Metamath Proof Explorer


Theorem poimirlem23

Description: Lemma for poimir , two ways of expressing the property that a face is not on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem23.1 φ T : 1 N 0 ..^ K
poimirlem23.2 φ U : 1 N 1-1 onto 1 N
poimirlem23.3 φ V 0 N
Assertion poimirlem23 φ p ran y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 p N 0 ¬ V = N T N = 0 U N = N

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem23.1 φ T : 1 N 0 ..^ K
3 poimirlem23.2 φ U : 1 N 1-1 onto 1 N
4 poimirlem23.3 φ V 0 N
5 ovex T + f U 1 j × 1 U j + 1 N × 0 V
6 5 csbex if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 V
7 6 rgenw y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 V
8 eqid y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
9 fveq1 p = if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 p N = if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N
10 9 neeq1d p = if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 p N 0 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N 0
11 df-ne if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N 0 ¬ if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
12 10 11 bitrdi p = if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 p N 0 ¬ if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
13 8 12 rexrnmptw y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 V p ran y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 p N 0 y 0 N 1 ¬ if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
14 7 13 ax-mp p ran y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 p N 0 y 0 N 1 ¬ if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
15 rexnal y 0 N 1 ¬ if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 ¬ y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
16 14 15 bitri p ran y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 p N 0 ¬ y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
17 1 nnzd φ N
18 elfzelz V 0 N V
19 4 18 syl φ V
20 zlem1lt N V N V N 1 < V
21 17 19 20 syl2anc φ N V N 1 < V
22 elfzle2 V 0 N V N
23 4 22 syl φ V N
24 19 zred φ V
25 1 nnred φ N
26 24 25 letri3d φ V = N V N N V
27 26 biimprd φ V N N V V = N
28 23 27 mpand φ N V V = N
29 21 28 sylbird φ N 1 < V V = N
30 29 necon3ad φ V N ¬ N 1 < V
31 nnm1nn0 N N 1 0
32 1 31 syl φ N 1 0
33 nn0fz0 N 1 0 N 1 0 N 1
34 32 33 sylib φ N 1 0 N 1
35 34 adantr φ ¬ N 1 < V N 1 0 N 1
36 iffalse ¬ N 1 < V if N 1 < V N 1 N - 1 + 1 = N - 1 + 1
37 1 nncnd φ N
38 npcan1 N N - 1 + 1 = N
39 37 38 syl φ N - 1 + 1 = N
40 36 39 sylan9eqr φ ¬ N 1 < V if N 1 < V N 1 N - 1 + 1 = N
41 40 csbeq1d φ ¬ N 1 < V if N 1 < V N 1 N - 1 + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = N / j T + f U 1 j × 1 U j + 1 N × 0
