| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | poimirlem23.1 | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) | 
						
							| 3 |  | poimirlem23.2 | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 4 |  | poimirlem23.3 | ⊢ ( 𝜑  →  𝑉  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 5 |  | ovex | ⊢ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V | 
						
							| 6 | 5 | csbex | ⊢ ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V | 
						
							| 7 | 6 | rgenw | ⊢ ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V | 
						
							| 8 |  | eqid | ⊢ ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) )  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑝  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  ( 𝑝 ‘ 𝑁 )  =  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 ) ) | 
						
							| 10 | 9 | neeq1d | ⊢ ( 𝑝  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  ( ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 11 |  | df-ne | ⊢ ( ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  ≠  0  ↔  ¬  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 12 | 10 11 | bitrdi | ⊢ ( 𝑝  =  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  →  ( ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ¬  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 13 | 8 12 | rexrnmptw | ⊢ ( ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V  →  ( ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ¬  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 14 | 7 13 | ax-mp | ⊢ ( ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ¬  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 15 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ¬  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ¬  ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ¬  ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 17 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 18 |  | elfzelz | ⊢ ( 𝑉  ∈  ( 0 ... 𝑁 )  →  𝑉  ∈  ℤ ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝜑  →  𝑉  ∈  ℤ ) | 
						
							| 20 |  | zlem1lt | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑉  ∈  ℤ )  →  ( 𝑁  ≤  𝑉  ↔  ( 𝑁  −  1 )  <  𝑉 ) ) | 
						
							| 21 | 17 19 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  ≤  𝑉  ↔  ( 𝑁  −  1 )  <  𝑉 ) ) | 
						
							| 22 |  | elfzle2 | ⊢ ( 𝑉  ∈  ( 0 ... 𝑁 )  →  𝑉  ≤  𝑁 ) | 
						
							| 23 | 4 22 | syl | ⊢ ( 𝜑  →  𝑉  ≤  𝑁 ) | 
						
							| 24 | 19 | zred | ⊢ ( 𝜑  →  𝑉  ∈  ℝ ) | 
						
							| 25 | 1 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 26 | 24 25 | letri3d | ⊢ ( 𝜑  →  ( 𝑉  =  𝑁  ↔  ( 𝑉  ≤  𝑁  ∧  𝑁  ≤  𝑉 ) ) ) | 
						
							| 27 | 26 | biimprd | ⊢ ( 𝜑  →  ( ( 𝑉  ≤  𝑁  ∧  𝑁  ≤  𝑉 )  →  𝑉  =  𝑁 ) ) | 
						
							| 28 | 23 27 | mpand | ⊢ ( 𝜑  →  ( 𝑁  ≤  𝑉  →  𝑉  =  𝑁 ) ) | 
						
							| 29 | 21 28 | sylbird | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  <  𝑉  →  𝑉  =  𝑁 ) ) | 
						
							| 30 | 29 | necon3ad | ⊢ ( 𝜑  →  ( 𝑉  ≠  𝑁  →  ¬  ( 𝑁  −  1 )  <  𝑉 ) ) | 
						
							| 31 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 32 | 1 31 | syl | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 33 |  | nn0fz0 | ⊢ ( ( 𝑁  −  1 )  ∈  ℕ0  ↔  ( 𝑁  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 34 | 32 33 | sylib | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  ( 𝑁  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 36 |  | iffalse | ⊢ ( ¬  ( 𝑁  −  1 )  <  𝑉  →  if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 37 | 1 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 38 |  | npcan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 40 | 36 39 | sylan9eqr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  =  𝑁 ) | 
						
							| 41 | 40 | csbeq1d | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  ⦋ if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ 𝑁  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 42 |  | oveq2 | ⊢ ( 𝑗  =  𝑁  →  ( 1 ... 𝑗 )  =  ( 1 ... 𝑁 ) ) | 
						
							| 43 | 42 | imaeq2d | ⊢ ( 𝑗  =  𝑁  →  ( 𝑈  “  ( 1 ... 𝑗 ) )  =  ( 𝑈  “  ( 1 ... 𝑁 ) ) ) | 
						
							| 44 | 43 | xpeq1d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ×  { 1 } ) ) | 
						
							| 45 |  | oveq1 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑗  +  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑗  +  1 ) ... 𝑁 )  =  ( ( 𝑁  +  1 ) ... 𝑁 ) ) | 
						
