Metamath Proof Explorer


Theorem aannenlem2

Description: Lemma for aannen . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypothesis aannenlem.a H=a0b|cdPoly|d0𝑝degdae0coeffdeacb=0
Assertion aannenlem2 𝔸=ranH

Proof

Step Hyp Ref Expression
1 aannenlem.a H=a0b|cdPoly|d0𝑝degdae0coeffdeacb=0
2 fveqeq2 b=gcb=0cg=0
3 2 rexbidv b=gcdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cg=0
4 simp3 hPoly0𝑝hg=0gg
5 neeq1 d=hd0𝑝h0𝑝
6 fveq2 d=hdegd=degh
7 6 breq1d d=hdegdsup0deghg0|i0deghg=coeffhi*<deghsup0deghg0|i0deghg=coeffhi*<
8 fveq2 d=hcoeffd=coeffh
9 8 fveq1d d=hcoeffde=coeffhe
10 9 fveq2d d=hcoeffde=coeffhe
11 10 breq1d d=hcoeffdesup0deghg0|i0deghg=coeffhi*<coeffhesup0deghg0|i0deghg=coeffhi*<
12 11 ralbidv d=he0coeffdesup0deghg0|i0deghg=coeffhi*<e0coeffhesup0deghg0|i0deghg=coeffhi*<
13 5 7 12 3anbi123d d=hd0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<h0𝑝deghsup0deghg0|i0deghg=coeffhi*<e0coeffhesup0deghg0|i0deghg=coeffhi*<
14 eldifi hPoly0𝑝hPoly
15 14 adantr hPoly0𝑝ghPoly
16 15 3adant2 hPoly0𝑝hg=0ghPoly
17 eldifsni hPoly0𝑝h0𝑝
18 17 adantr hPoly0𝑝gh0𝑝
19 0nn0 00
20 dgrcl hPolydegh0
21 15 20 syl hPoly0𝑝gdegh0
22 prssi 00degh00degh0
23 19 21 22 sylancr hPoly0𝑝g0degh0
24 ssrab2 g0|i0deghg=coeffhi0
25 24 a1i hPoly0𝑝gg0|i0deghg=coeffhi0
26 23 25 unssd hPoly0𝑝g0deghg0|i0deghg=coeffhi0
27 nn0ssre 0
28 ressxr *
29 27 28 sstri 0*
30 26 29 sstrdi hPoly0𝑝g0deghg0|i0deghg=coeffhi*
31 fvex deghV
32 31 prid2 degh0degh
33 elun1 degh0deghdegh0deghg0|i0deghg=coeffhi
34 32 33 ax-mp degh0deghg0|i0deghg=coeffhi
35 supxrub 0deghg0|i0deghg=coeffhi*degh0deghg0|i0deghg=coeffhideghsup0deghg0|i0deghg=coeffhi*<
36 30 34 35 sylancl hPoly0𝑝gdeghsup0deghg0|i0deghg=coeffhi*<
37 30 adantr hPoly0𝑝ge00deghg0|i0deghg=coeffhi*
38 fveq2 coeffhe=0coeffhe=0
39 abs0 0=0
40 38 39 eqtrdi coeffhe=0coeffhe=0
41 c0ex 0V
42 41 prid1 00degh
43 elun1 00degh00deghg0|i0deghg=coeffhi
44 42 43 ax-mp 00deghg0|i0deghg=coeffhi
45 40 44 eqeltrdi coeffhe=0coeffhe0deghg0|i0deghg=coeffhi
46 45 adantl hPoly0𝑝ge0coeffhe=0coeffhe0deghg0|i0deghg=coeffhi
47 eqeq1 g=coeffheg=coeffhicoeffhe=coeffhi
48 47 rexbidv g=coeffhei0deghg=coeffhii0deghcoeffhe=coeffhi
49 0z 0
50 eqid coeffh=coeffh
51 50 coef2 hPoly0coeffh:0
52 15 49 51 sylancl hPoly0𝑝gcoeffh:0
53 52 ffvelcdmda hPoly0𝑝ge0coeffhe
54 nn0abscl coeffhecoeffhe0
55 53 54 syl hPoly0𝑝ge0coeffhe0
56 55 adantr hPoly0𝑝ge0coeffhe0coeffhe0
57 simplr hPoly0𝑝ge0coeffhe0e0
58 21 ad2antrr hPoly0𝑝ge0coeffhe0degh0
59 15 ad2antrr hPoly0𝑝ge0coeffhe0hPoly
60 simpr hPoly0𝑝ge0coeffhe0coeffhe0
61 eqid degh=degh
62 50 61 dgrub hPolye0coeffhe0edegh
63 59 57 60 62 syl3anc hPoly0𝑝ge0coeffhe0edegh
64 elfz2nn0 e0deghe0degh0edegh
65 57 58 63 64 syl3anbrc hPoly0𝑝ge0coeffhe0e0degh
66 eqid coeffhe=coeffhe
67 2fveq3 i=ecoeffhi=coeffhe
68 67 rspceeqv e0deghcoeffhe=coeffhei0deghcoeffhe=coeffhi
69 65 66 68 sylancl hPoly0𝑝ge0coeffhe0i0deghcoeffhe=coeffhi
70 48 56 69 elrabd hPoly0𝑝ge0coeffhe0coeffheg0|i0deghg=coeffhi
71 elun2 coeffheg0|i0deghg=coeffhicoeffhe0deghg0|i0deghg=coeffhi
72 70 71 syl hPoly0𝑝ge0coeffhe0coeffhe0deghg0|i0deghg=coeffhi
73 46 72 pm2.61dane hPoly0𝑝ge0coeffhe0deghg0|i0deghg=coeffhi
74 supxrub 0deghg0|i0deghg=coeffhi*coeffhe0deghg0|i0deghg=coeffhicoeffhesup0deghg0|i0deghg=coeffhi*<
