Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimirlem23.1 |
|- ( ph -> T : ( 1 ... N ) --> ( 0 ..^ K ) ) |
3 |
|
poimirlem23.2 |
|- ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
4 |
|
poimirlem23.3 |
|- ( ph -> V e. ( 0 ... N ) ) |
5 |
|
ovex |
|- ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
6 |
5
|
csbex |
|- [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
7 |
6
|
rgenw |
|- A. y e. ( 0 ... ( N - 1 ) ) [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
8 |
|
eqid |
|- ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
9 |
|
fveq1 |
|- ( p = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p ` N ) = ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) |
10 |
9
|
neeq1d |
|- ( p = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( p ` N ) =/= 0 <-> ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) ) |
11 |
|
df-ne |
|- ( ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 <-> -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
12 |
10 11
|
bitrdi |
|- ( p = [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( p ` N ) =/= 0 <-> -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
13 |
8 12
|
rexrnmptw |
|- ( A. y e. ( 0 ... ( N - 1 ) ) [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V -> ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
14 |
7 13
|
ax-mp |
|- ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
15 |
|
rexnal |
|- ( E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
16 |
14 15
|
bitri |
|- ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
17 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
18 |
|
elfzelz |
|- ( V e. ( 0 ... N ) -> V e. ZZ ) |
19 |
4 18
|
syl |
|- ( ph -> V e. ZZ ) |
20 |
|
zlem1lt |
|- ( ( N e. ZZ /\ V e. ZZ ) -> ( N <_ V <-> ( N - 1 ) < V ) ) |
21 |
17 19 20
|
syl2anc |
|- ( ph -> ( N <_ V <-> ( N - 1 ) < V ) ) |
22 |
|
elfzle2 |
|- ( V e. ( 0 ... N ) -> V <_ N ) |
23 |
4 22
|
syl |
|- ( ph -> V <_ N ) |
24 |
19
|
zred |
|- ( ph -> V e. RR ) |
25 |
1
|
nnred |
|- ( ph -> N e. RR ) |
26 |
24 25
|
letri3d |
|- ( ph -> ( V = N <-> ( V <_ N /\ N <_ V ) ) ) |
27 |
26
|
biimprd |
|- ( ph -> ( ( V <_ N /\ N <_ V ) -> V = N ) ) |
28 |
23 27
|
mpand |
|- ( ph -> ( N <_ V -> V = N ) ) |
29 |
21 28
|
sylbird |
|- ( ph -> ( ( N - 1 ) < V -> V = N ) ) |
30 |
29
|
necon3ad |
|- ( ph -> ( V =/= N -> -. ( N - 1 ) < V ) ) |
31 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
32 |
1 31
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
33 |
|
nn0fz0 |
|- ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
34 |
32 33
|
sylib |
|- ( ph -> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
35 |
34
|
adantr |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
36 |
|
iffalse |
|- ( -. ( N - 1 ) < V -> if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) = ( ( N - 1 ) + 1 ) ) |
37 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
38 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
39 |
37 38
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
40 |
36 39
|
sylan9eqr |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) = N ) |
41 |
40
|
csbeq1d |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ N / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
42 |
|
oveq2 |
|- ( j = N -> ( 1 ... j ) = ( 1 ... N ) ) |
43 |
42
|
imaeq2d |
|- ( j = N -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... N ) ) ) |
44 |
43
|
xpeq1d |
|- ( j = N -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... N ) ) X. { 1 } ) ) |
45 |
|
oveq1 |
|- ( j = N -> ( j + 1 ) = ( N + 1 ) ) |
46 |
45
|
oveq1d |
|- ( j = N -> ( ( j + 1 ) ... N ) = ( ( N + 1 ) ... N ) ) |
47 |
46
|
imaeq2d |
|- ( j = N -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( N + 1 ) ... N ) ) ) |
48 |
47
|
xpeq1d |
|- ( j = N -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) |
49 |
44 48
|
uneq12d |
|- ( j = N -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... N ) ) X. { 1 } ) u. ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) ) |
50 |
|
f1ofo |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
51 |
|
foima |
