| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
poimirlem23.1 |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
| 3 |
|
poimirlem23.2 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 4 |
|
poimirlem23.3 |
⊢ ( 𝜑 → 𝑉 ∈ ( 0 ... 𝑁 ) ) |
| 5 |
|
ovex |
⊢ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
| 6 |
5
|
csbex |
⊢ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
| 7 |
6
|
rgenw |
⊢ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V |
| 8 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 9 |
|
fveq1 |
⊢ ( 𝑝 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝑝 ‘ 𝑁 ) = ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ) |
| 10 |
9
|
neeq1d |
⊢ ( 𝑝 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ≠ 0 ) ) |
| 11 |
|
df-ne |
⊢ ( ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ≠ 0 ↔ ¬ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) |
| 12 |
10 11
|
bitrdi |
⊢ ( 𝑝 = ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ¬ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) ) |
| 13 |
8 12
|
rexrnmptw |
⊢ ( ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V → ( ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ¬ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) ) |
| 14 |
7 13
|
ax-mp |
⊢ ( ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ¬ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) |
| 15 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ¬ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ¬ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) |
| 16 |
14 15
|
bitri |
⊢ ( ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ¬ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) |
| 17 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 18 |
|
elfzelz |
⊢ ( 𝑉 ∈ ( 0 ... 𝑁 ) → 𝑉 ∈ ℤ ) |
| 19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ℤ ) |
| 20 |
|
zlem1lt |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑉 ∈ ℤ ) → ( 𝑁 ≤ 𝑉 ↔ ( 𝑁 − 1 ) < 𝑉 ) ) |
| 21 |
17 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ≤ 𝑉 ↔ ( 𝑁 − 1 ) < 𝑉 ) ) |
| 22 |
|
elfzle2 |
⊢ ( 𝑉 ∈ ( 0 ... 𝑁 ) → 𝑉 ≤ 𝑁 ) |
| 23 |
4 22
|
syl |
⊢ ( 𝜑 → 𝑉 ≤ 𝑁 ) |
| 24 |
19
|
zred |
⊢ ( 𝜑 → 𝑉 ∈ ℝ ) |
| 25 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 26 |
24 25
|
letri3d |
⊢ ( 𝜑 → ( 𝑉 = 𝑁 ↔ ( 𝑉 ≤ 𝑁 ∧ 𝑁 ≤ 𝑉 ) ) ) |
| 27 |
26
|
biimprd |
⊢ ( 𝜑 → ( ( 𝑉 ≤ 𝑁 ∧ 𝑁 ≤ 𝑉 ) → 𝑉 = 𝑁 ) ) |
| 28 |
23 27
|
mpand |
⊢ ( 𝜑 → ( 𝑁 ≤ 𝑉 → 𝑉 = 𝑁 ) ) |
| 29 |
21 28
|
sylbird |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) < 𝑉 → 𝑉 = 𝑁 ) ) |
| 30 |
29
|
necon3ad |
⊢ ( 𝜑 → ( 𝑉 ≠ 𝑁 → ¬ ( 𝑁 − 1 ) < 𝑉 ) ) |
| 31 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 32 |
1 31
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 33 |
|
nn0fz0 |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 ↔ ( 𝑁 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 34 |
32 33
|
sylib |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → ( 𝑁 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 36 |
|
iffalse |
⊢ ( ¬ ( 𝑁 − 1 ) < 𝑉 → if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 𝑁 − 1 ) + 1 ) ) |
| 37 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 38 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 40 |
36 39
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) = 𝑁 ) |
| 41 |
40
|
csbeq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → ⦋ if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ 𝑁 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 42 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 1 ... 𝑗 ) = ( 1 ... 𝑁 ) ) |
| 43 |
42
|
imaeq2d |
⊢ ( 𝑗 = 𝑁 → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... 𝑁 ) ) ) |
| 44 |
43
|
xpeq1d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) × { 1 } ) ) |
| 45 |
|
oveq1 |
⊢ ( 𝑗 = 𝑁 → ( 𝑗 + 1 ) = ( 𝑁 + 1 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑁 + 1 ) ... 𝑁 ) ) |
| 47 |
46
|
imaeq2d |
⊢ ( 𝑗 = 𝑁 → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( 𝑁 + 1 ) ... 𝑁 ) ) ) |
| 48 |
47
|
xpeq1d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( 𝑁 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 49 |
44 48
|
uneq12d |
⊢ ( 𝑗 = 𝑁 → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑁 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑁 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 50 |
|
f1ofo |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
| 51 |
|
foima |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 52 |
3 50 51
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 53 |
52
|
xpeq1d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑁 ) ) × { 1 } ) = ( ( 1 ... 𝑁 ) × { 1 } ) ) |
| 54 |
25
|
ltp1d |
⊢ ( 𝜑 → 𝑁 < ( 𝑁 + 1 ) ) |
| 55 |
17
|
peano2zd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 56 |
|
fzn |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) ) |
| 57 |
55 17 56
