Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Algebraic numbers
aannenlem2
Next ⟩
aannenlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
aannenlem2
Description:
Lemma for
aannen
.
(Contributed by
Stefan O'Rear
, 16-Nov-2014)
Ref
Expression
Hypothesis
aannenlem.a
⊢
H
=
a
∈
ℕ
0
⟼
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
Assertion
aannenlem2
⊢
𝔸
=
⋃
ran
H
Proof
Step
Hyp
Ref
Expression
1
aannenlem.a
⊢
H
=
a
∈
ℕ
0
⟼
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
2
fveqeq2
⊢
b
=
g
→
c
b
=
0
↔
c
g
=
0
3
2
rexbidv
⊢
b
=
g
→
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
↔
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
g
=
0
4
simp3
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
g
∈
ℂ
5
neeq1
⊢
d
=
h
→
d
≠
0
𝑝
↔
h
≠
0
𝑝
6
fveq2
⊢
d
=
h
→
deg
d
=
deg
h
7
6
breq1d
⊢
d
=
h
→
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
↔
deg
h
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
8
fveq2
⊢
d
=
h
→
coeff
d
=
coeff
h
9
8
fveq1d
⊢
d
=
h
→
coeff
d
e
=
coeff
h
e
10
9
fveq2d
⊢
d
=
h
→
coeff
d
e
=
coeff
h
e
11
10
breq1d
⊢
d
=
h
→
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
↔
coeff
h
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
12
11
ralbidv
⊢
d
=
h
→
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
↔
∀
e
∈
ℕ
0
coeff
h
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
13
5
7
12
3anbi123d
⊢
d
=
h
→
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
↔
h
≠
0
𝑝
∧
deg
h
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
h
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
14
eldifi
⊢
h
∈
Poly
ℤ
∖
0
𝑝
→
h
∈
Poly
ℤ
15
14
adantr
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
h
∈
Poly
ℤ
16
15
3adant2
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
h
∈
Poly
ℤ
17
eldifsni
⊢
h
∈
Poly
ℤ
∖
0
𝑝
→
h
≠
0
𝑝
18
17
adantr
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
h
≠
0
𝑝
19
0nn0
⊢
0
∈
ℕ
0
20
dgrcl
⊢
h
∈
Poly
ℤ
→
deg
h
∈
ℕ
0
21
15
20
syl
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
deg
h
∈
ℕ
0
22
prssi
⊢
0
∈
ℕ
0
∧
deg
h
∈
ℕ
0
→
0
deg
h
⊆
ℕ
0
23
19
21
22
sylancr
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
0
deg
h
⊆
ℕ
0
24
ssrab2
⊢
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
ℕ
0
25
24
a1i
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
ℕ
0
26
23
25
unssd
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
ℕ
0
27
nn0ssre
⊢
ℕ
0
⊆
ℝ
28
ressxr
⊢
ℝ
⊆
ℝ
*
29
27
28
sstri
⊢
ℕ
0
⊆
ℝ
*
30
26
29
sstrdi
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
ℝ
*
31
fvex
⊢
deg
h
∈
V
32
31
prid2
⊢
deg
h
∈
0
deg
h
33
elun1
⊢
deg
h
∈
0
deg
h
→
deg
h
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
34
32
33
ax-mp
⊢
deg
h
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
35
supxrub
⊢
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
ℝ
*
∧
deg
h
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
→
deg
h
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
36
30
34
35
sylancl
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
deg
h
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
37
30
adantr
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
→
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
ℝ
*
38
fveq2
⊢
coeff
h
e
=
0
→
coeff
h
e
=
0
39
abs0
⊢
0
=
0
40
38
39
eqtrdi
⊢
coeff
h
e
=
0
→
coeff
h
e
=
0
41
c0ex
⊢
0
∈
V
42
41
prid1
⊢
0
∈
0
deg
h
43
elun1
⊢
0
∈
0
deg
h
→
0
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
44
42
43
ax-mp
⊢
0
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
45
40
44
eqeltrdi
⊢
coeff
h
e
=
0
→
coeff
h
e
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
46
45
adantl
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
=
0
→
coeff
h
e
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
47
eqeq1
⊢
g
=
coeff
h
e
→
g
=
coeff
h
i
↔
coeff
h
e
=
coeff
h
i
48
47
rexbidv
⊢
g
=
coeff
h
e
→
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
↔
∃
i
∈
0
…
deg
h
coeff
h
e
=
coeff
h
i
49
0z
⊢
0
∈
ℤ
50
eqid
⊢
coeff
h
=
coeff
h
51
50
coef2
⊢
h
∈
Poly
ℤ
∧
0
∈
ℤ
→
coeff
h
:
ℕ
0
⟶
ℤ
52
15