|- ( U : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) |
52 |
3 50 51
|
3syl |
|- ( ph -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) |
53 |
52
|
xpeq1d |
|- ( ph -> ( ( U " ( 1 ... N ) ) X. { 1 } ) = ( ( 1 ... N ) X. { 1 } ) ) |
54 |
25
|
ltp1d |
|- ( ph -> N < ( N + 1 ) ) |
55 |
17
|
peano2zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
56 |
|
fzn |
|- ( ( ( N + 1 ) e. ZZ /\ N e. ZZ ) -> ( N < ( N + 1 ) <-> ( ( N + 1 ) ... N ) = (/) ) ) |
57 |
55 17 56
|
syl2anc |
|- ( ph -> ( N < ( N + 1 ) <-> ( ( N + 1 ) ... N ) = (/) ) ) |
58 |
54 57
|
mpbid |
|- ( ph -> ( ( N + 1 ) ... N ) = (/) ) |
59 |
58
|
imaeq2d |
|- ( ph -> ( U " ( ( N + 1 ) ... N ) ) = ( U " (/) ) ) |
60 |
59
|
xpeq1d |
|- ( ph -> ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) = ( ( U " (/) ) X. { 0 } ) ) |
61 |
|
ima0 |
|- ( U " (/) ) = (/) |
62 |
61
|
xpeq1i |
|- ( ( U " (/) ) X. { 0 } ) = ( (/) X. { 0 } ) |
63 |
|
0xp |
|- ( (/) X. { 0 } ) = (/) |
64 |
62 63
|
eqtri |
|- ( ( U " (/) ) X. { 0 } ) = (/) |
65 |
60 64
|
eqtrdi |
|- ( ph -> ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) = (/) ) |
66 |
53 65
|
uneq12d |
|- ( ph -> ( ( ( U " ( 1 ... N ) ) X. { 1 } ) u. ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( 1 ... N ) X. { 1 } ) u. (/) ) ) |
67 |
|
un0 |
|- ( ( ( 1 ... N ) X. { 1 } ) u. (/) ) = ( ( 1 ... N ) X. { 1 } ) |
68 |
66 67
|
eqtrdi |
|- ( ph -> ( ( ( U " ( 1 ... N ) ) X. { 1 } ) u. ( ( U " ( ( N + 1 ) ... N ) ) X. { 0 } ) ) = ( ( 1 ... N ) X. { 1 } ) ) |
69 |
49 68
|
sylan9eqr |
|- ( ( ph /\ j = N ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( 1 ... N ) X. { 1 } ) ) |
70 |
69
|
oveq2d |
|- ( ( ph /\ j = N ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) |
71 |
1 70
|
csbied |
|- ( ph -> [_ N / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> [_ N / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) |
73 |
41 72
|
eqtrd |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ) |
74 |
73
|
fveq1d |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ` N ) ) |
75 |
|
elfzonn0 |
|- ( j e. ( 0 ..^ K ) -> j e. NN0 ) |
76 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
77 |
75 76
|
syl |
|- ( j e. ( 0 ..^ K ) -> ( j + 1 ) e. NN ) |
78 |
|
elsni |
|- ( y e. { 1 } -> y = 1 ) |
79 |
78
|
oveq2d |
|- ( y e. { 1 } -> ( j + y ) = ( j + 1 ) ) |
80 |
79
|
eleq1d |
|- ( y e. { 1 } -> ( ( j + y ) e. NN <-> ( j + 1 ) e. NN ) ) |
81 |
77 80
|
syl5ibrcom |
|- ( j e. ( 0 ..^ K ) -> ( y e. { 1 } -> ( j + y ) e. NN ) ) |
82 |
81
|
imp |
|- ( ( j e. ( 0 ..^ K ) /\ y e. { 1 } ) -> ( j + y ) e. NN ) |
83 |
82
|
adantl |
|- ( ( ph /\ ( j e. ( 0 ..^ K ) /\ y e. { 1 } ) ) -> ( j + y ) e. NN ) |
84 |
|
1ex |
|- 1 e. _V |
85 |
84
|
fconst |
|- ( ( 1 ... N ) X. { 1 } ) : ( 1 ... N ) --> { 1 } |
86 |
85
|
a1i |
|- ( ph -> ( ( 1 ... N ) X. { 1 } ) : ( 1 ... N ) --> { 1 } ) |
87 |
|
ovexd |
|- ( ph -> ( 1 ... N ) e. _V ) |
88 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
89 |
83 2 86 87 87 88
|
off |
|- ( ph -> ( T oF + ( ( 1 ... N ) X. { 1 } ) ) : ( 1 ... N ) --> NN ) |
90 |
|
elfz1end |
|- ( N e. NN <-> N e. ( 1 ... N ) ) |
91 |
1 90
|
sylib |
|- ( ph -> N e. ( 1 ... N ) ) |
92 |
89 91
|
ffvelrnd |
|- ( ph -> ( ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ` N ) e. NN ) |
93 |
92
|
adantr |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> ( ( T oF + ( ( 1 ... N ) X. { 1 } ) ) ` N ) e. NN ) |
94 |
74 93
|
eqeltrd |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) e. NN ) |
95 |
94
|
nnne0d |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) |
96 |
|
breq1 |
|- ( y = ( N - 1 ) -> ( y < V <-> ( N - 1 ) < V ) ) |
97 |
|
id |
|- ( y = ( N - 1 ) -> y = ( N - 1 ) ) |
98 |
|
oveq1 |
|- ( y = ( N - 1 ) -> ( y + 1 ) = ( ( N - 1 ) + 1 ) ) |
99 |
96 97 98
|
ifbieq12d |
|- ( y = ( N - 1 ) -> if ( y < V , y , ( y + 1 ) ) = if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) ) |
100 |
99
|
csbeq1d |
|- ( y = ( N - 1 ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
101 |
100
|
fveq1d |
|- ( y = ( N - 1 ) -> ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) |
102 |
101
|