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 < ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) ) |
| 58 |
54 57
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) |
| 59 |
58
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 𝑁 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ∅ ) ) |
| 60 |
59
|
xpeq1d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( ( 𝑁 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ∅ ) × { 0 } ) ) |
| 61 |
|
ima0 |
⊢ ( 𝑈 “ ∅ ) = ∅ |
| 62 |
61
|
xpeq1i |
⊢ ( ( 𝑈 “ ∅ ) × { 0 } ) = ( ∅ × { 0 } ) |
| 63 |
|
0xp |
⊢ ( ∅ × { 0 } ) = ∅ |
| 64 |
62 63
|
eqtri |
⊢ ( ( 𝑈 “ ∅ ) × { 0 } ) = ∅ |
| 65 |
60 64
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑈 “ ( ( 𝑁 + 1 ) ... 𝑁 ) ) × { 0 } ) = ∅ ) |
| 66 |
53 65
|
uneq12d |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... 𝑁 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑁 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 1 ... 𝑁 ) × { 1 } ) ∪ ∅ ) ) |
| 67 |
|
un0 |
⊢ ( ( ( 1 ... 𝑁 ) × { 1 } ) ∪ ∅ ) = ( ( 1 ... 𝑁 ) × { 1 } ) |
| 68 |
66 67
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... 𝑁 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑁 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( 1 ... 𝑁 ) × { 1 } ) ) |
| 69 |
49 68
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝑁 ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( 1 ... 𝑁 ) × { 1 } ) ) |
| 70 |
69
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝑁 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ) |
| 71 |
1 70
|
csbied |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → ⦋ 𝑁 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ) |
| 73 |
41 72
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → ⦋ if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ) |
| 74 |
73
|
fveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → ( ⦋ if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = ( ( 𝑇 ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ‘ 𝑁 ) ) |
| 75 |
|
elfzonn0 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝐾 ) → 𝑗 ∈ ℕ0 ) |
| 76 |
|
nn0p1nn |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) |
| 77 |
75 76
|
syl |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝐾 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 78 |
|
elsni |
⊢ ( 𝑦 ∈ { 1 } → 𝑦 = 1 ) |
| 79 |
78
|
oveq2d |
⊢ ( 𝑦 ∈ { 1 } → ( 𝑗 + 𝑦 ) = ( 𝑗 + 1 ) ) |
| 80 |
79
|
eleq1d |
⊢ ( 𝑦 ∈ { 1 } → ( ( 𝑗 + 𝑦 ) ∈ ℕ ↔ ( 𝑗 + 1 ) ∈ ℕ ) ) |
| 81 |
77 80
|
syl5ibrcom |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝐾 ) → ( 𝑦 ∈ { 1 } → ( 𝑗 + 𝑦 ) ∈ ℕ ) ) |
| 82 |
81
|
imp |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝐾 ) ∧ 𝑦 ∈ { 1 } ) → ( 𝑗 + 𝑦 ) ∈ ℕ ) |
| 83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ..^ 𝐾 ) ∧ 𝑦 ∈ { 1 } ) ) → ( 𝑗 + 𝑦 ) ∈ ℕ ) |
| 84 |
|
1ex |
⊢ 1 ∈ V |
| 85 |
84
|
fconst |
⊢ ( ( 1 ... 𝑁 ) × { 1 } ) : ( 1 ... 𝑁 ) ⟶ { 1 } |
| 86 |
85
|
a1i |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) × { 1 } ) : ( 1 ... 𝑁 ) ⟶ { 1 } ) |
| 87 |
|
ovexd |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ V ) |
| 88 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
| 89 |
83 2 86 87 87 88
|
off |
⊢ ( 𝜑 → ( 𝑇 ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) : ( 1 ... 𝑁 ) ⟶ ℕ ) |
| 90 |
|
elfz1end |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 91 |
1 90
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 92 |
89 91
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑇 ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ‘ 𝑁 ) ∈ ℕ ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → ( ( 𝑇 ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ‘ 𝑁 ) ∈ ℕ ) |
| 94 |
74 93
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → ( ⦋ if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ∈ ℕ ) |
| 95 |
94
|
nnne0d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → ( ⦋ if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ≠ 0 ) |
| 96 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑁 − 1 ) → ( 𝑦 < 𝑉 ↔ ( 𝑁 − 1 ) < 𝑉 ) ) |
| 97 |
|
id |
⊢ ( 𝑦 = ( 𝑁 − 1 ) → 𝑦 = ( 𝑁 − 1 ) ) |
| 98 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑁 − 1 ) → ( 𝑦 + 1 ) = ( ( 𝑁 − 1 ) + 1 ) ) |
| 99 |
96 97 98
|
ifbieq12d |
⊢ ( 𝑦 = ( 𝑁 − 1 ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 100 |
99
|
csbeq1d |
⊢ ( 𝑦 = ( 𝑁 − 1 ) → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 101 |
100
|
fveq1d |
⊢ ( 𝑦 = ( 𝑁 − 1 ) → ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = ( ⦋ if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ) |
| 102 |
101
|
neeq1d |
⊢ ( 𝑦 = ( 𝑁 − 1 ) → ( ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ≠ 0 ↔ ( ⦋ if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ≠ 0 ) ) |
| 103 |
11 102
|
bitr3id |
⊢ ( 𝑦 = ( 𝑁 − 1 ) → ( ¬ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ( ⦋ if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ≠ 0 ) ) |
| 104 |
