Metamath Proof Explorer


Theorem aareccl

Description: The reciprocal of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion aareccl A𝔸A01A𝔸

Proof

Step Hyp Ref Expression
1 elaa A𝔸AfPoly0𝑝fA=0
2 1 simprbi A𝔸fPoly0𝑝fA=0
3 2 adantr A𝔸A0fPoly0𝑝fA=0
4 aacn A𝔸A
5 reccl AA01A
6 4 5 sylan A𝔸A01A
7 6 adantr A𝔸A0fPoly0𝑝fA=01A
8 zsscn
9 8 a1i A𝔸A0fPoly0𝑝fA=0
10 simprl A𝔸A0fPoly0𝑝fA=0fPoly0𝑝
11 eldifsn fPoly0𝑝fPolyf0𝑝
12 10 11 sylib A𝔸A0fPoly0𝑝fA=0fPolyf0𝑝
13 12 simpld A𝔸A0fPoly0𝑝fA=0fPoly
14 dgrcl fPolydegf0
15 13 14 syl A𝔸A0fPoly0𝑝fA=0degf0
16 13 adantr A𝔸A0fPoly0𝑝fA=0k0degffPoly
17 0z 0
18 eqid coefff=coefff
19 18 coef2 fPoly0coefff:0
20 16 17 19 sylancl A𝔸A0fPoly0𝑝fA=0k0degfcoefff:0
21 fznn0sub k0degfdegfk0
22 21 adantl A𝔸A0fPoly0𝑝fA=0k0degfdegfk0
23 20 22 ffvelcdmd A𝔸A0fPoly0𝑝fA=0k0degfcoefffdegfk
24 9 15 23 elplyd A𝔸A0fPoly0𝑝fA=0zk=0degfcoefffdegfkzkPoly
25 0cn 0
26 eqid coeffzk=0degfcoefffdegfkzk=coeffzk=0degfcoefffdegfkzk
27 26 coefv0 zk=0degfcoefffdegfkzkPolyzk=0degfcoefffdegfkzk0=coeffzk=0degfcoefffdegfkzk0
28 24 27 syl A𝔸A0fPoly0𝑝fA=0zk=0degfcoefffdegfkzk0=coeffzk=0degfcoefffdegfkzk0
29 23 zcnd A𝔸A0fPoly0𝑝fA=0k0degfcoefffdegfk
30 eqidd A𝔸A0fPoly0𝑝fA=0zk=0degfcoefffdegfkzk=zk=0degfcoefffdegfkzk
31 24 15 29 30 coeeq2 A𝔸A0fPoly0𝑝fA=0coeffzk=0degfcoefffdegfkzk=k0ifkdegfcoefffdegfk0
32 31 fveq1d A𝔸A0fPoly0𝑝fA=0coeffzk=0degfcoefffdegfkzk0=k0ifkdegfcoefffdegfk00
33 0nn0 00
34 breq1 k=0kdegf0degf
35 oveq2 k=0degfk=degf0
36 35 fveq2d k=0coefffdegfk=coefffdegf0
37 34 36 ifbieq1d k=0ifkdegfcoefffdegfk0=if0degfcoefffdegf00
38 eqid k0ifkdegfcoefffdegfk0=k0ifkdegfcoefffdegfk0
39 fvex coefffdegf0V
40 c0ex 0V
41 39 40 ifex if0degfcoefffdegf00V
42 37 38 41 fvmpt 00k0ifkdegfcoefffdegfk00=if0degfcoefffdegf00
43 33 42 ax-mp k0ifkdegfcoefffdegfk00=if0degfcoefffdegf00
44 15 nn0ge0d A𝔸A0fPoly0𝑝fA=00degf
45 44 iftrued A𝔸A0fPoly0𝑝fA=0if0degfcoefffdegf00=coefffdegf0
46 15 nn0cnd A𝔸A0fPoly0𝑝fA=0degf
47 46 subid1d A𝔸A0fPoly0𝑝fA=0degf0=degf
48 47 fveq2d A𝔸A0fPoly0𝑝fA=0coefffdegf0=coefffdegf
49 45 48 eqtrd A𝔸A0fPoly0𝑝fA=0if0degfcoefffdegf00=coefffdegf
50 43 49 eqtrid A𝔸A0fPoly0𝑝fA=0k0ifkdegfcoefffdegfk00=coefffdegf
51 28 32 50 3eqtrd A𝔸A0fPoly0𝑝fA=0zk=0degfcoefffdegfkzk0=coefffdegf
52 12 simprd A𝔸A0fPoly0𝑝fA=0f0𝑝
53 eqid degf=degf
54 53 18 dgreq0 fPolyf=0𝑝coefffdegf=0
55 13 54 syl A𝔸A0fPoly0𝑝fA=0f=0𝑝coefffdegf=0
56 55 necon3bid A𝔸A0fPoly0𝑝fA=0f0𝑝coefffdegf0
57 52 56 mpbid A𝔸A0fPoly0𝑝fA=0coefffdegf0
58 51 57 eqnetrd A𝔸A0fPoly0𝑝fA=0zk=0degfcoefffdegfkzk00
59 ne0p 0zk=0degfcoefffdegfkzk00zk=0degfcoefffdegfkzk0𝑝
60 25 58 59 sylancr A𝔸A0fPoly0𝑝fA=0zk=0degfcoefffdegfkzk0𝑝
61 eldifsn zk=0degfcoefffdegfkzkPoly0𝑝zk=0degfcoefffdegfkzkPolyzk=0degfcoefffdegfkzk0𝑝