neeq1d |
|- ( y = ( N - 1 ) -> ( ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 <-> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) ) |
103 |
11 102
|
bitr3id |
|- ( y = ( N - 1 ) -> ( -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) ) |
104 |
103
|
rspcev |
|- ( ( ( N - 1 ) e. ( 0 ... ( N - 1 ) ) /\ ( [_ if ( ( N - 1 ) < V , ( N - 1 ) , ( ( N - 1 ) + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) =/= 0 ) -> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
105 |
35 95 104
|
syl2anc |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> E. y e. ( 0 ... ( N - 1 ) ) -. ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
106 |
105 15
|
sylib |
|- ( ( ph /\ -. ( N - 1 ) < V ) -> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
107 |
106
|
ex |
|- ( ph -> ( -. ( N - 1 ) < V -> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
108 |
30 107
|
syld |
|- ( ph -> ( V =/= N -> -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
109 |
108
|
necon4ad |
|- ( ph -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 -> V = N ) ) |
110 |
109
|
pm4.71rd |
|- ( ph -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( V = N /\ A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) ) |
111 |
32
|
nn0zd |
|- ( ph -> ( N - 1 ) e. ZZ ) |
112 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
113 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
114 |
111 112 113
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
115 |
39 114
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
116 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
117 |
115 116
|
syl |
|- ( ph -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
118 |
117
|
sselda |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. ( 0 ... N ) ) |
119 |
91
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> N e. ( 1 ... N ) ) |
120 |
2
|
ffnd |
|- ( ph -> T Fn ( 1 ... N ) ) |
121 |
120
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> T Fn ( 1 ... N ) ) |
122 |
84
|
fconst |
|- ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } |
123 |
|
c0ex |
|- 0 e. _V |
124 |
123
|
fconst |
|- ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } |
125 |
122 124
|
pm3.2i |
|- ( ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } ) |
126 |
|
dff1o3 |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( U : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' U ) ) |
127 |
126
|
simprbi |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' U ) |
128 |
|
imain |
|- ( Fun `' U -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) ) |
129 |
3 127 128
|
3syl |
|- ( ph -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) ) |
130 |
|
elfzelz |
|- ( j e. ( 0 ... N ) -> j e. ZZ ) |
131 |
130
|
zred |
|- ( j e. ( 0 ... N ) -> j e. RR ) |
132 |
131
|
ltp1d |
|- ( j e. ( 0 ... N ) -> j < ( j + 1 ) ) |
133 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
134 |
132 133
|
syl |
|- ( j e. ( 0 ... N ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
135 |
134
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( U " (/) ) ) |
136 |
135 61
|
eqtrdi |
|- ( j e. ( 0 ... N ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) |
137 |
129 136
|
sylan9req |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) |
138 |
|
fun |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) : ( U " ( 1 ... j ) ) --> { 1 } /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( U " ( ( j + 1 ) ... N ) ) --> { 0 } ) /\ ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
139 |
125 137 138
|
sylancr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
140 |
|
elfznn0 |
|- ( j e. ( 0 ... N ) -> j e. NN0 ) |
141 |
140 76
|
syl |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. NN ) |
142 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
143 |
141 142
|
eleqtrdi |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
144 |
|
elfzuz3 |
|- ( j e. ( 0 ... N ) -> N e. ( ZZ>= ` j ) ) |
145 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` j ) ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
146 |
143 144 145
|
syl2anc |