75 37 73 74 syl2anc hPoly0𝑝ge0coeffhesup0deghg0|i0deghg=coeffhi*<
76 75 ralrimiva hPoly0𝑝ge0coeffhesup0deghg0|i0deghg=coeffhi*<
77 18 36 76 3jca hPoly0𝑝gh0𝑝deghsup0deghg0|i0deghg=coeffhi*<e0coeffhesup0deghg0|i0deghg=coeffhi*<
78 77 3adant2 hPoly0𝑝hg=0gh0𝑝deghsup0deghg0|i0deghg=coeffhi*<e0coeffhesup0deghg0|i0deghg=coeffhi*<
79 13 16 78 elrabd hPoly0𝑝hg=0ghdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<
80 simp2 hPoly0𝑝hg=0ghg=0
81 fveq1 c=hcg=hg
82 81 eqeq1d c=hcg=0hg=0
83 82 rspcev hdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<hg=0cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cg=0
84 79 80 83 syl2anc hPoly0𝑝hg=0gcdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cg=0
85 3 4 84 elrabd hPoly0𝑝hg=0ggb|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0
86 prfi 0deghFin
87 fzfi 0deghFin
88 abrexfi 0deghFing|i0deghg=coeffhiFin
89 87 88 ax-mp g|i0deghg=coeffhiFin
90 rabssab g0|i0deghg=coeffhig|i0deghg=coeffhi
91 ssfi g|i0deghg=coeffhiFing0|i0deghg=coeffhig|i0deghg=coeffhig0|i0deghg=coeffhiFin
92 89 90 91 mp2an g0|i0deghg=coeffhiFin
93 unfi 0deghFing0|i0deghg=coeffhiFin0deghg0|i0deghg=coeffhiFin
94 86 92 93 mp2an 0deghg0|i0deghg=coeffhiFin
95 34 ne0ii 0deghg0|i0deghg=coeffhi
96 xrltso <Or*
97 fisupcl <Or*0deghg0|i0deghg=coeffhiFin0deghg0|i0deghg=coeffhi0deghg0|i0deghg=coeffhi*sup0deghg0|i0deghg=coeffhi*<0deghg0|i0deghg=coeffhi
98 96 97 mpan 0deghg0|i0deghg=coeffhiFin0deghg0|i0deghg=coeffhi0deghg0|i0deghg=coeffhi*sup0deghg0|i0deghg=coeffhi*<0deghg0|i0deghg=coeffhi
99 94 95 30 98 mp3an12i hPoly0𝑝gsup0deghg0|i0deghg=coeffhi*<0deghg0|i0deghg=coeffhi
100 26 99 sseldd hPoly0𝑝gsup0deghg0|i0deghg=coeffhi*<0
101 100 3adant2 hPoly0𝑝hg=0gsup0deghg0|i0deghg=coeffhi*<0
102 eqidd hPoly0𝑝hg=0gb|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0=b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0
103 breq2 a=sup0deghg0|i0deghg=coeffhi*<degdadegdsup0deghg0|i0deghg=coeffhi*<
104 breq2 a=sup0deghg0|i0deghg=coeffhi*<coeffdeacoeffdesup0deghg0|i0deghg=coeffhi*<
105 104 ralbidv a=sup0deghg0|i0deghg=coeffhi*<e0coeffdeae0coeffdesup0deghg0|i0deghg=coeffhi*<
106 103 105 3anbi23d a=sup0deghg0|i0deghg=coeffhi*<d0𝑝degdae0coeffdead0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<
107 106 rabbidv a=sup0deghg0|i0deghg=coeffhi*<dPoly|d0𝑝degdae0coeffdea=dPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<
108 107 rexeqdv a=sup0deghg0|i0deghg=coeffhi*<cdPoly|d0𝑝degdae0coeffdeacb=0cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0
109 108 rabbidv a=sup0deghg0|i0deghg=coeffhi*<b|cdPoly|d0𝑝degdae0coeffdeacb=0=b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0
110 109 rspceeqv sup0deghg0|i0deghg=coeffhi*<0b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0=b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0a0b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0=b|cdPoly|d0𝑝degdae0coeffdeacb=0
111 101 102 110 syl2anc hPoly0𝑝hg=0ga0b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0=b|cdPoly|d0𝑝degdae0coeffdeacb=0
112 cnex V
113 112 rabex b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0V
114 eleq2 f=b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0gfgb|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0