103
|
rspcev |
⊢ ( ( ( 𝑁 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ ( ⦋ if ( ( 𝑁 − 1 ) < 𝑉 , ( 𝑁 − 1 ) , ( ( 𝑁 − 1 ) + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ≠ 0 ) → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ¬ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) |
| 105 |
35 95 104
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ¬ ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) |
| 106 |
105 15
|
sylib |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 − 1 ) < 𝑉 ) → ¬ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) |
| 107 |
106
|
ex |
⊢ ( 𝜑 → ( ¬ ( 𝑁 − 1 ) < 𝑉 → ¬ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) ) |
| 108 |
30 107
|
syld |
⊢ ( 𝜑 → ( 𝑉 ≠ 𝑁 → ¬ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) ) |
| 109 |
108
|
necon4ad |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 → 𝑉 = 𝑁 ) ) |
| 110 |
109
|
pm4.71rd |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ( 𝑉 = 𝑁 ∧ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) ) ) |
| 111 |
32
|
nn0zd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
| 112 |
|
uzid |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 113 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 114 |
111 112 113
|
3syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 115 |
39 114
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 116 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
| 117 |
115 116
|
syl |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
| 118 |
117
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 119 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 120 |
2
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ( 1 ... 𝑁 ) ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
| 122 |
84
|
fconst |
⊢ ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } |
| 123 |
|
c0ex |
⊢ 0 ∈ V |
| 124 |
123
|
fconst |
⊢ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } |
| 125 |
122 124
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) |
| 126 |
|
dff1o3 |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ 𝑈 ) ) |
| 127 |
126
|
simprbi |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ 𝑈 ) |
| 128 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
| 129 |
3 127 128
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
| 130 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℤ ) |
| 131 |
130
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℝ ) |
| 132 |
131
|
ltp1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 < ( 𝑗 + 1 ) ) |
| 133 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 134 |
132 133
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 135 |
134
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
| 136 |
135 61
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 137 |
129 136
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 138 |
|
fun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) : ( 𝑈 “ ( 1 ... 𝑗 ) ) ⟶ { 1 } ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) ∧ ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
| 139 |
125 137 138
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
| 140 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℕ0 ) |
| 141 |
140 76
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 142 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 143 |
141 142
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 144 |
|
elfzuz3 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 145 |
|
fzsplit2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 146 |
143 144 145
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 147 |
146
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) |
| 148 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 149 |
147 148
|
eqtr2di |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ( 1 ... 𝑁 ) ) ) |
| 150 |
149 52
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
| 151 |
150
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) ) |
| 152 |
139 151
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) |
| 153 |
152
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
| 154 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ V ) |
| 155 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑁 ) = ( 𝑇 ‘ 𝑁 ) ) |
| 156 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) |
| 157 |
121 153 154 154 88 155 156
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝑁 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) ) |
| 158 |
119 157
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝑁 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) ) |
| 159 |
158
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ( ( 𝑇 ‘ 𝑁 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) = 0 ) ) |
| 160 |
2 91
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝑁 ) ∈ ( 0 ..^ 𝐾 ) ) |
| 161 |
|
elfzonn0 |