|- ( j e. ( 0 ... N ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
147 |
146
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) ) |
148 |
|
imaundi |
|- ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) |
149 |
147 148
|
eqtr2di |
|- ( j e. ( 0 ... N ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) = ( U " ( 1 ... N ) ) ) |
150 |
149 52
|
sylan9eqr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
151 |
150
|
feq2d |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) |
152 |
139 151
|
mpbid |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) |
153 |
152
|
ffnd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
154 |
|
ovexd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( 1 ... N ) e. _V ) |
155 |
|
eqidd |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ N e. ( 1 ... N ) ) -> ( T ` N ) = ( T ` N ) ) |
156 |
|
eqidd |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ N e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
157 |
121 153 154 154 88 155 156
|
ofval |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ N e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) ) |
158 |
119 157
|
mpdan |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) ) |
159 |
158
|
eqeq1d |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) = 0 ) ) |
160 |
2 91
|
ffvelrnd |
|- ( ph -> ( T ` N ) e. ( 0 ..^ K ) ) |
161 |
|
elfzonn0 |
|- ( ( T ` N ) e. ( 0 ..^ K ) -> ( T ` N ) e. NN0 ) |
162 |
160 161
|
syl |
|- ( ph -> ( T ` N ) e. NN0 ) |
163 |
162
|
nn0red |
|- ( ph -> ( T ` N ) e. RR ) |
164 |
163
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( T ` N ) e. RR ) |
165 |
162
|
nn0ge0d |
|- ( ph -> 0 <_ ( T ` N ) ) |
166 |
165
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> 0 <_ ( T ` N ) ) |
167 |
|
1re |
|- 1 e. RR |
168 |
|
snssi |
|- ( 1 e. RR -> { 1 } C_ RR ) |
169 |
167 168
|
ax-mp |
|- { 1 } C_ RR |
170 |
|
0re |
|- 0 e. RR |
171 |
|
snssi |
|- ( 0 e. RR -> { 0 } C_ RR ) |
172 |
170 171
|
ax-mp |
|- { 0 } C_ RR |
173 |
169 172
|
unssi |
|- ( { 1 } u. { 0 } ) C_ RR |
174 |
152 119
|
ffvelrnd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. ( { 1 } u. { 0 } ) ) |
175 |
173 174
|
sselid |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. RR ) |
176 |
|
elun |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. ( { 1 } u. { 0 } ) <-> ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } \/ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } ) ) |
177 |
|
0le1 |
|- 0 <_ 1 |
178 |
|
elsni |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 1 ) |
179 |
177 178
|
breqtrrid |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
180 |
|
0le0 |
|- 0 <_ 0 |
181 |
|
elsni |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
182 |
180 181
|
breqtrrid |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
183 |
179 182
|
jaoi |
|- ( ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 1 } \/ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. { 0 } ) -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
184 |
176 183
|
sylbi |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. ( { 1 } u. { 0 } ) -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
185 |
174 184
|
syl |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
186 |
|
add20 |
|- ( ( ( ( T ` N ) e. RR /\ 0 <_ ( T ` N ) ) /\ ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) e. RR /\ 0 <_ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) ) -> ( ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
187 |
164 166 175 185 186
|
syl22anc |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( T ` N ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
188 |
159 187
|
bitrd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
189 |
118 188
|
syldan |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
190 |
189
|
ralbidva |
|- ( ph -> ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
191 |
190
|
adantr |
|- ( ( ph /\ V = N ) -> ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
192 |
|
breq2 |
|- ( V = N -> ( y < V <-> y < N ) ) |
193 |
192
|
ifbid |
