| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
|
| 2 |
|
4sq.2 |
|
| 3 |
|
4sq.3 |
|
| 4 |
|
4sq.4 |
|
| 5 |
|
4sqlem11.5 |
|
| 6 |
|
4sqlem11.6 |
|
| 7 |
|
fzfid |
|
| 8 |
|
elfzelz |
|
| 9 |
|
zsqcl |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
prmnn |
|
| 12 |
4 11
|
syl |
|
| 13 |
|
zmodfz |
|
| 14 |
10 12 13
|
syl2anr |
|
| 15 |
|
eleq1a |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
rexlimdva |
|
| 18 |
17
|
abssdv |
|
| 19 |
5 18
|
eqsstrid |
|
| 20 |
|
prmz |
|
| 21 |
4 20
|
syl |
|
| 22 |
|
peano2zm |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
zcnd |
|
| 25 |
24
|
addlidd |
|
| 26 |
25
|
oveq1d |
|
| 27 |
26
|
adantr |
|
| 28 |
19
|
sselda |
|
| 29 |
|
fzrev3i |
|
| 30 |
28 29
|
syl |
|
| 31 |
27 30
|
eqeltrrd |
|
| 32 |
31 6
|
fmptd |
|
| 33 |
32
|
frnd |
|
| 34 |
19 33
|
unssd |
|
| 35 |
7 34
|
ssfid |
|
| 36 |
|
hashcl |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
nn0red |
|
| 39 |
21
|
zred |
|
| 40 |
|
ssdomg |
|
| 41 |
7 34 40
|
sylc |
|
| 42 |
|
hashdom |
|
| 43 |
35 7 42
|
syl2anc |
|
| 44 |
41 43
|
mpbird |
|
| 45 |
|
fz01en |
|
| 46 |
21 45
|
syl |
|
| 47 |
|
fzfid |
|
| 48 |
|
hashen |
|
| 49 |
7 47 48
|
syl2anc |
|
| 50 |
46 49
|
mpbird |
|
| 51 |
12
|
nnnn0d |
|
| 52 |
|
hashfz1 |
|
| 53 |
51 52
|
syl |
|
| 54 |
50 53
|
eqtrd |
|
| 55 |
44 54
|
breqtrd |
|
| 56 |
38 39 55
|
lensymd |
|
| 57 |
39
|
adantr |
|
| 58 |
57
|
ltp1d |
|
| 59 |
2
|
nncnd |
|
| 60 |
|
1cnd |
|
| 61 |
59 59 60 60
|
add4d |
|
| 62 |
3
|
oveq1d |
|
| 63 |
|
2cn |
|
| 64 |
|
mulcl |
|
| 65 |
63 59 64
|
sylancr |
|
| 66 |
65 60 60
|
addassd |
|
| 67 |
59
|
2timesd |
|
| 68 |
67
|
oveq1d |
|
| 69 |
62 66 68
|
3eqtrd |
|
| 70 |
14
|
ex |
|
| 71 |
12
|
adantr |
|
| 72 |
8
|
ad2antrl |
|
| 73 |
72 9
|
syl |
|
| 74 |
|
elfzelz |
|
| 75 |
74
|
ad2antll |
|
| 76 |
|
zsqcl |
|
| 77 |
75 76
|
syl |
|
| 78 |
|
moddvds |
|
| 79 |
71 73 77 78
|
syl3anc |
|
| 80 |
72
|
zcnd |
|
| 81 |
75
|
zcnd |
|
| 82 |
|
subsq |
|
| 83 |
80 81 82
|
syl2anc |
|
| 84 |
83
|
breq2d |
|
| 85 |
4
|
adantr |
|
| 86 |
72 75
|
zaddcld |
|
| 87 |
72 75
|
zsubcld |
|
| 88 |
|
euclemma |
|
| 89 |
85 86 87 88