115 eqeq1 f=b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0=b|cdPoly|d0𝑝degdae0coeffdeacb=0
116 115 rexbidv f=b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0a0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0a0b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0=b|cdPoly|d0𝑝degdae0coeffdeacb=0
117 114 116 anbi12d f=b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0gfa0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0gb|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0a0b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0=b|cdPoly|d0𝑝degdae0coeffdeacb=0
118 113 117 spcev gb|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0a0b|cdPoly|d0𝑝degdsup0deghg0|i0deghg=coeffhi*<e0coeffdesup0deghg0|i0deghg=coeffhi*<cb=0=b|cdPoly|d0𝑝degdae0coeffdeacb=0fgfa0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
119 85 111 118 syl2anc hPoly0𝑝hg=0gfgfa0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
120 119 3exp hPoly0𝑝hg=0gfgfa0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
121 120 rexlimiv hPoly0𝑝hg=0gfgfa0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
122 121 impcom ghPoly0𝑝hg=0fgfa0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
123 eleq2 f=b|cdPoly|d0𝑝degdae0coeffdeacb=0gfgb|cdPoly|d0𝑝degdae0coeffdeacb=0
124 2 rexbidv b=gcdPoly|d0𝑝degdae0coeffdeacb=0cdPoly|d0𝑝degdae0coeffdeacg=0
125 124 elrab gb|cdPoly|d0𝑝degdae0coeffdeacb=0gcdPoly|d0𝑝degdae0coeffdeacg=0
126 simp1 h0𝑝deghae0coeffheah0𝑝
127 126 anim2i hPolyh0𝑝deghae0coeffheahPolyh0𝑝
128 6 breq1d d=hdegdadegha
129 10 breq1d d=hcoeffdeacoeffhea
130 129 ralbidv d=he0coeffdeae0coeffhea
131 5 128 130 3anbi123d d=hd0𝑝degdae0coeffdeah0𝑝deghae0coeffhea
132 131 elrab hdPoly|d0𝑝degdae0coeffdeahPolyh0𝑝deghae0coeffhea
133 eldifsn hPoly0𝑝hPolyh0𝑝
134 127 132 133 3imtr4i hdPoly|d0𝑝degdae0coeffdeahPoly0𝑝
135 134 ssriv dPoly|d0𝑝degdae0coeffdeaPoly0𝑝
136 ssrexv dPoly|d0𝑝degdae0coeffdeaPoly0𝑝cdPoly|d0𝑝degdae0coeffdeacg=0cPoly0𝑝cg=0
137 82 cbvrexvw cPoly0𝑝cg=0hPoly0𝑝hg=0
138 136 137 imbitrdi dPoly|d0𝑝degdae0coeffdeaPoly0𝑝cdPoly|d0𝑝degdae0coeffdeacg=0hPoly0𝑝hg=0
139 135 138 ax-mp cdPoly|d0𝑝degdae0coeffdeacg=0hPoly0𝑝hg=0
140 139 anim2i gcdPoly|d0𝑝degdae0coeffdeacg=0ghPoly0𝑝hg=0
141 125 140 sylbi gb|cdPoly|d0𝑝degdae0coeffdeacb=0ghPoly0𝑝hg=0
142 123 141 syl6bi f=b|cdPoly|d0𝑝degdae0coeffdeacb=0gfghPoly0𝑝hg=0
143 142 rexlimivw a0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0gfghPoly0𝑝hg=0
144 143 impcom gfa0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0ghPoly0𝑝hg=0
145 144 exlimiv fgfa0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0ghPoly0𝑝hg=0
146 122 145 impbii ghPoly0𝑝hg=0fgfa0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
147 elaa g𝔸ghPoly0𝑝hg=0
148 eluniab gf|a0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0fgfa0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
149 146 147 148 3bitr4i g𝔸gf|a0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
150 149 eqriv 𝔸=f|a0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
151 1 rnmpt ranH=f|a0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
152 151 unieqi ranH=f|a0f=b|cdPoly|d0𝑝degdae0coeffdeacb=0
153 150 152 eqtr4i 𝔸=ranH