							| 47 | 46 | imaeq2d | ⊢ ( 𝑗  =  𝑁  →  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( 𝑈  “  ( ( 𝑁  +  1 ) ... 𝑁 ) ) ) | 
						
							| 48 | 47 | xpeq1d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( 𝑈  “  ( ( 𝑁  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 49 | 44 48 | uneq12d | ⊢ ( 𝑗  =  𝑁  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑁  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 50 |  | f1ofo | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) | 
						
							| 51 |  | foima | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 )  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 52 | 3 50 51 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 53 | 52 | xpeq1d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ×  { 1 } )  =  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) | 
						
							| 54 | 25 | ltp1d | ⊢ ( 𝜑  →  𝑁  <  ( 𝑁  +  1 ) ) | 
						
							| 55 | 17 | peano2zd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℤ ) | 
						
							| 56 |  | fzn | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  <  ( 𝑁  +  1 )  ↔  ( ( 𝑁  +  1 ) ... 𝑁 )  =  ∅ ) ) | 
						
							| 57 | 55 17 56 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  <  ( 𝑁  +  1 )  ↔  ( ( 𝑁  +  1 ) ... 𝑁 )  =  ∅ ) ) | 
						
							| 58 | 54 57 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 ) ... 𝑁 )  =  ∅ ) | 
						
							| 59 | 58 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 𝑁  +  1 ) ... 𝑁 ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 60 | 59 | xpeq1d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( ( 𝑁  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( 𝑈  “  ∅ )  ×  { 0 } ) ) | 
						
							| 61 |  | ima0 | ⊢ ( 𝑈  “  ∅ )  =  ∅ | 
						
							| 62 | 61 | xpeq1i | ⊢ ( ( 𝑈  “  ∅ )  ×  { 0 } )  =  ( ∅  ×  { 0 } ) | 
						
							| 63 |  | 0xp | ⊢ ( ∅  ×  { 0 } )  =  ∅ | 
						
							| 64 | 62 63 | eqtri | ⊢ ( ( 𝑈  “  ∅ )  ×  { 0 } )  =  ∅ | 
						
							| 65 | 60 64 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( ( 𝑁  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ∅ ) | 
						
							| 66 | 53 65 | uneq12d | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑁  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( 1 ... 𝑁 )  ×  { 1 } )  ∪  ∅ ) ) | 
						
							| 67 |  | un0 | ⊢ ( ( ( 1 ... 𝑁 )  ×  { 1 } )  ∪  ∅ )  =  ( ( 1 ... 𝑁 )  ×  { 1 } ) | 
						
							| 68 | 66 67 | eqtrdi | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑁  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) | 
						
							| 69 | 49 68 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑗  =  𝑁 )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  =  𝑁 )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) ) | 
						
							| 71 | 1 70 | csbied | ⊢ ( 𝜑  →  ⦋ 𝑁  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  ⦋ 𝑁  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) ) | 
						
							| 73 | 41 72 | eqtrd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  ⦋ if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) ) | 
						
							| 74 | 73 | fveq1d | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  ( ⦋ if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  ( ( 𝑇  ∘f   +  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) ‘ 𝑁 ) ) | 
						
							| 75 |  | elfzonn0 | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝐾 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 76 |  | nn0p1nn | ⊢ ( 𝑗  ∈  ℕ0  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 77 | 75 76 | syl | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 78 |  | elsni | ⊢ ( 𝑦  ∈  { 1 }  →  𝑦  =  1 ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( 𝑦  ∈  { 1 }  →  ( 𝑗  +  𝑦 )  =  ( 𝑗  +  1 ) ) | 
						
							| 80 | 79 | eleq1d | ⊢ ( 𝑦  ∈  { 1 }  →  ( ( 𝑗  +  𝑦 )  ∈  ℕ  ↔  ( 𝑗  +  1 )  ∈  ℕ ) ) | 
						
							| 81 | 77 80 | syl5ibrcom | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑦  ∈  { 1 }  →  ( 𝑗  +  𝑦 )  ∈  ℕ ) ) | 
						
							| 82 | 81 | imp | ⊢ ( ( 𝑗  ∈  ( 0 ..^ 𝐾 )  ∧  𝑦  ∈  { 1 } )  →  ( 𝑗  +  𝑦 )  ∈  ℕ ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ( 0 ..^ 𝐾 )  ∧  𝑦  ∈  { 1 } ) )  →  ( 𝑗  +  𝑦 )  ∈  ℕ ) | 
						