49
51
sylancl
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
coeff
h
:
ℕ
0
⟶
ℤ
53
52
ffvelcdmda
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
→
coeff
h
e
∈
ℤ
54
nn0abscl
⊢
coeff
h
e
∈
ℤ
→
coeff
h
e
∈
ℕ
0
55
53
54
syl
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
→
coeff
h
e
∈
ℕ
0
56
55
adantr
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
coeff
h
e
∈
ℕ
0
57
simplr
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
e
∈
ℕ
0
58
21
ad2antrr
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
deg
h
∈
ℕ
0
59
15
ad2antrr
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
h
∈
Poly
ℤ
60
simpr
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
coeff
h
e
≠
0
61
eqid
⊢
deg
h
=
deg
h
62
50
61
dgrub
⊢
h
∈
Poly
ℤ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
e
≤
deg
h
63
59
57
60
62
syl3anc
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
e
≤
deg
h
64
elfz2nn0
⊢
e
∈
0
…
deg
h
↔
e
∈
ℕ
0
∧
deg
h
∈
ℕ
0
∧
e
≤
deg
h
65
57
58
63
64
syl3anbrc
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
e
∈
0
…
deg
h
66
eqid
⊢
coeff
h
e
=
coeff
h
e
67
2fveq3
⊢
i
=
e
→
coeff
h
i
=
coeff
h
e
68
67
rspceeqv
⊢
e
∈
0
…
deg
h
∧
coeff
h
e
=
coeff
h
e
→
∃
i
∈
0
…
deg
h
coeff
h
e
=
coeff
h
i
69
65
66
68
sylancl
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
∃
i
∈
0
…
deg
h
coeff
h
e
=
coeff
h
i
70
48
56
69
elrabd
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
coeff
h
e
∈
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
71
elun2
⊢
coeff
h
e
∈
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
→
coeff
h
e
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
72
70
71
syl
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
∧
coeff
h
e
≠
0
→
coeff
h
e
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
73
46
72
pm2.61dane
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
→
coeff
h
e
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
74
supxrub
⊢
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
ℝ
*
∧
coeff
h
e
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
→
coeff
h
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
75
37
73
74
syl2anc
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
∧
e
∈
ℕ
0
→
coeff
h
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
76
75
ralrimiva
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
∀
e
∈
ℕ
0
coeff
h
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
77
18
36
76
3jca
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
h
≠
0
𝑝
∧
deg
h
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
h
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
78
77
3adant2
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
h
≠
0
𝑝
∧
deg
h
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
h
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
79
13
16
78
elrabd
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
h
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
80
simp2
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
h
g
=
0
81
fveq1
⊢
c
=
h
→
c
g
=
h
g
82
81
eqeq1d
⊢
c
=
h
→
c
g
=
0
↔
h
g
=
0
83
82
rspcev
⊢
h
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
h
g
=
0
→
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
g
=
0
84
79
80
83
syl2anc
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
g
=
0
85
3
4
84
elrabd
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
g
∈
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
86
prfi
⊢
0
deg
h
∈
Fin
87
fzfi
⊢
0
…
deg
h
∈
Fin
88
abrexfi
⊢
0
…
deg
h
∈
Fin
→
g
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
∈
Fin
89
87
88
ax-mp
⊢
g
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
∈
Fin
90
rabssab
⊢
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
g
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
91
ssfi
⊢
g
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
∈
Fin
∧
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
g
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
→
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
∈
Fin
92
89
90
91