|- ( V = N -> if ( y < V , y , ( y + 1 ) ) = if ( y < N , y , ( y + 1 ) ) ) |
194 |
|
elfzelz |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ ) |
195 |
194
|
zred |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) |
196 |
195
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR ) |
197 |
32
|
nn0red |
|- ( ph -> ( N - 1 ) e. RR ) |
198 |
197
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR ) |
199 |
25
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. RR ) |
200 |
|
elfzle2 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( N - 1 ) ) |
201 |
200
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y <_ ( N - 1 ) ) |
202 |
25
|
ltm1d |
|- ( ph -> ( N - 1 ) < N ) |
203 |
202
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) < N ) |
204 |
196 198 199 201 203
|
lelttrd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N ) |
205 |
204
|
iftrued |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < N , y , ( y + 1 ) ) = y ) |
206 |
193 205
|
sylan9eqr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ V = N ) -> if ( y < V , y , ( y + 1 ) ) = y ) |
207 |
206
|
an32s |
|- ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < V , y , ( y + 1 ) ) = y ) |
208 |
207
|
csbeq1d |
|- ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
209 |
208
|
fveq1d |
|- ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) |
210 |
209
|
eqeq1d |
|- ( ( ( ph /\ V = N ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
211 |
210
|
ralbidva |
|- ( ( ph /\ V = N ) -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. y e. ( 0 ... ( N - 1 ) ) ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
212 |
|
nfv |
|- F/ y ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 |
213 |
|
nfcsb1v |
|- F/_ j [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
214 |
|
nfcv |
|- F/_ j N |
215 |
213 214
|
nffv |
|- F/_ j ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) |
216 |
215
|
nfeq1 |
|- F/ j ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 |
217 |
|
csbeq1a |
|- ( j = y -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
218 |
217
|
fveq1d |
|- ( j = y -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) ) |
219 |
218
|
eqeq1d |
|- ( j = y -> ( ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
220 |
212 216 219
|
cbvralw |
|- ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. y e. ( 0 ... ( N - 1 ) ) ( [_ y / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) |
221 |
211 220
|
bitr4di |
|- ( ( ph /\ V = N ) -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) ) |
222 |
|
ne0i |
|- ( ( N - 1 ) e. ( 0 ... ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) =/= (/) ) |
223 |
|
r19.3rzv |
|- ( ( 0 ... ( N - 1 ) ) =/= (/) -> ( ( T ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 ) ) |
224 |
34 222 223
|
3syl |
|- ( ph -> ( ( T ` N ) = 0 <-> A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 ) ) |
225 |
|
elfzelz |
|- ( j e. ( 0 ... ( N - 1 ) ) -> j e. ZZ ) |
226 |
225
|
zred |
|- ( j e. ( 0 ... ( N - 1 ) ) -> j e. RR ) |
227 |
226
|
ltp1d |
|- ( j e. ( 0 ... ( N - 1 ) ) -> j < ( j + 1 ) ) |
228 |
227 133
|
syl |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
229 |
228
|
imaeq2d |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( U " (/) ) ) |
230 |
229 61
|
eqtrdi |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) |
231 |
129 230
|
sylan9req |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) |
232 |
231
|
adantlr |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) ) |
233 |
|
simplr |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( U ` N ) = N ) |
234 |
|
f1ofn |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U Fn ( 1 ... N ) ) |
235 |
3 234
|
syl |
|- ( ph -> U Fn ( 1 ... N ) ) |
236 |
235
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> U Fn ( 1 ... N ) ) |
237 |
|
elfznn0 |
|- ( j e. ( 0 ... ( N - 1 ) ) -> j e. NN0 ) |
238 |
237 76
|
syl |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( j + 1 ) e. NN ) |
239 |
238 142
|
eleqtrdi |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
240 |
|
fzss1 |
|- ( ( j + 1 ) e. ( ZZ>= ` 1 ) -> ( ( j + 1 ) ... N ) C_ ( 1 ... N ) ) |