							| 84 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 85 | 84 | fconst | ⊢ ( ( 1 ... 𝑁 )  ×  { 1 } ) : ( 1 ... 𝑁 ) ⟶ { 1 } | 
						
							| 86 | 85 | a1i | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ×  { 1 } ) : ( 1 ... 𝑁 ) ⟶ { 1 } ) | 
						
							| 87 |  | ovexd | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ∈  V ) | 
						
							| 88 |  | inidm | ⊢ ( ( 1 ... 𝑁 )  ∩  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) | 
						
							| 89 | 83 2 86 87 87 88 | off | ⊢ ( 𝜑  →  ( 𝑇  ∘f   +  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) : ( 1 ... 𝑁 ) ⟶ ℕ ) | 
						
							| 90 |  | elfz1end | ⊢ ( 𝑁  ∈  ℕ  ↔  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 91 | 1 90 | sylib | ⊢ ( 𝜑  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 92 | 89 91 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( 𝑇  ∘f   +  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  ( ( 𝑇  ∘f   +  ( ( 1 ... 𝑁 )  ×  { 1 } ) ) ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 94 | 74 93 | eqeltrd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  ( ⦋ if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 95 | 94 | nnne0d | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  ( ⦋ if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  ≠  0 ) | 
						
							| 96 |  | breq1 | ⊢ ( 𝑦  =  ( 𝑁  −  1 )  →  ( 𝑦  <  𝑉  ↔  ( 𝑁  −  1 )  <  𝑉 ) ) | 
						
							| 97 |  | id | ⊢ ( 𝑦  =  ( 𝑁  −  1 )  →  𝑦  =  ( 𝑁  −  1 ) ) | 
						
							| 98 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑁  −  1 )  →  ( 𝑦  +  1 )  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 99 | 96 97 98 | ifbieq12d | ⊢ ( 𝑦  =  ( 𝑁  −  1 )  →  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 100 | 99 | csbeq1d | ⊢ ( 𝑦  =  ( 𝑁  −  1 )  →  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 101 | 100 | fveq1d | ⊢ ( 𝑦  =  ( 𝑁  −  1 )  →  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  ( ⦋ if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 ) ) | 
						
							| 102 | 101 | neeq1d | ⊢ ( 𝑦  =  ( 𝑁  −  1 )  →  ( ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  ≠  0  ↔  ( ⦋ if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 103 | 11 102 | bitr3id | ⊢ ( 𝑦  =  ( 𝑁  −  1 )  →  ( ¬  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ( ⦋ if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 104 | 103 | rspcev | ⊢ ( ( ( 𝑁  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  ( ⦋ if ( ( 𝑁  −  1 )  <  𝑉 ,  ( 𝑁  −  1 ) ,  ( ( 𝑁  −  1 )  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  ≠  0 )  →  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ¬  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 105 | 35 95 104 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  ∃ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ¬  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 106 | 105 15 | sylib | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑁  −  1 )  <  𝑉 )  →  ¬  ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 107 | 106 | ex | ⊢ ( 𝜑  →  ( ¬  ( 𝑁  −  1 )  <  𝑉  →  ¬  ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 108 | 30 107 | syld | ⊢ ( 𝜑  →  ( 𝑉  ≠  𝑁  →  ¬  ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 109 | 108 | necon4ad | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  →  𝑉  =  𝑁 ) ) | 
						
							| 110 | 109 | pm4.71rd | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ( 𝑉  =  𝑁  ∧  ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) ) ) | 
						
							| 111 | 32 | nn0zd | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 112 |  | uzid | ⊢ ( ( 𝑁  −  1 )  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 113 |  | peano2uz | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 114 | 111 112 113 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 115 | 39 114 | eqeltrrd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 116 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 117 | 115 116 | syl | ⊢ ( 𝜑  →  ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 118 | 117 | sselda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 119 | 91 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 120 | 2 | ffnd | ⊢ ( 𝜑  →  𝑇  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑇  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 122 | 84 | fconst | ⊢ ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) : ( 𝑈  “  ( 1 ... 𝑗 ) ) ⟶ { 1 } | 
						
							| 123 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 124 | 123 | fconst | ⊢ ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) : ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ⟶ { 0 } | 
						