|
syl3anc |
|
| 90 |
79 84 89
|
3bitrd |
|
| 91 |
86
|
zred |
|
| 92 |
|
2re |
|
| 93 |
2
|
nnred |
|
| 94 |
|
remulcl |
|
| 95 |
92 93 94
|
sylancr |
|
| 96 |
95
|
adantr |
|
| 97 |
85 20
|
syl |
|
| 98 |
97
|
zred |
|
| 99 |
72
|
zred |
|
| 100 |
75
|
zred |
|
| 101 |
93
|
adantr |
|
| 102 |
|
elfzle2 |
|
| 103 |
102
|
ad2antrl |
|
| 104 |
|
elfzle2 |
|
| 105 |
104
|
ad2antll |
|
| 106 |
99 100 101 101 103 105
|
le2addd |
|
| 107 |
59
|
adantr |
|
| 108 |
107
|
2timesd |
|
| 109 |
106 108
|
breqtrrd |
|
| 110 |
95
|
ltp1d |
|
| 111 |
110 3
|
breqtrrd |
|
| 112 |
111
|
adantr |
|
| 113 |
91 96 98 109 112
|
lelttrd |
|
| 114 |
91 98
|
ltnled |
|
| 115 |
113 114
|
mpbid |
|
| 116 |
115
|
adantr |
|
| 117 |
21
|
ad2antrr |
|
| 118 |
86
|
adantr |
|
| 119 |
|
1red |
|
| 120 |
|
nn0abscl |
|
| 121 |
87 120
|
syl |
|
| 122 |
121
|
nn0red |
|
| 123 |
122
|
adantr |
|
| 124 |
118
|
zred |
|
| 125 |
121
|
adantr |
|
| 126 |
125
|
nn0zd |
|
| 127 |
87
|
zcnd |
|
| 128 |
127
|
adantr |
|
| 129 |
80 81
|
subeq0ad |
|
| 130 |
129
|
necon3bid |
|
| 131 |
130
|
biimpar |
|
| 132 |
128 131
|
absrpcld |
|
| 133 |
132
|
rpgt0d |
|
| 134 |
|
elnnz |
|
| 135 |
126 133 134
|
sylanbrc |
|
| 136 |
135
|
nnge1d |
|
| 137 |
|
0cnd |
|
| 138 |
80 81 137
|
abs3difd |
|
| 139 |
80
|
subid1d |
|
| 140 |
139
|
fveq2d |
|
| 141 |
|
elfzle1 |
|
| 142 |
141
|
ad2antrl |
|
| 143 |
99 142
|
absidd |
|
| 144 |
140 143
|
eqtrd |
|
| 145 |
|
0cn |
|
| 146 |
|
abssub |
|
| 147 |
145 81 146
|
sylancr |
|
| 148 |
81
|
subid1d |
|
| 149 |
148
|
fveq2d |
|
| 150 |
|
elfzle1 |
|
| 151 |
150
|
ad2antll |
|
| 152 |
100 151
|
absidd |
|
| 153 |
147 149 152
|
3eqtrd |
|
| 154 |
144 153
|
oveq12d |
|
| 155 |
138 154
|
breqtrd |
|
| 156 |
155
|
adantr |
|
| 157 |
119 123 124 136 156
|
letrd |
|
| 158 |
|
elnnz1 |
|
| 159 |
118 157 158
|
sylanbrc |
|
| 160 |
|
dvdsle |
|
| 161 |
117 159 160
|
syl2anc |
|
| 162 |
116 161
|
mtod |
|
| 163 |
162
|
ex |
|
| 164 |
163
|
necon4ad |
|
| 165 |
|
dvdsabsb |
|
| 166 |
97 87 165
|
syl2anc |
|
| 167 |
|
letr |
|
| 168 |
98 122 91 167
|
syl3anc |
|
| 169 |
155 168
|
mpan2d |
|
| 170 |
115 169
|
mtod |
|
| 171 |