mp2an
⊢
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
∈
Fin
93
unfi
⊢
0
deg
h
∈
Fin
∧
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
∈
Fin
→
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
∈
Fin
94
86
92
93
mp2an
⊢
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
∈
Fin
95
34
ne0ii
⊢
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
≠
∅
96
xrltso
⊢
<
Or
ℝ
*
97
fisupcl
⊢
<
Or
ℝ
*
∧
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
∈
Fin
∧
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
≠
∅
∧
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
ℝ
*
→
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
98
96
97
mpan
⊢
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
∈
Fin
∧
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
≠
∅
∧
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
⊆
ℝ
*
→
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
99
94
95
30
98
mp3an12i
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∈
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
100
26
99
sseldd
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
g
∈
ℂ
→
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∈
ℕ
0
101
100
3adant2
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∈
ℕ
0
102
eqidd
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
103
breq2
⊢
a
=
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
→
deg
d
≤
a
↔
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
104
breq2
⊢
a
=
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
→
coeff
d
e
≤
a
↔
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
105
104
ralbidv
⊢
a
=
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
→
∀
e
∈
ℕ
0
coeff
d
e
≤
a
↔
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
106
103
105
3anbi23d
⊢
a
=
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
→
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
↔
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
107
106
rabbidv
⊢
a
=
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
→
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
=
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
108
107
rexeqdv
⊢
a
=
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
→
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
↔
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
109
108
rabbidv
⊢
a
=
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
→
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
110
109
rspceeqv
⊢
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∈
ℕ
0
∧
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
→
∃
a
∈
ℕ
0
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
111
101
102
110
syl2anc
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
∃
a
∈
ℕ
0
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
112
cnex
⊢
ℂ
∈
V
113
112
rabex
⊢
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
∈
V
114
eleq2
⊢
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
→
g
∈
f
↔
g
∈
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
115
eqeq1
⊢
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
→
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
↔
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
116
115
rexbidv
⊢
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
→
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
↔
∃
a
∈
ℕ
0
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
117
114
116
anbi12d
⊢
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
→
g
∈
f
∧
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
↔
g
∈
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
∧
∃
a
∈
ℕ
0
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
118
113
117
spcev
⊢
g
∈
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
∧
∃
a
∈
ℕ
0
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
sup
0
deg
h
∪
g
∈
ℕ
0
|
∃
i
∈
0
…
deg
h
g
=
coeff
h
i
ℝ
*
<
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
→
∃
f
g
∈
f
∧
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
119
85
111
118
syl2anc
⊢
h
∈
Poly