							| 125 | 122 124 | pm3.2i | ⊢ ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) : ( 𝑈  “  ( 1 ... 𝑗 ) ) ⟶ { 1 }  ∧  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) : ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ⟶ { 0 } ) | 
						
							| 126 |  | dff1o3 | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ↔  ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 )  ∧  Fun  ◡ 𝑈 ) ) | 
						
							| 127 | 126 | simprbi | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  Fun  ◡ 𝑈 ) | 
						
							| 128 |  | imain | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 129 | 3 127 128 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 130 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ∈  ℤ ) | 
						
							| 131 | 130 | zred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ∈  ℝ ) | 
						
							| 132 | 131 | ltp1d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  <  ( 𝑗  +  1 ) ) | 
						
							| 133 |  | fzdisj | ⊢ ( 𝑗  <  ( 𝑗  +  1 )  →  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 134 | 132 133 | syl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 135 | 134 | imaeq2d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 136 | 135 61 | eqtrdi | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 137 | 129 136 | sylan9req | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 138 |  | fun | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } ) : ( 𝑈  “  ( 1 ... 𝑗 ) ) ⟶ { 1 }  ∧  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) : ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ⟶ { 0 } )  ∧  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ⟶ ( { 1 }  ∪  { 0 } ) ) | 
						
							| 139 | 125 137 138 | sylancr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ⟶ ( { 1 }  ∪  { 0 } ) ) | 
						
							| 140 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 141 | 140 76 | syl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 142 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 143 | 141 142 | eleqtrdi | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 144 |  | elfzuz3 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 145 |  | fzsplit2 | ⊢ ( ( ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 146 | 143 144 145 | syl2anc | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 147 | 146 | imaeq2d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 148 |  | imaundi | ⊢ ( 𝑈  “  ( ( 1 ... 𝑗 )  ∪  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 149 | 147 148 | eqtr2di | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( 𝑈  “  ( 1 ... 𝑁 ) ) ) | 
						
							| 150 | 149 52 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 151 | 150 | feq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∪  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) ⟶ ( { 1 }  ∪  { 0 } )  ↔  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 }  ∪  { 0 } ) ) ) | 
						
							| 152 | 139 151 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 }  ∪  { 0 } ) ) | 
						
							| 153 | 152 | ffnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 154 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 1 ... 𝑁 )  ∈  V ) | 
						
							| 155 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑁  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑁 )  =  ( 𝑇 ‘ 𝑁 ) ) | 
						
							| 156 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑁  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) ) | 
						
							| 157 | 121 153 154 154 88 155 156 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑁  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝑁 )  +  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) ) ) | 
						
							| 158 | 119 157 | mpdan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝑁 )  +  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) ) ) | 
						
							| 159 | 158 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ( ( 𝑇 ‘ 𝑁 )  +  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) )  =  0 ) ) | 
						
							| 160 | 2 91 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑇 ‘ 𝑁 )  ∈  ( 0 ..^ 𝐾 ) ) | 
						
							| 161 |  | elfzonn0 | ⊢ ( ( 𝑇 ‘ 𝑁 )  ∈  ( 0 ..^ 𝐾 )  →  ( 𝑇 ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 162 | 160 161 | syl | ⊢ ( 𝜑  →  ( 𝑇 ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 163 | 162 | nn0red | ⊢ ( 𝜑  →  ( 𝑇 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 164 | 163 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 165 | 162 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑇 ‘ 𝑁 ) ) | 
						
							| 166 | 165 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  0  ≤  ( 𝑇 ‘ 𝑁 ) ) | 
						
							| 167 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 168 |  | snssi | ⊢ ( 1  ∈  ℝ  →  { 1 }  ⊆  ℝ ) | 
						
							| 169 | 167 168 | ax-mp | ⊢ { 1 }  ⊆  ℝ | 
						
							| 170 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 171 |  | snssi | ⊢ ( 0  ∈  ℝ  →  { 0 }  ⊆  ℝ ) | 
						
							| 172 | 170 171 | ax-mp | ⊢ { 0 }  ⊆  ℝ | 
						
							| 173 | 169 172 | unssi | ⊢ ( { 1 }  ∪  { 0 } )  ⊆  ℝ | 
						
							| 174 | 152 119 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  ( { 1 }  ∪  { 0 } ) ) | 
						
							| 175 | 173 174 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 176 |  | elun | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  ( { 1 }  ∪  { 0 } )  ↔  ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  { 1 }  ∨  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  { 0 } ) ) | 
						
