. ( 0 ... N ) ) |
| 119 |
91
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> N e. ( 1 ... N ) ) |
| 120 |
2
|
ffnd |
|- ( ph -> T Fn ( 1 ... N ) ) |
| 121 |
120
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> T Fn ( 1 ... N ) ) |
| 122 |
84
|
fconst |
|- ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } |
| 123 |
|
c0ex |
|- 0 e. _V |
| 124 |
123
|
fconst |
|- ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } |
| 125 |
122 124
|
pm3.2i |
|- ( ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } ) |
| 126 |
|
dff1o3 |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( U : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' U ) ) |
| 127 |
126
|
simprbi |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' U ) |
| 128 |
|
imain |
|- ( Fun `' U -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) ) |
| 129 |
3 127 128
|
3syl |
|- ( ph -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) ) |
| 130 |
|
elfzelz |
|- ( j e. ( 0 ... N ) -> j e. ZZ ) |
| 131 |
130
|
zred |
|- ( j e. ( 0 ... N ) -> j e. RR ) |
| 132 |
131
|
ltp1d |
|- ( j e. ( 0 ... N ) -> j < ( j + 1 ) ) |
| 133 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 134 |
132 133
|
syl |
|- ( j e. ( 0 ... N ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 135 |
134
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( U " (/) ) ) |
| 136 |
135 61
|
eqtrdi |
|- ( j e. ( 0 ... N ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 137 |
129 136
|
sylan9req |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 138 |
|
fun |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } ) /\ ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
| 139 |
125 137 138
|
sylancr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
| 140 |
|
elfznn0 |
|- ( j e. ( 0 ... N ) -> j e. NN0 ) |
| 141 |
140 76
|
syl |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. NN ) |
| 142 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 143 |
141 142
|
eleqtrdi |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
| 144 |
|
elfzuz3 |
|- ( j e. ( 0 ... N ) -> N e. ( ZZ>= ` j ) ) |
| 145 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` j ) ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
| 146 |
143 144 145
|
syl2anc |
|- ( j e. ( 0 ... N ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
| 147 |
146
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) ) |
| 148 |
|
imaundi |
|- ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) |
| 149 |
147 148
|
eqtr2di |
|- ( j e. ( 0 ... N ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) = ( U " ( 1 ... N ) ) ) |
| 150 |
149 52
|
sylan9eqr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 151 |
150
|
feq2d |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) |
| 152 |
139 151
|
mpbid |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) |
| 153 |
152
|
ffnd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 154 |
|
ovexd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( 1 ... N ) e. _V ) |
| 155 |
|
eqidd |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ N e. ( 1 ... N ) ) -> ( T ` N ) = ( T ` N ) ) |
| 156 |
|
eqidd |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ N e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
| 157 |
121 153 154 154 88 155 156
|
ofval |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ N e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) ) |
| 158 |
119 157
|
mpdan |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) ) |
| 159 |
158
|
eqeq1d |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) = 0 ) ) |
| 160 |
2 91
|
ffvelcdmd |
|- ( ph -> ( T ` N ) e. ( 0 ..^ K ) ) |
| 161 |
|
elfzonn0 |
|- ( ( T ` N ) e. ( 0 ..^ K ) -> ( T ` N ) e. NN0 ) |
| 162 |
160 161
|
syl |
|- ( ph -> ( T ` N ) e. NN0 ) |
| 163 |
162
|
nn0red |
|- ( ph -> ( T ` N ) e. RR ) |
| 164 |
163
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( T ` N ) e. RR ) |
| 165 |
162
|
nn0ge0d |
|- ( ph -> 0 <_ ( T ` N ) ) |
| 166 |
165
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> 0 <_ ( T ` N ) ) |
| 167 |
|
1re |
|- 1 e. RR |
| 168 |
|
snssi |
|- ( 1 e. RR -> { 1 } C_ RR ) |
| 169 |
167 168
|
ax-mp |
|- { 1 } C_ RR |
| 170 |
|
0re |
|- 0 e. RR |
| 171 |
|
snssi |
|- ( 0 e. RR -> { 0 } C_ RR ) |
| 172 |
170 171
|
ax-mp |
|- { 0 } C_ RR |
| 173 |
169 172
|
unssi |
|- ( { 1 } u. { 0 } ) C_ RR |
| 174 |
152 119
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. ( { 1 } u. { 0 } ) ) |