241 |
239 240
|
syl |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( ( j + 1 ) ... N ) C_ ( 1 ... N ) ) |
242 |
241
|
adantl |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) ... N ) C_ ( 1 ... N ) ) |
243 |
39
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
244 |
|
elfzuz3 |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` j ) ) |
245 |
|
eluzp1p1 |
|- ( ( N - 1 ) e. ( ZZ>= ` j ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
246 |
244 245
|
syl |
|- ( j e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
247 |
246
|
adantl |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
248 |
243 247
|
eqeltrrd |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( j + 1 ) ) ) |
249 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` ( j + 1 ) ) -> N e. ( ( j + 1 ) ... N ) ) |
250 |
248 249
|
syl |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( j + 1 ) ... N ) ) |
251 |
|
fnfvima |
|- ( ( U Fn ( 1 ... N ) /\ ( ( j + 1 ) ... N ) C_ ( 1 ... N ) /\ N e. ( ( j + 1 ) ... N ) ) -> ( U ` N ) e. ( U " ( ( j + 1 ) ... N ) ) ) |
252 |
236 242 250 251
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( U ` N ) e. ( U " ( ( j + 1 ) ... N ) ) ) |
253 |
252
|
adantlr |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( U ` N ) e. ( U " ( ( j + 1 ) ... N ) ) ) |
254 |
233 253
|
eqeltrrd |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> N e. ( U " ( ( j + 1 ) ... N ) ) ) |
255 |
|
fnconstg |
|- ( 1 e. _V -> ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) ) |
256 |
84 255
|
ax-mp |
|- ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) |
257 |
|
fnconstg |
|- ( 0 e. _V -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... N ) ) ) |
258 |
123 257
|
ax-mp |
|- ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... N ) ) |
259 |
|
fvun2 |
|- ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) /\ ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( ( j + 1 ) ... N ) ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) ) |
260 |
256 258 259
|
mp3an12 |
|- ( ( ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( ( j + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) ) |
261 |
232 254 260
|
syl2anc |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) ) |
262 |
123
|
fvconst2 |
|- ( N e. ( U " ( ( j + 1 ) ... N ) ) -> ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) = 0 ) |
263 |
254 262
|
syl |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ` N ) = 0 ) |
264 |
261 263
|
eqtrd |
|- ( ( ( ph /\ ( U ` N ) = N ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
265 |
264
|
ralrimiva |
|- ( ( ph /\ ( U ` N ) = N ) -> A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
266 |
265
|
ex |
|- ( ph -> ( ( U ` N ) = N -> A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) |
267 |
34
|
adantr |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( N - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
268 |
|
ax-1ne0 |
|- 1 =/= 0 |
269 |
|
imain |
|- ( Fun `' U -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) ) |
270 |
3 127 269
|
3syl |
|- ( ph -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) ) |
271 |
202 39
|
breqtrrd |
|- ( ph -> ( N - 1 ) < ( ( N - 1 ) + 1 ) ) |
272 |
|
fzdisj |
|- ( ( N - 1 ) < ( ( N - 1 ) + 1 ) -> ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) = (/) ) |
273 |
271 272
|
syl |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) = (/) ) |
274 |
273
|
imaeq2d |
|- ( ph -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = ( U " (/) ) ) |
275 |
274 61
|
eqtrdi |
|- ( ph -> ( U " ( ( 1 ... ( N - 1 ) ) i^i ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) ) |
276 |
270 275
|
eqtr3d |
|- ( ph -> ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) ) |
277 |
276
|
adantr |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) ) |
278 |
91
|
adantr |
|- ( ( ph /\ ( U ` N ) =/= N ) -> N e. ( 1 ... N ) ) |
279 |
|
elimasni |
|- ( N e. ( U " { N } ) -> N U N ) |
280 |
|
fnbrfvb |
|- ( ( U Fn ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> ( ( U ` N ) = N <-> N U N ) ) |
281 |