							| 177 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 178 |  | elsni | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  { 1 }  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  1 ) | 
						
							| 179 | 177 178 | breqtrrid | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  { 1 }  →  0  ≤  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) ) | 
						
							| 180 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 181 |  | elsni | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  { 0 }  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 182 | 180 181 | breqtrrid | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  { 0 }  →  0  ≤  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) ) | 
						
							| 183 | 179 182 | jaoi | ⊢ ( ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  { 1 }  ∨  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  { 0 } )  →  0  ≤  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) ) | 
						
							| 184 | 176 183 | sylbi | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  ( { 1 }  ∪  { 0 } )  →  0  ≤  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) ) | 
						
							| 185 | 174 184 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  0  ≤  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) ) | 
						
							| 186 |  | add20 | ⊢ ( ( ( ( 𝑇 ‘ 𝑁 )  ∈  ℝ  ∧  0  ≤  ( 𝑇 ‘ 𝑁 ) )  ∧  ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ∈  ℝ  ∧  0  ≤  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) ) )  →  ( ( ( 𝑇 ‘ 𝑁 )  +  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) )  =  0  ↔  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) ) | 
						
							| 187 | 164 166 175 185 186 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑇 ‘ 𝑁 )  +  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) )  =  0  ↔  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) ) | 
						
							| 188 | 159 187 | bitrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) ) | 
						
							| 189 | 118 188 | syldan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) ) | 
						
							| 190 | 189 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) ) | 
						
							| 191 | 190 | adantr | ⊢ ( ( 𝜑  ∧  𝑉  =  𝑁 )  →  ( ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) ) | 
						
							| 192 |  | breq2 | ⊢ ( 𝑉  =  𝑁  →  ( 𝑦  <  𝑉  ↔  𝑦  <  𝑁 ) ) | 
						
							| 193 | 192 | ifbid | ⊢ ( 𝑉  =  𝑁  →  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( 𝑦  <  𝑁 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) | 
						
							| 194 |  | elfzelz | ⊢ ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑦  ∈  ℤ ) | 
						
							| 195 | 194 | zred | ⊢ ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 196 | 195 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 197 | 32 | nn0red | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 198 | 197 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 199 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ℝ ) | 
						
							| 200 |  | elfzle2 | ⊢ ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑦  ≤  ( 𝑁  −  1 ) ) | 
						
							| 201 | 200 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑦  ≤  ( 𝑁  −  1 ) ) | 
						
							| 202 | 25 | ltm1d | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  <  𝑁 ) | 
						
							| 203 | 202 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑁  −  1 )  <  𝑁 ) | 
						
							| 204 | 196 198 199 201 203 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑦  <  𝑁 ) | 
						
							| 205 | 204 | iftrued | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  if ( 𝑦  <  𝑁 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  𝑦 ) | 
						
							| 206 | 193 205 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  ∧  𝑉  =  𝑁 )  →  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  𝑦 ) | 
						
							| 207 | 206 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑉  =  𝑁 )  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  𝑦 ) | 
						
							| 208 | 207 | csbeq1d | ⊢ ( ( ( 𝜑  ∧  𝑉  =  𝑁 )  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 209 | 208 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑉  =  𝑁 )  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  ( ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 ) ) | 
						
							| 210 | 209 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑉  =  𝑁 )  ∧  𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ( ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 211 | 210 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑉  =  𝑁 )  →  ( ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 212 |  | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 | 
						
							| 213 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 214 |  | nfcv | ⊢ Ⅎ 𝑗 𝑁 | 
						
							| 215 | 213 214 | nffv | ⊢ Ⅎ 𝑗 ( ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 ) | 
						
							| 216 | 215 | nfeq1 | ⊢ Ⅎ 𝑗 ( ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 | 
						
							| 217 |  | csbeq1a | ⊢ ( 𝑗  =  𝑦  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 218 | 217 | fveq1d | ⊢ ( 𝑗  =  𝑦  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  ( ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 ) ) | 
						
							| 219 | 218 | eqeq1d | ⊢ ( 𝑗  =  𝑦  →  ( ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ( ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 220 | 212 216 219 | cbvralw | ⊢ ( ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ 𝑦  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 221 | 211 220 | bitr4di | ⊢ ( ( 𝜑  ∧  𝑉  =  𝑁 )  →  ( ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 222 |  | ne0i | ⊢ ( ( 𝑁  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ≠  ∅ ) | 
						