⊢ ( ( 𝑇 ‘ 𝑁 ) ∈ ( 0 ..^ 𝐾 ) → ( 𝑇 ‘ 𝑁 ) ∈ ℕ0 ) |
| 162 |
160 161
|
syl |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝑁 ) ∈ ℕ0 ) |
| 163 |
162
|
nn0red |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝑁 ) ∈ ℝ ) |
| 164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑁 ) ∈ ℝ ) |
| 165 |
162
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑇 ‘ 𝑁 ) ) |
| 166 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 0 ≤ ( 𝑇 ‘ 𝑁 ) ) |
| 167 |
|
1re |
⊢ 1 ∈ ℝ |
| 168 |
|
snssi |
⊢ ( 1 ∈ ℝ → { 1 } ⊆ ℝ ) |
| 169 |
167 168
|
ax-mp |
⊢ { 1 } ⊆ ℝ |
| 170 |
|
0re |
⊢ 0 ∈ ℝ |
| 171 |
|
snssi |
⊢ ( 0 ∈ ℝ → { 0 } ⊆ ℝ ) |
| 172 |
170 171
|
ax-mp |
⊢ { 0 } ⊆ ℝ |
| 173 |
169 172
|
unssi |
⊢ ( { 1 } ∪ { 0 } ) ⊆ ℝ |
| 174 |
152 119
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ ( { 1 } ∪ { 0 } ) ) |
| 175 |
173 174
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ ℝ ) |
| 176 |
|
elun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ ( { 1 } ∪ { 0 } ) ↔ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ { 1 } ∨ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ { 0 } ) ) |
| 177 |
|
0le1 |
⊢ 0 ≤ 1 |
| 178 |
|
elsni |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ { 1 } → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 1 ) |
| 179 |
177 178
|
breqtrrid |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ { 1 } → 0 ≤ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) |
| 180 |
|
0le0 |
⊢ 0 ≤ 0 |
| 181 |
|
elsni |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ { 0 } → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) |
| 182 |
180 181
|
breqtrrid |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ { 0 } → 0 ≤ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) |
| 183 |
179 182
|
jaoi |
⊢ ( ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ { 1 } ∨ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ { 0 } ) → 0 ≤ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) |
| 184 |
176 183
|
sylbi |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ ( { 1 } ∪ { 0 } ) → 0 ≤ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) |
| 185 |
174 184
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 0 ≤ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) |
| 186 |
|
add20 |
⊢ ( ( ( ( 𝑇 ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝑇 ‘ 𝑁 ) ) ∧ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) ) → ( ( ( 𝑇 ‘ 𝑁 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) ) |
| 187 |
164 166 175 185 186
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑇 ‘ 𝑁 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) ) |
| 188 |
159 187
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) ) |
| 189 |
118 188
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) ) |
| 190 |
189
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) ) |
| 191 |
190
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝑁 ) → ( ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) ) |
| 192 |
|
breq2 |
⊢ ( 𝑉 = 𝑁 → ( 𝑦 < 𝑉 ↔ 𝑦 < 𝑁 ) ) |
| 193 |
192
|
ifbid |
⊢ ( 𝑉 = 𝑁 → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < 𝑁 , 𝑦 , ( 𝑦 + 1 ) ) ) |
| 194 |
|
elfzelz |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℤ ) |
| 195 |
194
|
zred |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℝ ) |
| 196 |
195
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ℝ ) |
| 197 |
32
|
nn0red |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ ) |
| 198 |
197
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 1 ) ∈ ℝ ) |
| 199 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℝ ) |
| 200 |
|
elfzle2 |
⊢ ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ≤ ( 𝑁 − 1 ) ) |
| 201 |
200
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ≤ ( 𝑁 − 1 ) ) |
| 202 |
25
|
ltm1d |
⊢ ( 𝜑 → ( 𝑁 − 1 ) < 𝑁 ) |
| 203 |
202
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 1 ) < 𝑁 ) |
| 204 |
196 198 199 201 203
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 < 𝑁 ) |
| 205 |
204
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < 𝑁 , 𝑦 , ( 𝑦 + 1 ) ) = 𝑦 ) |
| 206 |
193 205
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑉 = 𝑁 ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) = 𝑦 ) |
| 207 |
206
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑉 = 𝑁 ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) = 𝑦 ) |
| 208 |
207
|
csbeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑉 = 𝑁 ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 209 |
208
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑉 = 𝑁 ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ) |
| 210 |
209
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑉 = 𝑁 ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) ) |
| 211 |
210
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝑁 ) → ( ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) ) |