| 175 |
173 174
|
sselid |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. RR ) |
| 176 |
|
elun |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. ( { 1 } u. { 0 } ) <-> ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } \/ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } ) ) |
| 177 |
|
0le1 |
|- 0 <_ 1 |
| 178 |
|
elsni |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 1 ) |
| 179 |
177 178
|
breqtrrid |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
| 180 |
|
0le0 |
|- 0 <_ 0 |
| 181 |
|
elsni |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
| 182 |
180 181
|
breqtrrid |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
| 183 |
179 182
|
jaoi |
|- ( ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } \/ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } ) -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
| 184 |
176 183
|
sylbi |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. ( { 1 } u. { 0 } ) -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
| 185 |
174 184
|
syl |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
| 186 |
|
add20 |
|- ( ( ( ( T ` N ) e. RR /\ 0 <_ ( T ` N ) ) /\ ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. RR /\ 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) ) -> ( ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
| 187 |
164 166 175 185 186
|
syl22anc |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
| 188 |
159 187
|
bitrd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
| 189 |
118 188
|
syldan |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
| 190 |
189
|
ralbidva |
|- ( ph -> ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
| 191 |
190
|
adantr |
|- ( ( ph /\ V = N ) -> ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
| 192 |
|
breq2 |
|- ( V = N -> ( y < V <-> y < N ) ) |
| 193 |
192
|
ifbid |
|- ( V = N -> if ( y < V , y , ( y + 1 ) ) = if ( y < N , y , ( y + 1 ) ) ) |
| 194 |
|
elfzelz |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ ) |
| 195 |
194
|
zred |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) |
| 196 |
195
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR ) |
| 197 |
32
|
nn0red |
|- ( ph -> ( N - 1 ) e. RR ) |
| 198 |
197
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR ) |
| 199 |
25
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. RR ) |
| 200 |
|
elfzle2 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( N - 1 ) ) |
| 201 |
200
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y <_ ( N - 1 ) ) |
| 202 |
25
|
ltm1d |
|- ( ph -> ( N - 1 ) < N ) |
| 203 |
202
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) < N ) |
| 204 |
196 198 199 201 203
|
lelttrd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N ) |
| 205 |
204
|
iftrued |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < N , y , ( y + 1 ) ) = y ) |
| 206 |
193 205
|
sylan9eqr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ V = N ) -> if ( y < V , y , ( y + 1 ) ) = y ) |
| 207 |
206
|
an32s |
|- ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < V , y , ( y + 1 ) ) = y ) |
| 208 |
207
|
csbeq1d |
|- ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 209 |
208
|
fveq1d |
|- ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) |
| 210 |
209
|
eqeq1d |
|- ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
| 211 |
210
|
ralbidva |
|- ( ( ph /\ V = N ) -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. y e. ( 0 ... ( N - 1 ) ) ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
| 212 |
|
nfv |
|- F/ y ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 |
| 213 |
|
nfcsb1v |
|- F/_ j [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 214 |
|
nfcv |
|- F/_ j N |
| 215 |
213 214
|
nffv |
|- F/_ j ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) |
| 216 |
215
|
nfeq1 |
|- F/ j ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 |
| 217 |
|
csbeq1a |
|- ( j = y -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 218 |
217
|
fveq1d |
|- ( j = y -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) |
| 219 |
218
|
eqeq1d |
|- ( j = y -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
| 220 |
212 216 219
|
cbvralw |
|- ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. y e. ( 0 ... ( N - 1 ) ) ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
| 221 |
211 220
|
bitr4di |
|- ( ( ph /\ V = N ) -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