42 oveq2 j = N 1 j = 1 N
43 42 imaeq2d j = N U 1 j = U 1 N
44 43 xpeq1d j = N U 1 j × 1 = U 1 N × 1
45 oveq1 j = N j + 1 = N + 1
46 45 oveq1d j = N j + 1 N = N + 1 N
47 46 imaeq2d j = N U j + 1 N = U N + 1 N
48 47 xpeq1d j = N U j + 1 N × 0 = U N + 1 N × 0
49 44 48 uneq12d j = N U 1 j × 1 U j + 1 N × 0 = U 1 N × 1 U N + 1 N × 0
50 f1ofo U : 1 N 1-1 onto 1 N U : 1 N onto 1 N
51 foima U : 1 N onto 1 N U 1 N = 1 N
52 3 50 51 3syl φ U 1 N = 1 N
53 52 xpeq1d φ U 1 N × 1 = 1 N × 1
54 25 ltp1d φ N < N + 1
55 17 peano2zd φ N + 1
56 fzn N + 1 N N < N + 1 N + 1 N =
57 55 17 56 syl2anc φ N < N + 1 N + 1 N =
58 54 57 mpbid φ N + 1 N =
59 58 imaeq2d φ U N + 1 N = U
60 59 xpeq1d φ U N + 1 N × 0 = U × 0
61 ima0 U =
62 61 xpeq1i U × 0 = × 0
63 0xp × 0 =
64 62 63 eqtri U × 0 =
65 60 64 eqtrdi φ U N + 1 N × 0 =
66 53 65 uneq12d φ U 1 N × 1 U N + 1 N × 0 = 1 N × 1
67 un0 1 N × 1 = 1 N × 1
68 66 67 eqtrdi φ U 1 N × 1 U N + 1 N × 0 = 1 N × 1
69 49 68 sylan9eqr φ j = N U 1 j × 1 U j + 1 N × 0 = 1 N × 1
70 69 oveq2d φ j = N T + f U 1 j × 1 U j + 1 N × 0 = T + f 1 N × 1
71 1 70 csbied φ N / j T + f U 1 j × 1 U j + 1 N × 0 = T + f 1 N × 1
72 71 adantr φ ¬ N 1 < V N / j T + f U 1 j × 1 U j + 1 N × 0 = T + f 1 N × 1
73 41 72 eqtrd φ ¬ N 1 < V if N 1 < V N 1 N - 1 + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f 1 N × 1
74 73 fveq1d φ ¬ N 1 < V if N 1 < V N 1 N - 1 + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = T + f 1 N × 1 N
75 elfzonn0 j 0 ..^ K j 0
76 nn0p1nn j 0 j + 1
77 75 76 syl j 0 ..^ K j + 1
78 elsni y 1 y = 1
79 78 oveq2d y 1 j + y = j + 1
80 79 eleq1d y 1 j + y j + 1
81 77 80 syl5ibrcom j 0 ..^ K y 1 j + y
82 81 imp j 0 ..^ K y 1 j + y
83 82 adantl φ j 0 ..^ K y 1 j + y
84 1ex 1 V
85 84 fconst 1 N × 1 : 1 N 1
86 85 a1i φ 1 N × 1 : 1 N 1
87 ovexd φ 1 N V
88 inidm 1 N 1 N = 1 N
89 83 2 86 87 87 88 off φ T + f 1 N × 1 : 1 N
90 elfz1end N N 1 N
91 1 90 sylib φ N 1 N
92 89 91 ffvelrnd φ T + f 1 N × 1 N
93 92 adantr φ ¬ N 1 < V T + f 1 N × 1 N
94 74 93 eqeltrd φ ¬ N 1 < V if N 1 < V N 1 N - 1 + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N
95 94 nnne0d φ ¬ N 1 < V if N 1 < V N 1 N - 1 + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N 0
96 breq1 y = N 1 y < V N 1 < V
97 id y = N 1 y = N 1
98 oveq1 y = N 1 y + 1 = N - 1 + 1
99 96 97 98 ifbieq12d y = N 1 if y < V y y + 1 = if N 1 < V N 1 N - 1 + 1
100 99 csbeq1d y = N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = if N 1 < V N 1 N - 1 + 1 / j T + f U 1 j × 1 U j + 1 N × 0
101 100 fveq1d y = N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = if N 1 < V N 1 N - 1 + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N