							| 223 |  | r19.3rzv | ⊢ ( ( 0 ... ( 𝑁  −  1 ) )  ≠  ∅  →  ( ( 𝑇 ‘ 𝑁 )  =  0  ↔  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝑇 ‘ 𝑁 )  =  0 ) ) | 
						
							| 224 | 34 222 223 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑇 ‘ 𝑁 )  =  0  ↔  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝑇 ‘ 𝑁 )  =  0 ) ) | 
						
							| 225 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 226 | 225 | zred | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 227 | 226 | ltp1d | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑗  <  ( 𝑗  +  1 ) ) | 
						
							| 228 | 227 133 | syl | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 229 | 228 | imaeq2d | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 230 | 229 61 | eqtrdi | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( 𝑈  “  ( ( 1 ... 𝑗 )  ∩  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 231 | 129 230 | sylan9req | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 232 | 231 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 233 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) | 
						
							| 234 |  | f1ofn | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 235 | 3 234 | syl | ⊢ ( 𝜑  →  𝑈  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 236 | 235 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑈  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 237 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 238 | 237 76 | syl | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 239 | 238 142 | eleqtrdi | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 240 |  | fzss1 | ⊢ ( ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 𝑗  +  1 ) ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 241 | 239 240 | syl | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( ( 𝑗  +  1 ) ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 242 | 241 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝑗  +  1 ) ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 243 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 244 |  | elfzuz3 | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 245 |  | eluzp1p1 | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 246 | 244 245 | syl | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 247 | 246 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 248 | 243 247 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 249 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑗  +  1 ) )  →  𝑁  ∈  ( ( 𝑗  +  1 ) ... 𝑁 ) ) | 
						
							| 250 | 248 249 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ( ( 𝑗  +  1 ) ... 𝑁 ) ) | 
						
							| 251 |  | fnfvima | ⊢ ( ( 𝑈  Fn  ( 1 ... 𝑁 )  ∧  ( ( 𝑗  +  1 ) ... 𝑁 )  ⊆  ( 1 ... 𝑁 )  ∧  𝑁  ∈  ( ( 𝑗  +  1 ) ... 𝑁 ) )  →  ( 𝑈 ‘ 𝑁 )  ∈  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 252 | 236 242 250 251 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑈 ‘ 𝑁 )  ∈  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 253 | 252 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝑈 ‘ 𝑁 )  ∈  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 254 | 233 253 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 255 |  | fnconstg | ⊢ ( 1  ∈  V  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... 𝑗 ) ) ) | 
						
							| 256 | 84 255 | ax-mp | ⊢ ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... 𝑗 ) ) | 
						
							| 257 |  | fnconstg | ⊢ ( 0  ∈  V  →  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) | 
						
							| 258 | 123 257 | ax-mp | ⊢ ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) | 
						
							| 259 |  | fvun2 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... 𝑗 ) )  ∧  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ∧  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑁  ∈  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  ( ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑁 ) ) | 
						
							| 260 | 256 258 259 | mp3an12 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ∩  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑁  ∈  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  ( ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑁 ) ) | 
						
							| 261 | 232 254 260 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  ( ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑁 ) ) | 
						
							| 262 | 123 | fvconst2 | ⊢ ( 𝑁  ∈  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  →  ( ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑁 )  =  0 ) | 
						
							| 263 | 254 262 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑁 )  =  0 ) | 
						
							| 264 | 261 263 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  ∧  𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 265 | 264 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  →  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 266 | 265 | ex | ⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝑁 )  =  𝑁  →  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 267 | 34 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  ( 𝑁  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 268 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 269 |  | imain | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... ( 𝑁  −  1 ) )  ∩  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 270 | 3 127 269 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑁  −  1 ) )  ∩  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 271 | 202 39 | breqtrrd | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  <  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 272 |  | fzdisj | ⊢ ( ( 𝑁  −  1 )  <  ( ( 𝑁  −  1 )  +  1 )  →  ( ( 1 ... ( 𝑁  −  1 ) )  ∩  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 273 | 271 272 | syl | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑁  −  1 ) )  ∩  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 274 | 273 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑁  −  1 ) )  ∩  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 275 | 274 61 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑁  −  1 ) )  ∩  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 276 | 270 275 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 277 | 276 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 278 | 91 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 279 |  | elimasni | ⊢ ( 𝑁  ∈  ( 𝑈  “  { 𝑁 } )  →  𝑁 𝑈 𝑁 ) | 
						