170
|
adantr |
|
| 172 |
97
|
adantr |
|
| 173 |
|
dvdsle |
|
| 174 |
172 135 173
|
syl2anc |
|
| 175 |
171 174
|
mtod |
|
| 176 |
175
|
ex |
|
| 177 |
176
|
necon4ad |
|
| 178 |
166 177
|
sylbid |
|
| 179 |
164 178
|
jaod |
|
| 180 |
90 179
|
sylbid |
|
| 181 |
|
oveq1 |
|
| 182 |
181
|
oveq1d |
|
| 183 |
180 182
|
impbid1 |
|
| 184 |
183
|
ex |
|
| 185 |
70 184
|
dom2lem |
|
| 186 |
|
f1f1orn |
|
| 187 |
185 186
|
syl |
|
| 188 |
|
eqid |
|
| 189 |
188
|
rnmpt |
|
| 190 |
5 189
|
eqtr4i |
|
| 191 |
|
f1oeq3 |
|
| 192 |
190 191
|
ax-mp |
|
| 193 |
187 192
|
sylibr |
|
| 194 |
|
ovex |
|
| 195 |
194
|
f1oen |
|
| 196 |
193 195
|
syl |
|
| 197 |
196
|
ensymd |
|
| 198 |
|
ax-1cn |
|
| 199 |
|
pncan |
|
| 200 |
59 198 199
|
sylancl |
|
| 201 |
200
|
oveq2d |
|
| 202 |
2
|
nnnn0d |
|
| 203 |
|
peano2nn0 |
|
| 204 |
202 203
|
syl |
|
| 205 |
204
|
nn0zd |
|
| 206 |
|
fz01en |
|
| 207 |
205 206
|
syl |
|
| 208 |
201 207
|
eqbrtrrd |
|
| 209 |
|
entr |
|
| 210 |
197 208 209
|
syl2anc |
|
| 211 |
7 19
|
ssfid |
|
| 212 |
|
fzfid |
|
| 213 |
|
hashen |
|
| 214 |
211 212 213
|
syl2anc |
|
| 215 |
210 214
|
mpbird |
|
| 216 |
|
hashfz1 |
|
| 217 |
204 216
|
syl |
|
| 218 |
215 217
|
eqtrd |
|
| 219 |
31
|
ex |
|
| 220 |
24
|
adantr |
|
| 221 |
|
fzssuz |
|
| 222 |
|
uzssz |
|
| 223 |
|
zsscn |
|
| 224 |
222 223
|
sstri |
|
| 225 |
221 224
|
sstri |
|
| 226 |
19 225
|
sstrdi |
|
| 227 |
226
|
sselda |
|
| 228 |
227
|
adantrr |
|
| 229 |
226
|
sselda |
|
| 230 |
229
|
adantrl |
|
| 231 |
220 228 230
|
subcanad |
|
| 232 |
231
|
ex |
|
| 233 |
219 232
|
dom2lem |
|
| 234 |
|
f1eq1 |
|
| 235 |
6 234
|
ax-mp |
|
| 236 |
233 235
|
sylibr |
|
| 237 |
|
f1f1orn |
|
| 238 |
236 237
|
syl |
|
| 239 |
211 238
|
hasheqf1od |
|
| 240 |
239 218
|
eqtr3d |
|
| 241 |
218 240
|
oveq12d |
|
| 242 |
61 69 241
|
3eqtr4d |
|
| 243 |
242
|
adantr |
|
| 244 |
211
|
adantr |
|
| 245 |
7 33
|
ssfid |
|
| 246 |
245
|
adantr |
|
| 247 |
|
simpr |
|
| 248 |
|
hashun |
|
| 249 |
244 246 247 248
|
syl3anc |
|
| 250 |
243 249
|
eqtr4d |
|
| 251 |
58 250
|
breqtrd |
|
| 252 |
251
|
ex |
|
| 253 |
252
|
necon3bd |
|
| 254 |
56 253
|
mpd |
|