102 101 neeq1d y = N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N 0 if N 1 < V N 1 N - 1 + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N 0
103 11 102 bitr3id y = N 1 ¬ if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 if N 1 < V N 1 N - 1 + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N 0
104 103 rspcev N 1 0 N 1 if N 1 < V N 1 N - 1 + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N 0 y 0 N 1 ¬ if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
105 35 95 104 syl2anc φ ¬ N 1 < V y 0 N 1 ¬ if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
106 105 15 sylib φ ¬ N 1 < V ¬ y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
107 106 ex φ ¬ N 1 < V ¬ y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
108 30 107 syld φ V N ¬ y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
109 108 necon4ad φ y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 V = N
110 109 pm4.71rd φ y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 V = N y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
111 32 nn0zd φ N 1
112 uzid N 1 N 1 N 1
113 peano2uz N 1 N 1 N - 1 + 1 N 1
114 111 112 113 3syl φ N - 1 + 1 N 1
115 39 114 eqeltrrd φ N N 1
116 fzss2 N N 1 0 N 1 0 N
117 115 116 syl φ 0 N 1 0 N
118 117 sselda φ j 0 N 1 j 0 N
119 91 adantr φ j 0 N N 1 N
120 2 ffnd φ T Fn 1 N
121 120 adantr φ j 0 N T Fn 1 N
122 84 fconst U 1 j × 1 : U 1 j 1
123 c0ex 0 V
124 123 fconst U j + 1 N × 0 : U j + 1 N 0
125 122 124 pm3.2i U 1 j × 1 : U 1 j 1 U j + 1 N × 0 : U j + 1 N 0
126 dff1o3 U : 1 N 1-1 onto 1 N U : 1 N onto 1 N Fun U -1
127 126 simprbi U : 1 N 1-1 onto 1 N Fun U -1
128 imain Fun U -1 U 1 j j + 1 N = U 1 j U j + 1 N
129 3 127 128 3syl φ U 1 j j + 1 N = U 1 j U j + 1 N
130 elfzelz j 0 N j
131 130 zred j 0 N j
132 131 ltp1d j 0 N j < j + 1
133 fzdisj j < j + 1 1 j j + 1 N =
134 132 133 syl j 0 N 1 j j + 1 N =
135 134 imaeq2d j 0 N U 1 j j + 1 N = U
136 135 61 eqtrdi j 0 N U 1 j j + 1 N =
137 129 136 sylan9req φ j 0 N U 1 j U j + 1 N =
138 fun U 1 j × 1 : U 1 j 1 U j + 1 N × 0 : U j + 1 N 0 U 1 j U j + 1 N = U 1 j × 1 U j + 1 N × 0 : U 1 j U j + 1 N 1 0
139 125 137 138 sylancr φ j 0 N U 1 j × 1 U j + 1 N × 0 : U 1 j U j + 1 N 1 0
140 elfznn0 j 0 N j 0
141 140 76 syl j 0 N j + 1
142 nnuz = 1
143 141 142 eleqtrdi j 0 N j + 1 1
144 elfzuz3 j 0 N N j
145 fzsplit2 j + 1 1 N j 1 N = 1 j j + 1 N
146 143 144 145 syl2anc j 0 N 1 N = 1 j j + 1 N
147 146 imaeq2d j 0 N U 1 N = U 1 j j + 1 N
148 imaundi U 1 j j + 1 N = U 1 j U j + 1 N
149 147 148 eqtr2di j 0 N U 1 j U j + 1 N = U 1 N
150 149 52 sylan9eqr φ j 0 N U 1 j U j + 1 N = 1 N
151 150 feq2d φ j 0 N U 1 j × 1 U j + 1 N × 0 : U 1 j U j + 1 N 1 0 U 1 j × 1 U j + 1 N × 0 : 1 N 1 0