							| 280 |  | fnbrfvb | ⊢ ( ( 𝑈  Fn  ( 1 ... 𝑁 )  ∧  𝑁  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑈 ‘ 𝑁 )  =  𝑁  ↔  𝑁 𝑈 𝑁 ) ) | 
						
							| 281 | 235 91 280 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝑁 )  =  𝑁  ↔  𝑁 𝑈 𝑁 ) ) | 
						
							| 282 | 279 281 | imbitrrid | ⊢ ( 𝜑  →  ( 𝑁  ∈  ( 𝑈  “  { 𝑁 } )  →  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) ) | 
						
							| 283 | 282 | necon3ad | ⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝑁 )  ≠  𝑁  →  ¬  𝑁  ∈  ( 𝑈  “  { 𝑁 } ) ) ) | 
						
							| 284 | 283 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  ¬  𝑁  ∈  ( 𝑈  “  { 𝑁 } ) ) | 
						
							| 285 | 278 284 | eldifd | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  𝑁  ∈  ( ( 1 ... 𝑁 )  ∖  ( 𝑈  “  { 𝑁 } ) ) ) | 
						
							| 286 |  | imadif | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) )  =  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { 𝑁 } ) ) ) | 
						
							| 287 | 3 127 286 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) )  =  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { 𝑁 } ) ) ) | 
						
							| 288 |  | difun2 | ⊢ ( ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ∖  { 𝑁 } )  =  ( ( 1 ... ( 𝑁  −  1 ) )  ∖  { 𝑁 } ) | 
						
							| 289 |  | elun | ⊢ ( 𝑗  ∈  ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ↔  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑗  ∈  { 𝑁 } ) ) | 
						
							| 290 |  | velsn | ⊢ ( 𝑗  ∈  { 𝑁 }  ↔  𝑗  =  𝑁 ) | 
						
							| 291 | 290 | orbi2i | ⊢ ( ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑗  ∈  { 𝑁 } )  ↔  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑗  =  𝑁 ) ) | 
						
							| 292 | 289 291 | bitri | ⊢ ( 𝑗  ∈  ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ↔  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑗  =  𝑁 ) ) | 
						
							| 293 | 1 142 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 294 |  | fzm1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑗  =  𝑁 ) ) ) | 
						
							| 295 | 293 294 | syl | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑗  =  𝑁 ) ) ) | 
						
							| 296 | 292 295 | bitr4id | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ↔  𝑗  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 297 | 296 | eqrdv | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  =  ( 1 ... 𝑁 ) ) | 
						
							| 298 | 297 | difeq1d | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝑁  −  1 ) )  ∪  { 𝑁 } )  ∖  { 𝑁 } )  =  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) ) | 
						
							| 299 | 197 25 | ltnled | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  <  𝑁  ↔  ¬  𝑁  ≤  ( 𝑁  −  1 ) ) ) | 
						
							| 300 | 202 299 | mpbid | ⊢ ( 𝜑  →  ¬  𝑁  ≤  ( 𝑁  −  1 ) ) | 
						
							| 301 |  | elfzle2 | ⊢ ( 𝑁  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝑁  ≤  ( 𝑁  −  1 ) ) | 
						
							| 302 | 300 301 | nsyl | ⊢ ( 𝜑  →  ¬  𝑁  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 303 |  | difsn | ⊢ ( ¬  𝑁  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( ( 1 ... ( 𝑁  −  1 ) )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 304 | 302 303 | syl | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑁  −  1 ) )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 305 | 288 298 304 | 3eqtr3a | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 306 | 305 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) )  =  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 307 | 52 | difeq1d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { 𝑁 } ) )  =  ( ( 1 ... 𝑁 )  ∖  ( 𝑈  “  { 𝑁 } ) ) ) | 
						
							| 308 | 287 306 307 | 3eqtr3rd | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  ( 𝑈  “  { 𝑁 } ) )  =  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 309 | 308 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  ( ( 1 ... 𝑁 )  ∖  ( 𝑈  “  { 𝑁 } ) )  =  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 310 | 285 309 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  𝑁  ∈  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 311 |  | fnconstg | ⊢ ( 1  ∈  V  →  ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 312 | 84 311 | ax-mp | ⊢ ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 313 |  | fnconstg | ⊢ ( 0  ∈  V  →  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 314 | 123 313 | ax-mp | ⊢ ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) | 
						