| 222 |
|
ne0i |
|- ( ( N - 1 ) e. ( 0 ... ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) =/= (/) ) |
| 223 |
|
r19.3rzv |
|- ( ( 0 ... ( N - 1 ) ) =/= (/) -> ( ( T ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 ) ) |
| 224 |
34 222 223
|
3syl |
|- ( ph -> ( ( T ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 ) ) |
| 225 |
|
elfzelz |
|- ( j e. ( 0 ... ( N - 1 ) ) -> j e. ZZ ) |
| 226 |
225
|
zred |
|- ( j e. ( 0 ... ( N - 1 ) ) -> j e. RR ) |
| 227 |
226
|
ltp1d |
|- ( j e. ( 0 ... ( N - 1 ) ) -> j < ( j + 1 ) ) |
| 228 |
227 133
|
syl |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 229 |
228
|
imaeq2d |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( U " (/) ) ) |
| 230 |
229 61
|
eqtrdi |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 231 |
129 230
|
sylan9req |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 232 |
231
|
adantlr |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 233 |
|
simplr |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( U ` N ) = N ) |
| 234 |
|
f1ofn |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U Fn ( 1 ... N ) ) |
| 235 |
3 234
|
syl |
|- ( ph -> U Fn ( 1 ... N ) ) |
| 236 |
235
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> U Fn ( 1 ... N ) ) |
| 237 |
|
elfznn0 |
|- ( j e. ( 0 ... ( N - 1 ) ) -> j e. NN0 ) |
| 238 |
237 76
|
syl |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( j + 1 ) e. NN ) |
| 239 |
238 142
|
eleqtrdi |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
| 240 |
|
fzss1 |
|- ( ( j + 1 ) e. ( ZZ>= ` 1 ) -> ( ( j + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 241 |
239 240
|
syl |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( ( j + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 242 |
241
|
adantl |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 243 |
39
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 244 |
|
elfzuz3 |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` j ) ) |
| 245 |
|
eluzp1p1 |
|- ( ( N - 1 ) e. ( ZZ>= ` j ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
| 246 |
244 245
|
syl |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
| 247 |
246
|
adantl |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
| 248 |
243 247
|
eqeltrrd |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( j + 1 ) ) ) |
| 249 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` ( j + 1 ) ) -> N e. ( ( j + 1 ) ... N ) ) |
| 250 |
248 249
|
syl |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( j + 1 ) ... N ) ) |
| 251 |
|
fnfvima |
|- ( ( U Fn ( 1 ... N ) /\ ( ( j + 1 ) ... N ) C_ ( 1 ... N ) /\ N e. ( ( j + 1 ) ... N ) ) -> ( U ` N ) e. ( U " ( ( j + 1 ) ... N ) ) ) |
| 252 |
236 242 250 251
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( U ` N ) e. ( U " ( ( j + 1 ) ... N ) ) ) |
| 253 |
252
|
adantlr |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( U ` N ) e. ( U " ( ( j + 1 ) ... N ) ) ) |
| 254 |
233 253
|
eqeltrrd |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> N e. ( U " ( ( j + 1 ) ... N ) ) ) |
| 255 |
|
fnconstg |
|- ( 1 e. _V -> ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) ) |
| 256 |
84 255
|
ax-mp |
|- ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) |
| 257 |
|
fnconstg |
|- ( 0 e. _V -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... N ) ) ) |
| 258 |
123 257
|
ax-mp |
|- ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... N ) ) |
| 259 |
|
fvun2 |
|- ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( ( j + 1 ) ... N ) ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) ) |
| 260 |
256 258 259
|
mp3an12 |
|- ( ( ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( ( j + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) ) |
| 261 |
232 254 260
|
syl2anc |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) ) |
| 262 |
123
|
fvconst2 |
|- ( N e. ( U " ( ( j + 1 ) ... N ) ) -> ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) = 0 ) |
| 263 |
254 262
|
syl |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) = 0 ) |
| 264 |
261 263
|
eqtrd |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
| 265 |
264
|
ralrimiva |
|- ( ( ph /\ ( U ` N ) = N ) -> A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
| 266 |
265
|
ex |
|- ( ph -> ( ( U ` N ) = N -> A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) |
| 267 |
34
|
adantr |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 268 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 269 |