235 91 280
|
syl2anc |
|- ( ph -> ( ( U ` N ) = N <-> N U N ) ) |
282 |
279 281
|
syl5ibr |
|- ( ph -> ( N e. ( U " { N } ) -> ( U ` N ) = N ) ) |
283 |
282
|
necon3ad |
|- ( ph -> ( ( U ` N ) =/= N -> -. N e. ( U " { N } ) ) ) |
284 |
283
|
imp |
|- ( ( ph /\ ( U ` N ) =/= N ) -> -. N e. ( U " { N } ) ) |
285 |
278 284
|
eldifd |
|- ( ( ph /\ ( U ` N ) =/= N ) -> N e. ( ( 1 ... N ) \ ( U " { N } ) ) ) |
286 |
|
imadif |
|- ( Fun `' U -> ( U " ( ( 1 ... N ) \ { N } ) ) = ( ( U " ( 1 ... N ) ) \ ( U " { N } ) ) ) |
287 |
3 127 286
|
3syl |
|- ( ph -> ( U " ( ( 1 ... N ) \ { N } ) ) = ( ( U " ( 1 ... N ) ) \ ( U " { N } ) ) ) |
288 |
|
difun2 |
|- ( ( ( 1 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 1 ... ( N - 1 ) ) \ { N } ) |
289 |
|
elun |
|- ( j e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j e. { N } ) ) |
290 |
|
velsn |
|- ( j e. { N } <-> j = N ) |
291 |
290
|
orbi2i |
|- ( ( j e. ( 1 ... ( N - 1 ) ) \/ j e. { N } ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) |
292 |
289 291
|
bitri |
|- ( j e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) |
293 |
1 142
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
294 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( j e. ( 1 ... N ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) ) |
295 |
293 294
|
syl |
|- ( ph -> ( j e. ( 1 ... N ) <-> ( j e. ( 1 ... ( N - 1 ) ) \/ j = N ) ) ) |
296 |
292 295
|
bitr4id |
|- ( ph -> ( j e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> j e. ( 1 ... N ) ) ) |
297 |
296
|
eqrdv |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) ) |
298 |
297
|
difeq1d |
|- ( ph -> ( ( ( 1 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 1 ... N ) \ { N } ) ) |
299 |
197 25
|
ltnled |
|- ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) |
300 |
202 299
|
mpbid |
|- ( ph -> -. N <_ ( N - 1 ) ) |
301 |
|
elfzle2 |
|- ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) |
302 |
300 301
|
nsyl |
|- ( ph -> -. N e. ( 1 ... ( N - 1 ) ) ) |
303 |
|
difsn |
|- ( -. N e. ( 1 ... ( N - 1 ) ) -> ( ( 1 ... ( N - 1 ) ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
304 |
302 303
|
syl |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
305 |
288 298 304
|
3eqtr3a |
|- ( ph -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
306 |
305
|
imaeq2d |
|- ( ph -> ( U " ( ( 1 ... N ) \ { N } ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) |
307 |
52
|
difeq1d |
|- ( ph -> ( ( U " ( 1 ... N ) ) \ ( U " { N } ) ) = ( ( 1 ... N ) \ ( U " { N } ) ) ) |
308 |
287 306 307
|
3eqtr3rd |
|- ( ph -> ( ( 1 ... N ) \ ( U " { N } ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) |
309 |
308
|
adantr |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( 1 ... N ) \ ( U " { N } ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) |
310 |
285 309
|
eleqtrd |
|- ( ( ph /\ ( U ` N ) =/= N ) -> N e. ( U " ( 1 ... ( N - 1 ) ) ) ) |
311 |
|
fnconstg |
|- ( 1 e. _V -> ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( N - 1 ) ) ) ) |
312 |
84 311
|
ax-mp |
|- ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( N - 1 ) ) ) |
313 |
|
fnconstg |
|- ( 0 e. _V -> ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
314 |
123 313
|
ax-mp |
|- ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) |
315 |
|
fvun1 |
|- ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( N - 1 ) ) ) /\ ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( 1 ... ( N - 1 ) ) ) ) ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) ) |
316 |
312 314 315
|
mp3an12 |
|- ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) i^i ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) = (/) /\ N e. ( U " ( 1 ... ( N - 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) ) |
317 |
277 310 316
|
syl2anc |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) ) |
318 |
84
|
fvconst2 |
|- ( N e. ( U " ( 1 ... ( N - 1 ) ) ) -> ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) = 1 ) |
319 |
310 318
|
syl |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ` N ) = 1 ) |
320 |
317 319
|