							| 315 |  | fvun1 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ∧  ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑁  ∈  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } ) ‘ 𝑁 ) ) | 
						
							| 316 | 312 314 315 | mp3an12 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑁  ∈  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } ) ‘ 𝑁 ) ) | 
						
							| 317 | 277 310 316 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } ) ‘ 𝑁 ) ) | 
						
							| 318 | 84 | fvconst2 | ⊢ ( 𝑁  ∈  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } ) ‘ 𝑁 )  =  1 ) | 
						
							| 319 | 310 318 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } ) ‘ 𝑁 )  =  1 ) | 
						
							| 320 | 317 319 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  1 ) | 
						
							| 321 | 320 | neeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  ( ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ≠  0  ↔  1  ≠  0 ) ) | 
						
							| 322 | 268 321 | mpbiri | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ≠  0 ) | 
						
							| 323 |  | df-ne | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ≠  0  ↔  ¬  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 324 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( 1 ... 𝑗 )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 325 | 324 | imaeq2d | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( 𝑈  “  ( 1 ... 𝑗 ) )  =  ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 326 | 325 | xpeq1d | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } ) ) | 
						
							| 327 |  | oveq1 | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( 𝑗  +  1 )  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 328 | 327 | oveq1d | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( ( 𝑗  +  1 ) ... 𝑁 )  =  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) | 
						
							| 329 | 328 | imaeq2d | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 330 | 329 | xpeq1d | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 331 | 326 330 | uneq12d | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 332 | 331 | fveq1d | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 ) ) | 
						
							| 333 | 332 | neeq1d | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ≠  0  ↔  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 334 | 323 333 | bitr3id | ⊢ ( 𝑗  =  ( 𝑁  −  1 )  →  ( ¬  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0  ↔  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 335 | 334 | rspcev | ⊢ ( ( ( 𝑁  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) )  ∧  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑁  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑁  −  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  ≠  0 )  →  ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ¬  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 336 | 267 322 335 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑁 )  ≠  𝑁 )  →  ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ¬  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 337 | 336 | ex | ⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝑁 )  ≠  𝑁  →  ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ¬  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 338 |  | rexnal | ⊢ ( ∃ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ¬  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0  ↔  ¬  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) | 
						
							| 339 | 337 338 | imbitrdi | ⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝑁 )  ≠  𝑁  →  ¬  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 340 | 339 | necon4ad | ⊢ ( 𝜑  →  ( ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0  →  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) ) | 
						
							| 341 | 266 340 | impbid | ⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝑁 )  =  𝑁  ↔  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 342 | 224 341 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  ↔  ( ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝑇 ‘ 𝑁 )  =  0  ∧  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) ) | 
						
							| 343 |  | r19.26 | ⊢ ( ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 )  ↔  ( ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝑇 ‘ 𝑁 )  =  0  ∧  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) | 
						
							| 344 | 342 343 | bitr4di | ⊢ ( 𝜑  →  ( ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  ↔  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) ) | 
						
							| 345 | 344 | adantr | ⊢ ( ( 𝜑  ∧  𝑉  =  𝑁 )  →  ( ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 )  ↔  ∀ 𝑗  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑁 )  =  0 ) ) ) | 
						
							| 346 | 191 221 345 | 3bitr4d | ⊢ ( ( 𝜑  ∧  𝑉  =  𝑁 )  →  ( ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) ) ) | 
						
							| 347 | 346 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑉  =  𝑁  ∧  ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0 )  ↔  ( 𝑉  =  𝑁  ∧  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 348 | 110 347 | bitrd | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ( 𝑉  =  𝑁  ∧  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 349 | 348 | notbid | ⊢ ( 𝜑  →  ( ¬  ∀ 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑁 )  =  0  ↔  ¬  ( 𝑉  =  𝑁  ∧  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) ) ) ) | 
						
							| 350 | 16 349 | bitrid | ⊢ ( 𝜑  →  ( ∃ 𝑝  ∈  ran  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑉 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ( 𝑝 ‘ 𝑁 )  ≠  0  ↔  ¬  ( 𝑉  =  𝑁  ∧  ( ( 𝑇 ‘ 𝑁 )  =  0  ∧  ( 𝑈 ‘ 𝑁 )  =  𝑁 ) ) ) ) |