152 139 151 mpbid φ j 0 N U 1 j × 1 U j + 1 N × 0 : 1 N 1 0
153 152 ffnd φ j 0 N U 1 j × 1 U j + 1 N × 0 Fn 1 N
154 ovexd φ j 0 N 1 N V
155 eqidd φ j 0 N N 1 N T N = T N
156 eqidd φ j 0 N N 1 N U 1 j × 1 U j + 1 N × 0 N = U 1 j × 1 U j + 1 N × 0 N
157 121 153 154 154 88 155 156 ofval φ j 0 N N 1 N T + f U 1 j × 1 U j + 1 N × 0 N = T N + U 1 j × 1 U j + 1 N × 0 N
158 119 157 mpdan φ j 0 N T + f U 1 j × 1 U j + 1 N × 0 N = T N + U 1 j × 1 U j + 1 N × 0 N
159 158 eqeq1d φ j 0 N T + f U 1 j × 1 U j + 1 N × 0 N = 0 T N + U 1 j × 1 U j + 1 N × 0 N = 0
160 2 91 ffvelrnd φ T N 0 ..^ K
161 elfzonn0 T N 0 ..^ K T N 0
162 160 161 syl φ T N 0
163 162 nn0red φ T N
164 163 adantr φ j 0 N T N
165 162 nn0ge0d φ 0 T N
166 165 adantr φ j 0 N 0 T N
167 1re 1
168 snssi 1 1
169 167 168 ax-mp 1
170 0re 0
171 snssi 0 0
172 170 171 ax-mp 0
173 169 172 unssi 1 0
174 152 119 ffvelrnd φ j 0 N U 1 j × 1 U j + 1 N × 0 N 1 0
175 173 174 sselid φ j 0 N U 1 j × 1 U j + 1 N × 0 N
176 elun U 1 j × 1 U j + 1 N × 0 N 1 0 U 1 j × 1 U j + 1 N × 0 N 1 U 1 j × 1 U j + 1 N × 0 N 0
177 0le1 0 1
178 elsni U 1 j × 1 U j + 1 N × 0 N 1 U 1 j × 1 U j + 1 N × 0 N = 1
179 177 178 breqtrrid U 1 j × 1 U j + 1 N × 0 N 1 0 U 1 j × 1 U j + 1 N × 0 N
180 0le0 0 0
181 elsni U 1 j × 1 U j + 1 N × 0 N 0 U 1 j × 1 U j + 1 N × 0 N = 0
182 180 181 breqtrrid U 1 j × 1 U j + 1 N × 0 N 0 0 U 1 j × 1 U j + 1 N × 0 N
183 179 182 jaoi U 1 j × 1 U j + 1 N × 0 N 1 U 1 j × 1 U j + 1 N × 0 N 0 0 U 1 j × 1 U j + 1 N × 0 N
184 176 183 sylbi U 1 j × 1 U j + 1 N × 0 N 1 0 0 U 1 j × 1 U j + 1 N × 0 N
185 174 184 syl φ j 0 N 0 U 1 j × 1 U j + 1 N × 0 N
186 add20 T N 0 T N U 1 j × 1 U j + 1 N × 0 N 0 U 1 j × 1 U j + 1 N × 0 N T N + U 1 j × 1 U j + 1 N × 0 N = 0 T N = 0 U 1 j × 1 U j + 1 N × 0 N = 0
187 164 166 175 185 186 syl22anc φ j 0 N T N + U 1 j × 1 U j + 1 N × 0 N = 0 T N = 0 U 1 j × 1 U j + 1 N × 0 N = 0
188 159 187 bitrd φ j 0 N T + f U 1 j × 1 U j + 1 N × 0 N = 0 T N = 0 U 1 j × 1 U j + 1 N × 0 N = 0
189 118 188 syldan φ j 0 N 1 T + f U 1 j × 1 U j + 1 N × 0 N = 0 T N = 0 U 1 j × 1 U j + 1 N × 0 N = 0
190 189 ralbidva φ j 0 N 1 T + f U 1 j × 1 U j + 1 N × 0 N = 0 j 0 N 1 T N = 0 U 1 j × 1 U j + 1 N × 0 N = 0
191 190 adantr φ V = N j 0 N 1 T + f U 1 j × 1 U j + 1 N × 0 N = 0 j 0 N 1 T N = 0 U 1 j × 1 U j + 1 N × 0 N = 0
192 breq2 V = N y < V y < N
193 192 ifbid V = N if y < V y y + 1 = if y < N y y + 1
194 elfzelz y 0 N 1 y
195 194 zred y 0 N 1 y
196 195 adantl φ y 0 N 1 y
197 32 nn0red φ N 1
198 197 adantr φ y 0 N 1 N 1
199 25 adantr φ y 0 N 1 N
200 elfzle2 y 0 N 1 y N 1
201 200 adantl φ y 0 N 1 y N 1
202 25 ltm1d φ N 1 < N
203 202 adantr φ y 0 N 1 N 1 < N
204 196 198 199 201 203 lelttrd φ y 0 N 1 y < N