| 212 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 |
| 213 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 214 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑁 |
| 215 |
213 214
|
nffv |
⊢ Ⅎ 𝑗 ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) |
| 216 |
215
|
nfeq1 |
⊢ Ⅎ 𝑗 ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 |
| 217 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑦 → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 218 |
217
|
fveq1d |
⊢ ( 𝑗 = 𝑦 → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) ) |
| 219 |
218
|
eqeq1d |
⊢ ( 𝑗 = 𝑦 → ( ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) ) |
| 220 |
212 216 219
|
cbvralw |
⊢ ( ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ 𝑦 / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) |
| 221 |
211 220
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝑁 ) → ( ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) ) |
| 222 |
|
ne0i |
⊢ ( ( 𝑁 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ≠ ∅ ) |
| 223 |
|
r19.3rzv |
⊢ ( ( 0 ... ( 𝑁 − 1 ) ) ≠ ∅ → ( ( 𝑇 ‘ 𝑁 ) = 0 ↔ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑇 ‘ 𝑁 ) = 0 ) ) |
| 224 |
34 222 223
|
3syl |
⊢ ( 𝜑 → ( ( 𝑇 ‘ 𝑁 ) = 0 ↔ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑇 ‘ 𝑁 ) = 0 ) ) |
| 225 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℤ ) |
| 226 |
225
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℝ ) |
| 227 |
226
|
ltp1d |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 < ( 𝑗 + 1 ) ) |
| 228 |
227 133
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 229 |
228
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
| 230 |
229 61
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 231 |
129 230
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 232 |
231
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 233 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑈 ‘ 𝑁 ) = 𝑁 ) |
| 234 |
|
f1ofn |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 Fn ( 1 ... 𝑁 ) ) |
| 235 |
3 234
|
syl |
⊢ ( 𝜑 → 𝑈 Fn ( 1 ... 𝑁 ) ) |
| 236 |
235
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑈 Fn ( 1 ... 𝑁 ) ) |
| 237 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℕ0 ) |
| 238 |
237 76
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 239 |
238 142
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 240 |
|
fzss1 |
⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝑗 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
| 241 |
239 240
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑗 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
| 242 |
241
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
| 243 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 244 |
|
elfzuz3 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 245 |
|
eluzp1p1 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
| 246 |
244 245
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
| 247 |
246
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
| 248 |
243 247
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
| 249 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) → 𝑁 ∈ ( ( 𝑗 + 1 ) ... 𝑁 ) ) |
| 250 |
248 249
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ( 𝑗 + 1 ) ... 𝑁 ) ) |
| 251 |
|
fnfvima |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑁 ) ∧ ( ( 𝑗 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( ( 𝑗 + 1 ) ... 𝑁 ) ) → ( 𝑈 ‘ 𝑁 ) ∈ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 252 |
236 242 250 251
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑈 ‘ 𝑁 ) ∈ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 253 |
252
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑈 ‘ 𝑁 ) ∈ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 254 |
233 253
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 255 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑗 ) ) ) |
| 256 |
84 255
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑗 ) ) |
| 257 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 258 |
123 257
|
ax-mp |
⊢ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) |
| 259 |
|
fvun2 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑗 ) ) ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑁 ∈ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑁 ) ) |
| 260 |
256 258 259
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑁 ∈ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑁 ) ) |
| 261 |
232 254 260
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑁 ) ) |
| 262 |
123
|
fvconst2 |
⊢ ( 𝑁 ∈ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) → ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑁 ) = 0 ) |
| 263 |
254 262
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑁 ) = 0 ) |
| 264 |
261 263
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) |
| 265 |
264