eqtrd |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 1 ) |
321 |
320
|
neeq1d |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 <-> 1 =/= 0 ) ) |
322 |
268 321
|
mpbiri |
|- ( ( ph /\ ( U ` N ) =/= N ) -> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) |
323 |
|
df-ne |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 <-> -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
324 |
|
oveq2 |
|- ( j = ( N - 1 ) -> ( 1 ... j ) = ( 1 ... ( N - 1 ) ) ) |
325 |
324
|
imaeq2d |
|- ( j = ( N - 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( N - 1 ) ) ) ) |
326 |
325
|
xpeq1d |
|- ( j = ( N - 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) ) |
327 |
|
oveq1 |
|- ( j = ( N - 1 ) -> ( j + 1 ) = ( ( N - 1 ) + 1 ) ) |
328 |
327
|
oveq1d |
|- ( j = ( N - 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( N - 1 ) + 1 ) ... N ) ) |
329 |
328
|
imaeq2d |
|- ( j = ( N - 1 ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
330 |
329
|
xpeq1d |
|- ( j = ( N - 1 ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
331 |
326 330
|
uneq12d |
|- ( j = ( N - 1 ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
332 |
331
|
fveq1d |
|- ( j = ( N - 1 ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) ) |
333 |
332
|
neeq1d |
|- ( j = ( N - 1 ) -> ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 <-> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) ) |
334 |
323 333
|
bitr3id |
|- ( j = ( N - 1 ) -> ( -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 <-> ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) ) |
335 |
334
|
rspcev |
|- ( ( ( N - 1 ) e. ( 0 ... ( N - 1 ) ) /\ ( ( ( ( U " ( 1 ... ( N - 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( N - 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` N ) =/= 0 ) -> E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
336 |
267 322 335
|
syl2anc |
|- ( ( ph /\ ( U ` N ) =/= N ) -> E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
337 |
336
|
ex |
|- ( ph -> ( ( U ` N ) =/= N -> E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) |
338 |
|
rexnal |
|- ( E. j e. ( 0 ... ( N - 1 ) ) -. ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 <-> -. A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) |
339 |
337 338
|
syl6ib |
|- ( ph -> ( ( U ` N ) =/= N -> -. A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) |
340 |
339
|
necon4ad |
|- ( ph -> ( A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 -> ( U ` N ) = N ) ) |
341 |
266 340
|
impbid |
|- ( ph -> ( ( U ` N ) = N <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) |
342 |
224 341
|
anbi12d |
|- ( ph -> ( ( ( T ` N ) = 0 /\ ( U ` N ) = N ) <-> ( A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 /\ A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
343 |
|
r19.26 |
|- ( A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) <-> ( A. j e. ( 0 ... ( N - 1 ) ) ( T ` N ) = 0 /\ A. j e. ( 0 ... ( N - 1 ) ) ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) |
344 |
342 343
|
bitr4di |
|- ( ph -> ( ( ( T ` N ) = 0 /\ ( U ` N ) = N ) <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
345 |
344
|
adantr |
|- ( ( ph /\ V = N ) -> ( ( ( T ` N ) = 0 /\ ( U ` N ) = N ) <-> A. j e. ( 0 ... ( N - 1 ) ) ( ( T ` N ) = 0 /\ ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ` N ) = 0 ) ) ) |
346 |
191 221 345
|
3bitr4d |
|- ( ( ph /\ V = N ) -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) |
347 |
346
|
pm5.32da |
|- ( ph -> ( ( V = N /\ A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 ) <-> ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) |
348 |
110 347
|
bitrd |
|- ( ph -> ( A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) |
349 |
348
|
notbid |
|- ( ph -> ( -. A. y e. ( 0 ... ( N - 1 ) ) ( [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ` N ) = 0 <-> -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) |
350 |
16 349
|
syl5bb |
|- ( ph -> ( E. p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < V , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ( p ` N ) =/= 0 <-> -. ( V = N /\ ( ( T ` N ) = 0 /\ ( U ` N ) = N ) ) ) ) |