205 204 iftrued φ y 0 N 1 if y < N y y + 1 = y
206 193 205 sylan9eqr φ y 0 N 1 V = N if y < V y y + 1 = y
207 206 an32s φ V = N y 0 N 1 if y < V y y + 1 = y
208 207 csbeq1d φ V = N y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = y / j T + f U 1 j × 1 U j + 1 N × 0
209 208 fveq1d φ V = N y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = y / j T + f U 1 j × 1 U j + 1 N × 0 N
210 209 eqeq1d φ V = N y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 y / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
211 210 ralbidva φ V = N y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 y 0 N 1 y / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
212 nfv y T + f U 1 j × 1 U j + 1 N × 0 N = 0
213 nfcsb1v _ j y / j T + f U 1 j × 1 U j + 1 N × 0
214 nfcv _ j N
215 213 214 nffv _ j y / j T + f U 1 j × 1 U j + 1 N × 0 N
216 215 nfeq1 j y / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
217 csbeq1a j = y T + f U 1 j × 1 U j + 1 N × 0 = y / j T + f U 1 j × 1 U j + 1 N × 0
218 217 fveq1d j = y T + f U 1 j × 1 U j + 1 N × 0 N = y / j T + f U 1 j × 1 U j + 1 N × 0 N
219 218 eqeq1d j = y T + f U 1 j × 1 U j + 1 N × 0 N = 0 y / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
220 212 216 219 cbvralw j 0 N 1 T + f U 1 j × 1 U j + 1 N × 0 N = 0 y 0 N 1 y / j T + f U 1 j × 1 U j + 1 N × 0 N = 0
221 211 220 bitr4di φ V = N y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 j 0 N 1 T + f U 1 j × 1 U j + 1 N × 0 N = 0
222 ne0i N 1 0 N 1 0 N 1
223 r19.3rzv 0 N 1 T N = 0 j 0 N 1 T N = 0
224 34 222 223 3syl φ T N = 0 j 0 N 1 T N = 0
225 elfzelz j 0 N 1 j
226 225 zred j 0 N 1 j
227 226 ltp1d j 0 N 1 j < j + 1
228 227 133 syl j 0 N 1 1 j j + 1 N =
229 228 imaeq2d j 0 N 1 U 1 j j + 1 N = U
230 229 61 eqtrdi j 0 N 1 U 1 j j + 1 N =
231 129 230 sylan9req φ j 0 N 1 U 1 j U j + 1 N =
232 231 adantlr φ U N = N j 0 N 1 U 1 j U j + 1 N =
233 simplr φ U N = N j 0 N 1 U N = N
234 f1ofn U : 1 N 1-1 onto 1 N U Fn 1 N
235 3 234 syl φ U Fn 1 N
236 235 adantr φ j 0 N 1 U Fn 1 N
237 elfznn0 j 0 N 1 j 0
238 237 76 syl j 0 N 1 j + 1
239 238 142 eleqtrdi j 0 N 1 j + 1 1
240 fzss1 j + 1 1 j + 1 N 1 N
241 239 240 syl j 0 N 1 j + 1 N 1 N
242 241 adantl φ j 0 N 1 j + 1 N 1 N
243 39 adantr φ j 0 N 1 N - 1 + 1 = N
244 elfzuz3 j 0 N 1 N 1 j
245 eluzp1p1 N 1 j N - 1 + 1 j + 1
246 244 245 syl j 0 N 1 N - 1 + 1 j + 1
247 246 adantl φ j 0 N 1 N - 1 + 1 j + 1
248 243 247 eqeltrrd φ j 0 N 1 N j + 1
249 eluzfz2 N j + 1 N j + 1 N
250 248 249 syl φ j 0 N 1 N j + 1 N
251 fnfvima U Fn 1 N j + 1 N 1 N N j + 1 N U N U j + 1 N
252 236 242 250 251 syl3anc φ j 0 N 1 U N U j + 1 N
253 252 adantlr φ U N = N j 0 N 1 U N U j + 1 N