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) → ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) |
| 266 |
265
|
ex |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑁 ) = 𝑁 → ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) |
| 267 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 268 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 269 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... ( 𝑁 − 1 ) ) ∩ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) ) |
| 270 |
3 127 269
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑁 − 1 ) ) ∩ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) ) |
| 271 |
202 39
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) < ( ( 𝑁 − 1 ) + 1 ) ) |
| 272 |
|
fzdisj |
⊢ ( ( 𝑁 − 1 ) < ( ( 𝑁 − 1 ) + 1 ) → ( ( 1 ... ( 𝑁 − 1 ) ) ∩ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
| 273 |
271 272
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∩ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
| 274 |
273
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑁 − 1 ) ) ∩ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
| 275 |
274 61
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑁 − 1 ) ) ∩ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 276 |
270 275
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 277 |
276
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 278 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 279 |
|
elimasni |
⊢ ( 𝑁 ∈ ( 𝑈 “ { 𝑁 } ) → 𝑁 𝑈 𝑁 ) |
| 280 |
|
fnbrfvb |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑈 ‘ 𝑁 ) = 𝑁 ↔ 𝑁 𝑈 𝑁 ) ) |
| 281 |
235 91 280
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑁 ) = 𝑁 ↔ 𝑁 𝑈 𝑁 ) ) |
| 282 |
279 281
|
imbitrrid |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑈 “ { 𝑁 } ) → ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) |
| 283 |
282
|
necon3ad |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 → ¬ 𝑁 ∈ ( 𝑈 “ { 𝑁 } ) ) ) |
| 284 |
283
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → ¬ 𝑁 ∈ ( 𝑈 “ { 𝑁 } ) ) |
| 285 |
278 284
|
eldifd |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → 𝑁 ∈ ( ( 1 ... 𝑁 ) ∖ ( 𝑈 “ { 𝑁 } ) ) ) |
| 286 |
|
imadif |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑁 } ) ) ) |
| 287 |
3 127 286
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑁 } ) ) ) |
| 288 |
|
difun2 |
⊢ ( ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) |
| 289 |
|
elun |
⊢ ( 𝑗 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑗 ∈ { 𝑁 } ) ) |
| 290 |
|
velsn |
⊢ ( 𝑗 ∈ { 𝑁 } ↔ 𝑗 = 𝑁 ) |
| 291 |
290
|
orbi2i |
⊢ ( ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑗 ∈ { 𝑁 } ) ↔ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑗 = 𝑁 ) ) |
| 292 |
289 291
|
bitri |
⊢ ( 𝑗 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑗 = 𝑁 ) ) |
| 293 |
1 142
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 294 |
|
fzm1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑗 = 𝑁 ) ) ) |
| 295 |
293 294
|
syl |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑗 = 𝑁 ) ) ) |
| 296 |
292 295
|
bitr4id |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) |
| 297 |
296
|
eqrdv |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) = ( 1 ... 𝑁 ) ) |
| 298 |
297
|
difeq1d |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) = ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ) |
| 299 |
197 25
|
ltnled |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) < 𝑁 ↔ ¬ 𝑁 ≤ ( 𝑁 − 1 ) ) ) |
| 300 |
202 299
|
mpbid |
⊢ ( 𝜑 → ¬ 𝑁 ≤ ( 𝑁 − 1 ) ) |
| 301 |
|
elfzle2 |
⊢ ( 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑁 ≤ ( 𝑁 − 1 ) ) |
| 302 |
300 301
|
nsyl |
⊢ ( 𝜑 → ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 303 |
|
difsn |
⊢ ( ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( ( 1 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 304 |
302 303
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 305 |
288 298 304
|
3eqtr3a |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 306 |
305
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ) = ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 307 |
52
|
difeq1d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑁 } ) ) = ( ( 1 ... 𝑁 ) ∖ ( 𝑈 “ { 𝑁 } ) ) ) |
| 308 |
287 306 307
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ ( 𝑈 “ { 𝑁 } ) ) = ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 309 |
308
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → ( ( 1 ... 𝑁 ) ∖ ( 𝑈 “ { 𝑁 } ) ) = ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 310 |
285 309
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → 𝑁 ∈ ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 311 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 312 |
84 311
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 313 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) |
| 314 |
123 313