|
imain |
|- ( Fun `' U -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) ) |
| 270 |
3 127 269
|
3syl |
|- ( ph -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) ) |
| 271 |
202 39
|
breqtrrd |
|- ( ph -> ( N - 1 ) < ( ( N - 1 ) + 1 ) ) |
| 272 |
|
fzdisj |
|- ( ( N - 1 ) < ( ( N - 1 ) + 1 ) -> ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) = (/) ) |
| 273 |
271 272
|
syl |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) = (/) ) |
| 274 |
273
|
imaeq2d |
|- ( ph -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = ( U " (/) ) ) |
| 275 |
274 61
|
eqtrdi |
|- ( ph -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) ) |
| 276 |
270 275
|
eqtr3d |
|- ( ph -> ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) ) |
| 277 |
276
|
adantr |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) ) |
| 278 |
91
|
adantr |
|- ( ( ph /\ ( U ` N ) =/= N ) -> N e. ( 1 ... N ) ) |
| 279 |
|
elimasni |
|- ( N e. ( U " { N } ) -> N U N ) |
| 280 |
|
fnbrfvb |
|- ( ( U Fn ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> ( ( U ` N ) = N <-> N U N ) ) |
| 281 |
235 91 280
|
syl2anc |
|- ( ph -> ( ( U ` N ) = N <-> N U N ) ) |
| 282 |
279 281
|
imbitrrid |
|- ( ph -> ( N e. ( U " { N } ) -> ( U ` N ) = N ) ) |
| 283 |
282
|
necon3ad |
|- ( ph -> ( ( U ` N ) =/= N -> -. N e. ( U " { N } ) ) ) |
| 284 |
283
|
imp |
|- ( ( ph /\ ( U ` N ) =/= N ) -> -. N e. ( U " { N } ) ) |
| 285 |
278 284
|
eldifd |
|- ( ( ph /\ ( U ` N ) =/= N ) -> N e. ( ( 1 ... N ) \ ( U " { N } ) ) ) |
| 286 |
|
imadif |
|- ( Fun `' U -> ( U " ( ( 1 ... N ) \ { N } ) ) = ( ( U " ( 1 ... N ) ) \ ( U " { N } ) ) ) |
| 287 |
3 127 286
|
3syl |
|- ( ph -> ( U " ( ( 1 ... N ) \ { N } ) ) = ( ( U " ( 1 ... N ) ) \ ( U " { N } ) ) ) |
| 288 |
|
difun2 |
|- ( ( ( 1 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 1 ... ( N - 1 ) ) \ { N } ) |
| 289 |
|
elun |
|- ( j e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j e. { N } ) ) |
| 290 |
|
velsn |
|- ( j e. { N } <-> j = N ) |
| 291 |
290
|
orbi2i |
|- ( ( j e. ( 1 ... ( N - 1 ) ) \/ j e. { N } ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) |
| 292 |
289 291
|
bitri |
|- ( j e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) |
| 293 |
1 142
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 294 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( j e. ( 1 ... N ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) ) |
| 295 |
293 294
|
syl |
|- ( ph -> ( j e. ( 1 ... N ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) ) |
| 296 |
292 295
|
bitr4id |
|- ( ph -> ( j e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> j e. ( 1 ... N ) ) ) |
| 297 |
296
|
eqrdv |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) ) |
| 298 |
297
|
difeq1d |
|- ( ph -> ( ( ( 1 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 1 ... N ) \ { N } ) ) |
| 299 |
197 25
|
ltnled |
|- ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) |
| 300 |
202 299
|
mpbid |
|- ( ph -> -. N <_ ( N - 1 ) ) |
| 301 |
|
elfzle2 |
|- ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) |
| 302 |
300 301
|
nsyl |
|- ( ph -> -. N e. ( 1 ... ( N - 1 ) ) ) |
| 303 |
|
difsn |
|- ( -. N e. ( 1 ... ( N - 1 ) ) -> ( ( 1 ... ( N - 1 ) ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
| 304 |
302 303
|
syl |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
| 305 |
288 298 304
|
3eqtr3a |
|- ( ph -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
| 306 |
305
|
imaeq2d |
|- ( ph -> ( U " ( ( 1 ... N ) \ { N } ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) |
| 307 |
52
|
difeq1d |
|- ( ph -> ( ( U " ( 1 ... N ) ) \ ( U " { N } ) ) = ( ( 1 ... N ) \ ( U " { N } ) ) ) |
| 308 |
287 306 307
|
3eqtr3rd |
|- ( ph -> ( ( 1 ... N ) \ ( U " { N } ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) |
| 309 |
308
|
adantr |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( 1 ... N ) \ ( U " { N } ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) |
| 310 |
285 309
|
eleqtrd |
|- ( ( ph /\ ( U ` N ) =/= N ) -> N e. ( U " ( 1 ... ( N - 1 ) ) ) ) |
| 311 |
|
fnconstg |
|- ( 1 e. _V -> ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( N - 1 ) ) ) ) |
| 312 |
84 311
|
ax-mp |
|- ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( N - 1 ) ) ) |
| 313 |
|
fnconstg |
|- ( 0 e. _V -> ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
| 314 |
123 313
|
ax-mp |
|- ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) |
| 315 |
|
fvun1 |
|- ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( N - 1 ) ) ) /\ ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( 1 ... ( N - 1 ) ) ) ) ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) ) |
| 316 |
312 314 315
|
mp3an12 |
|- ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( 1 ... ( N - 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) ) |
| 317 |
277 310 316
|
syl2anc |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) ) |
| 318 |
84
|
fvconst2 |
|- ( N e. ( U " ( 1 ... ( N - 1 ) ) ) -> ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) = 1 ) |
| 319 |
310 318
|
syl |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) = 1 ) |
| 320 |
317 319
|
eqtrd |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 1 ) |
| 321 |
320
|
neeq1d |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 <-> 1 =/= 0 ) ) |
| 322 |
268 321
|
mpbiri |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) |
| 323 |
|
df-ne |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 <-> -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
| 324 |
|
oveq2 |
|- ( j = ( N - 1 ) -> ( 1 ... j ) = ( 1 ... ( N - 1 ) ) ) |
| 325 |
324
|
imaeq2d |
|- ( j = ( N - 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) |
| 326 |
325
|
xpeq1d |
|- ( j = ( N - 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ) |
| 327 |
|
oveq1 |
|- ( j = ( N - 1 ) -> ( j + 1 ) = ( ( N - 1 ) + 1 ) ) |
| 328 |
327
|
oveq1d |
|- ( j = ( N - 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( N - 1 ) + 1 ) ... N ) ) |
| 329 |
328
|
imaeq2d |
|- ( j = ( N - 1 ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
| 330 |
329
|
xpeq1d |
|- ( j = ( N - 1 ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
| 331 |
326 330
|
uneq12d |
|- ( j = ( N - 1 ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 332 |
331
|
fveq1d |
|- ( j = ( N - 1 ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
| 333 |
332
|
neeq1d |
|- ( j = ( N - 1 ) -> ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 <-> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) ) |
| 334 |
323 333
|
bitr3id |
|- ( j = ( N - 1 ) -> ( -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 <-> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) ) |
| 335 |
334
|
rspcev |
|- ( ( ( N - 1 ) e. ( 0 ... ( N - 1 ) ) /\ ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) -> E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
| 336 |
267 322 335
|
syl2anc |
|- ( ( ph /\ ( U ` N ) =/= N ) -> E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
| 337 |
336
|
ex |
|- ( ph -> ( ( U ` N ) =/= N -> E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) |
| 338 |
|
rexnal |
|- ( E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 <-> -. A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
| 339 |
337 338
|
imbitrdi |
|- ( ph -> ( ( U ` N ) =/= N -> -. A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) |
| 340 |
339
|
necon4ad |
|- ( ph -> ( A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 -> ( U ` N ) = N ) ) |
| 341 |
266 340
|
impbid |
|- ( ph -> ( ( U ` N ) = N <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) |
| 342 |
224 341
|
anbi12d |
|- ( ph -> ( ( ( T ` N ) = 0 /\ ( U ` N ) = N ) <-> ( A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 /\ A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
| 343 |
|
r19.26 |
|- ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) <-> ( A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 /\ A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) |
| 344 |
342 343
|
bitr4di |
|- ( ph -> ( ( ( T ` N ) = 0 /\ ( U ` N ) = N ) <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
| 345 |
344
|
adantr |
|- ( ( ph /\ V = N ) -> ( ( ( T ` N ) = 0 /\ ( U ` N ) = N ) <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
| 346 |
191 221 345
|
3bitr4d |
|- ( ( ph /\ V = N ) -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) |
| 347 |
346
|
pm5.32da |
|- ( ph -> ( ( V = N /\ A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) <-> ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) |
| 348 |
110 347
|
bitrd |
|- ( ph -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) |
| 349 |
348
|
notbid |
|- ( ph -> ( -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) |
| 350 |
16 349
|
bitrid |
|- ( ph -> ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) |