254 233 253 eqeltrrd φ U N = N j 0 N 1 N U j + 1 N
255 fnconstg 1 V U 1 j × 1 Fn U 1 j
256 84 255 ax-mp U 1 j × 1 Fn U 1 j
257 fnconstg 0 V U j + 1 N × 0 Fn U j + 1 N
258 123 257 ax-mp U j + 1 N × 0 Fn U j + 1 N
259 fvun2 U 1 j × 1 Fn U 1 j U j + 1 N × 0 Fn U j + 1 N U 1 j U j + 1 N = N U j + 1 N U 1 j × 1 U j + 1 N × 0 N = U j + 1 N × 0 N
260 256 258 259 mp3an12 U 1 j U j + 1 N = N U j + 1 N U 1 j × 1 U j + 1 N × 0 N = U j + 1 N × 0 N
261 232 254 260 syl2anc φ U N = N j 0 N 1 U 1 j × 1 U j + 1 N × 0 N = U j + 1 N × 0 N
262 123 fvconst2 N U j + 1 N U j + 1 N × 0 N = 0
263 254 262 syl φ U N = N j 0 N 1 U j + 1 N × 0 N = 0
264 261 263 eqtrd φ U N = N j 0 N 1 U 1 j × 1 U j + 1 N × 0 N = 0
265 264 ralrimiva φ U N = N j 0 N 1 U 1 j × 1 U j + 1 N × 0 N = 0
266 265 ex φ U N = N j 0 N 1 U 1 j × 1 U j + 1 N × 0 N = 0
267 34 adantr φ U N N N 1 0 N 1
268 ax-1ne0 1 0
269 imain Fun U -1 U 1 N 1 N - 1 + 1 N = U 1 N 1 U N - 1 + 1 N
270 3 127 269 3syl φ U 1 N 1 N - 1 + 1 N = U 1 N 1 U N - 1 + 1 N
271 202 39 breqtrrd φ N 1 < N - 1 + 1
272 fzdisj N 1 < N - 1 + 1 1 N 1 N - 1 + 1 N =
273 271 272 syl φ 1 N 1 N - 1 + 1 N =
274 273 imaeq2d φ U 1 N 1 N - 1 + 1 N = U
275 274 61 eqtrdi φ U 1 N 1 N - 1 + 1 N =
276 270 275 eqtr3d φ U 1 N 1 U N - 1 + 1 N =
277 276 adantr φ U N N U 1 N 1 U N - 1 + 1 N =
278 91 adantr φ U N N N 1 N
279 elimasni N U N N U N
280 fnbrfvb U Fn 1 N N 1 N U N = N N U N
281 235 91 280 syl2anc φ U N = N N U N
282 279 281 syl5ibr φ N U N U N = N
283 282 necon3ad φ U N N ¬ N U N
284 283 imp φ U N N ¬ N U N
285 278 284 eldifd φ U N N N 1 N U N
286 imadif Fun U -1 U 1 N N = U 1 N U N
287 3 127 286 3syl φ U 1 N N = U 1 N U N
288 difun2 1 N 1 N N = 1 N 1 N
289 elun j 1 N 1 N j 1 N 1 j N
290 velsn j N j = N
291 290 orbi2i j 1 N 1 j N j 1 N 1 j = N
292 289 291 bitri j 1 N 1 N j 1 N 1 j = N
293 1 142 eleqtrdi φ N 1
294 fzm1 N 1 j 1 N j 1 N 1 j = N
295 293 294 syl φ j 1 N j 1 N 1 j = N
296 292 295 bitr4id φ j 1 N 1 N j 1 N
297 296 eqrdv φ 1 N 1 N = 1 N
298 297 difeq1d φ 1 N 1 N N = 1 N N
299 197 25 ltnled φ N 1 < N ¬ N N 1
300 202 299 mpbid φ ¬ N N 1
301 elfzle2 N 1 N 1 N N 1
302 300 301 nsyl φ ¬ N 1 N 1
303 difsn ¬ N 1 N 1 1 N 1 N = 1 N 1
304 302 303 syl φ 1 N 1 N = 1 N 1
305 288 298 304 3eqtr3a φ 1 N N = 1 N 1
306 305 imaeq2d φ U 1 N N = U 1 N 1
307 52 difeq1d φ U 1 N U N = 1 N U N
308 287 306 307 3eqtr3rd φ 1 N U N = U 1 N 1
309 308 adantr φ U N N 1 N U N = U 1 N 1
310 285 309 eleqtrd φ U N N N U 1 N 1
311 fnconstg 1 V U 1 N 1 × 1 Fn U 1 N 1
312 84 311 ax-mp U 1 N 1 × 1 Fn U 1 N 1
313 fnconstg 0 V U N - 1 + 1 N × 0 Fn U N - 1 + 1 N
314 123 313 ax-mp U N - 1 + 1 N × 0 Fn U N - 1 + 1 N
315 fvun1 U 1 N 1 × 1 Fn U 1 N 1 U N - 1 + 1 N × 0 Fn U N - 1 + 1 N U 1 N 1 U N - 1 + 1 N = N U 1 N 1 U 1 N 1 × 1 U N - 1 + 1 N × 0 N = U 1 N 1 × 1 N