ℤ
∖
0
𝑝
∧
h
g
=
0
∧
g
∈
ℂ
→
∃
f
g
∈
f
∧
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
120
119
3exp
⊢
h
∈
Poly
ℤ
∖
0
𝑝
→
h
g
=
0
→
g
∈
ℂ
→
∃
f
g
∈
f
∧
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
121
120
rexlimiv
⊢
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
→
g
∈
ℂ
→
∃
f
g
∈
f
∧
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
122
121
impcom
⊢
g
∈
ℂ
∧
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
→
∃
f
g
∈
f
∧
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
123
eleq2
⊢
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
→
g
∈
f
↔
g
∈
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
124
2
rexbidv
⊢
b
=
g
→
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
↔
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
g
=
0
125
124
elrab
⊢
g
∈
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
↔
g
∈
ℂ
∧
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
g
=
0
126
simp1
⊢
h
≠
0
𝑝
∧
deg
h
≤
a
∧
∀
e
∈
ℕ
0
coeff
h
e
≤
a
→
h
≠
0
𝑝
127
126
anim2i
⊢
h
∈
Poly
ℤ
∧
h
≠
0
𝑝
∧
deg
h
≤
a
∧
∀
e
∈
ℕ
0
coeff
h
e
≤
a
→
h
∈
Poly
ℤ
∧
h
≠
0
𝑝
128
6
breq1d
⊢
d
=
h
→
deg
d
≤
a
↔
deg
h
≤
a
129
10
breq1d
⊢
d
=
h
→
coeff
d
e
≤
a
↔
coeff
h
e
≤
a
130
129
ralbidv
⊢
d
=
h
→
∀
e
∈
ℕ
0
coeff
d
e
≤
a
↔
∀
e
∈
ℕ
0
coeff
h
e
≤
a
131
5
128
130
3anbi123d
⊢
d
=
h
→
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
↔
h
≠
0
𝑝
∧
deg
h
≤
a
∧
∀
e
∈
ℕ
0
coeff
h
e
≤
a
132
131
elrab
⊢
h
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
↔
h
∈
Poly
ℤ
∧
h
≠
0
𝑝
∧
deg
h
≤
a
∧
∀
e
∈
ℕ
0
coeff
h
e
≤
a
133
eldifsn
⊢
h
∈
Poly
ℤ
∖
0
𝑝
↔
h
∈
Poly
ℤ
∧
h
≠
0
𝑝
134
127
132
133
3imtr4i
⊢
h
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
→
h
∈
Poly
ℤ
∖
0
𝑝
135
134
ssriv
⊢
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
⊆
Poly
ℤ
∖
0
𝑝
136
ssrexv
⊢
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
⊆
Poly
ℤ
∖
0
𝑝
→
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
g
=
0
→
∃
c
∈
Poly
ℤ
∖
0
𝑝
c
g
=
0
137
82
cbvrexvw
⊢
∃
c
∈
Poly
ℤ
∖
0
𝑝
c
g
=
0
↔
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
138
136
137
imbitrdi
⊢
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
⊆
Poly
ℤ
∖
0
𝑝
→
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
g
=
0
→
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
139
135
138
ax-mp
⊢
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
g
=
0
→
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
140
139
anim2i
⊢
g
∈
ℂ
∧
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
g
=
0
→
g
∈
ℂ
∧
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
141
125
140
sylbi
⊢
g
∈
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
→
g
∈
ℂ
∧
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
142
123
141
syl6bi
⊢
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
→
g
∈
f
→
g
∈
ℂ
∧
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
143
142
rexlimivw
⊢
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
→
g
∈
f
→
g
∈
ℂ
∧
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
144
143
impcom
⊢
g
∈
f
∧
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
→
g
∈
ℂ
∧
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
145
144
exlimiv
⊢
∃
f
g
∈
f
∧
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
→
g
∈
ℂ
∧
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
146
122
145
impbii
⊢
g
∈
ℂ
∧
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
↔
∃
f
g
∈
f
∧
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
147
elaa
⊢
g
∈
𝔸
↔
g
∈
ℂ
∧
∃
h
∈
Poly
ℤ
∖
0
𝑝
h
g
=
0
148
eluniab
⊢
g
∈
⋃
f
|
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
↔
∃
f
g
∈
f
∧
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
149
146
147
148
3bitr4i
⊢
g
∈
𝔸
↔
g
∈
⋃
f
|
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
150
149
eqriv
⊢
𝔸
=
⋃
f
|
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
151
1
rnmpt
⊢
ran
H
=
f
|
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
152
151
unieqi
⊢
⋃
ran
H
=
⋃
f
|
∃
a
∈
ℕ
0
f
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
153
150
152
eqtr4i
⊢
𝔸
=
⋃
ran
H