|
ax-mp |
⊢ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) |
| 315 |
|
fvun1 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑁 ∈ ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ‘ 𝑁 ) ) |
| 316 |
312 314 315
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑁 ∈ ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ‘ 𝑁 ) ) |
| 317 |
277 310 316
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ‘ 𝑁 ) ) |
| 318 |
84
|
fvconst2 |
⊢ ( 𝑁 ∈ ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ‘ 𝑁 ) = 1 ) |
| 319 |
310 318
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ‘ 𝑁 ) = 1 ) |
| 320 |
317 319
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 1 ) |
| 321 |
320
|
neeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → ( ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ≠ 0 ↔ 1 ≠ 0 ) ) |
| 322 |
268 321
|
mpbiri |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ≠ 0 ) |
| 323 |
|
df-ne |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ≠ 0 ↔ ¬ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) |
| 324 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 325 |
324
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 326 |
325
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ) |
| 327 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( 𝑗 + 1 ) = ( ( 𝑁 − 1 ) + 1 ) ) |
| 328 |
327
|
oveq1d |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) |
| 329 |
328
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) |
| 330 |
329
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 331 |
326 330
|
uneq12d |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 332 |
331
|
fveq1d |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ) |
| 333 |
332
|
neeq1d |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ≠ 0 ↔ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ≠ 0 ) ) |
| 334 |
323 333
|
bitr3id |
⊢ ( 𝑗 = ( 𝑁 − 1 ) → ( ¬ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ↔ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ≠ 0 ) ) |
| 335 |
334
|
rspcev |
⊢ ( ( ( 𝑁 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑁 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) ≠ 0 ) → ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ¬ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) |
| 336 |
267 322 335
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 ) → ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ¬ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) |
| 337 |
336
|
ex |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 → ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ¬ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) |
| 338 |
|
rexnal |
⊢ ( ∃ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ¬ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ↔ ¬ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) |
| 339 |
337 338
|
imbitrdi |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑁 ) ≠ 𝑁 → ¬ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) |
| 340 |
339
|
necon4ad |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 → ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) |
| 341 |
266 340
|
impbid |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑁 ) = 𝑁 ↔ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) |
| 342 |
224 341
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ↔ ( ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑇 ‘ 𝑁 ) = 0 ∧ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) ) |
| 343 |
|
r19.26 |
⊢ ( ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ↔ ( ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑇 ‘ 𝑁 ) = 0 ∧ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) |
| 344 |
342 343
|
bitr4di |
⊢ ( 𝜑 → ( ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ↔ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) ) |
| 345 |
344
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝑁 ) → ( ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ↔ ∀ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑁 ) = 0 ) ) ) |
| 346 |
191 221 345
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝑁 ) → ( ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) |
| 347 |
346
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑉 = 𝑁 ∧ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ) ↔ ( 𝑉 = 𝑁 ∧ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) ) |
| 348 |
110 347
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ( 𝑉 = 𝑁 ∧ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) ) |
| 349 |
348
|
notbid |
⊢ ( 𝜑 → ( ¬ ∀ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑁 ) = 0 ↔ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) ) |
| 350 |
16 349
|
bitrid |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑉 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 ) ≠ 0 ↔ ¬ ( 𝑉 = 𝑁 ∧ ( ( 𝑇 ‘ 𝑁 ) = 0 ∧ ( 𝑈 ‘ 𝑁 ) = 𝑁 ) ) ) ) |