316 312 314 315 mp3an12 U 1 N 1 U N - 1 + 1 N = N U 1 N 1 U 1 N 1 × 1 U N - 1 + 1 N × 0 N = U 1 N 1 × 1 N
317 277 310 316 syl2anc φ U N N U 1 N 1 × 1 U N - 1 + 1 N × 0 N = U 1 N 1 × 1 N
318 84 fvconst2 N U 1 N 1 U 1 N 1 × 1 N = 1
319 310 318 syl φ U N N U 1 N 1 × 1 N = 1
320 317 319 eqtrd φ U N N U 1 N 1 × 1 U N - 1 + 1 N × 0 N = 1
321 320 neeq1d φ U N N U 1 N 1 × 1 U N - 1 + 1 N × 0 N 0 1 0
322 268 321 mpbiri φ U N N U 1 N 1 × 1 U N - 1 + 1 N × 0 N 0
323 df-ne U 1 j × 1 U j + 1 N × 0 N 0 ¬ U 1 j × 1 U j + 1 N × 0 N = 0
324 oveq2 j = N 1 1 j = 1 N 1
325 324 imaeq2d j = N 1 U 1 j = U 1 N 1
326 325 xpeq1d j = N 1 U 1 j × 1 = U 1 N 1 × 1
327 oveq1 j = N 1 j + 1 = N - 1 + 1
328 327 oveq1d j = N 1 j + 1 N = N - 1 + 1 N
329 328 imaeq2d j = N 1 U j + 1 N = U N - 1 + 1 N
330 329 xpeq1d j = N 1 U j + 1 N × 0 = U N - 1 + 1 N × 0
331 326 330 uneq12d j = N 1 U 1 j × 1 U j + 1 N × 0 = U 1 N 1 × 1 U N - 1 + 1 N × 0
332 331 fveq1d j = N 1 U 1 j × 1 U j + 1 N × 0 N = U 1 N 1 × 1 U N - 1 + 1 N × 0 N
333 332 neeq1d j = N 1 U 1 j × 1 U j + 1 N × 0 N 0 U 1 N 1 × 1 U N - 1 + 1 N × 0 N 0
334 323 333 bitr3id j = N 1 ¬ U 1 j × 1 U j + 1 N × 0 N = 0 U 1 N 1 × 1 U N - 1 + 1 N × 0 N 0
335 334 rspcev N 1 0 N 1 U 1 N 1 × 1 U N - 1 + 1 N × 0 N 0 j 0 N 1 ¬ U 1 j × 1 U j + 1 N × 0 N = 0
336 267 322 335 syl2anc φ U N N j 0 N 1 ¬ U 1 j × 1 U j + 1 N × 0 N = 0
337 336 ex φ U N N j 0 N 1 ¬ U 1 j × 1 U j + 1 N × 0 N = 0
338 rexnal j 0 N 1 ¬ U 1 j × 1 U j + 1 N × 0 N = 0 ¬ j 0 N 1 U 1 j × 1 U j + 1 N × 0 N = 0
339 337 338 syl6ib φ U N N ¬ j 0 N 1 U 1 j × 1 U j + 1 N × 0 N = 0
340 339 necon4ad φ j 0 N 1 U 1 j × 1 U j + 1 N × 0 N = 0 U N = N
341 266 340 impbid φ U N = N j 0 N 1 U 1 j × 1 U j + 1 N × 0 N = 0
342 224 341 anbi12d φ T N = 0 U N = N j 0 N 1 T N = 0 j 0 N 1 U 1 j × 1 U j + 1 N × 0 N = 0
343 r19.26 j 0 N 1 T N = 0 U 1 j × 1 U j + 1 N × 0 N = 0 j 0 N 1 T N = 0 j 0 N 1 U 1 j × 1 U j + 1 N × 0 N = 0
344 342 343 bitr4di φ T N = 0 U N = N j 0 N 1 T N = 0 U 1 j × 1 U j + 1 N × 0 N = 0
345 344 adantr φ V = N T N = 0 U N = N j 0 N 1 T N = 0 U 1 j × 1 U j + 1 N × 0 N = 0
346 191 221 345 3bitr4d φ V = N y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 T N = 0 U N = N
347 346 pm5.32da φ V = N y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 V = N T N = 0 U N = N
348 110 347 bitrd φ y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 V = N T N = 0 U N = N
349 348 notbid φ ¬ y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 N = 0 ¬ V = N T N = 0 U N = N
350 16 349 syl5bb φ p ran y 0 N 1 if y < V y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 p N 0 ¬ V = N T N = 0 U N = N