62 24 60 61 sylanbrc A𝔸A0fPoly0𝑝fA=0zk=0degfcoefffdegfkzkPoly0𝑝
63 oveq1 z=1Azk=1Ak
64 63 oveq2d z=1Acoefffdegfkzk=coefffdegfk1Ak
65 64 sumeq2sdv z=1Ak=0degfcoefffdegfkzk=k=0degfcoefffdegfk1Ak
66 eqid zk=0degfcoefffdegfkzk=zk=0degfcoefffdegfkzk
67 sumex k=0degfcoefffdegfk1AkV
68 65 66 67 fvmpt 1Azk=0degfcoefffdegfkzk1A=k=0degfcoefffdegfk1Ak
69 7 68 syl A𝔸A0fPoly0𝑝fA=0zk=0degfcoefffdegfkzk1A=k=0degfcoefffdegfk1Ak
70 18 coef3 fPolycoefff:0
71 13 70 syl A𝔸A0fPoly0𝑝fA=0coefff:0
72 elfznn0 n0degfn0
73 ffvelcdm coefff:0n0coefffn
74 71 72 73 syl2an A𝔸A0fPoly0𝑝fA=0n0degfcoefffn
75 4 ad2antrr A𝔸A0fPoly0𝑝fA=0A
76 expcl An0An
77 75 72 76 syl2an A𝔸A0fPoly0𝑝fA=0n0degfAn
78 74 77 mulcld A𝔸A0fPoly0𝑝fA=0n0degfcoefffnAn
79 75 15 expcld A𝔸A0fPoly0𝑝fA=0Adegf
80 79 adantr A𝔸A0fPoly0𝑝fA=0n0degfAdegf
81 simplr A𝔸A0fPoly0𝑝fA=0A0
82 15 nn0zd A𝔸A0fPoly0𝑝fA=0degf
83 75 81 82 expne0d A𝔸A0fPoly0𝑝fA=0Adegf0
84 83 adantr A𝔸A0fPoly0𝑝fA=0n0degfAdegf0
85 78 80 84 divcld A𝔸A0fPoly0𝑝fA=0n0degfcoefffnAnAdegf
86 fveq2 n=0+degf-kcoefffn=coefff0+degf-k
87 oveq2 n=0+degf-kAn=A0+degf-k
88 86 87 oveq12d n=0+degf-kcoefffnAn=coefff0+degf-kA0+degf-k
89 88 oveq1d n=0+degf-kcoefffnAnAdegf=coefff0+degf-kA0+degf-kAdegf
90 85 89 fsumrev2 A𝔸A0fPoly0𝑝fA=0n=0degfcoefffnAnAdegf=k=0degfcoefff0+degf-kA0+degf-kAdegf
91 46 adantr A𝔸A0fPoly0𝑝fA=0k0degfdegf
92 91 addlidd A𝔸A0fPoly0𝑝fA=0k0degf0+degf=degf
93 92 oveq1d A𝔸A0fPoly0𝑝fA=0k0degf0+degf-k=degfk
94 93 fveq2d A𝔸A0fPoly0𝑝fA=0k0degfcoefff0+degf-k=coefffdegfk
95 93 oveq2d A𝔸A0fPoly0𝑝fA=0k0degfA0+degf-k=Adegfk
96 75 adantr A𝔸A0fPoly0𝑝fA=0k0degfA
97 81 adantr A𝔸A0fPoly0𝑝fA=0k0degfA0
98 elfznn0 k0degfk0
99 98 adantl A𝔸A0fPoly0𝑝fA=0k0degfk0
100 99 nn0zd A𝔸A0fPoly0𝑝fA=0k0degfk
101 82 adantr A𝔸A0fPoly0𝑝fA=0k0degfdegf
102 96 97 100 101 expsubd A𝔸A0fPoly0𝑝fA=0k0degfAdegfk=AdegfAk
103 95 102 eqtrd A𝔸A0fPoly0𝑝fA=0k0degfA0+degf-k=AdegfAk
104 94 103 oveq12d A𝔸A0fPoly0𝑝fA=0k0degfcoefff0+degf-kA0+degf-k=coefffdegfkAdegfAk
105 104 oveq1d A𝔸A0fPoly0𝑝fA=0k0degfcoefff0+degf-kA0+degf-kAdegf=coefffdegfkAdegfAkAdegf
106 79 adantr A𝔸A0fPoly0𝑝fA=0k0degfAdegf
107 expcl Ak0Ak
108 75 98 107 syl2an A𝔸A0fPoly0𝑝fA=0k0degfAk
109 96 97 100 expne0d A𝔸A0fPoly0𝑝fA=0k0degfAk0
110 106 108 109 divcld A𝔸A0fPoly0𝑝fA=0k0degfAdegfAk
111 83 adantr A𝔸A0fPoly0𝑝fA=0k0degfAdegf0
112 29 110 106 111 divassd A𝔸A0fPoly0𝑝fA=0k0degfcoefffdegfkAdegfAkAdegf=coefffdegfkAdegfAkAdegf
113 106 111 dividd A𝔸A0fPoly0𝑝fA=0k0degfAdegfAdegf=1
114 113 oveq1d A𝔸A0fPoly0𝑝fA=0k0degfAdegfAdegfAk=1Ak
115 106 108 106 109 111 divdiv32d A𝔸A0fPoly0𝑝fA=0k0degfAdegfAkAdegf=AdegfAdegfAk
116 96 97 100 exprecd A𝔸A0fPoly0𝑝fA=0k0degf1Ak=1Ak
117 114 115 116 3eqtr4d A𝔸A0fPoly0𝑝fA=0k0degfAdegfAkAdegf=1Ak
118 117 oveq2d A𝔸A0fPoly0𝑝fA=0k0degfcoefffdegfkAdegfAkAdegf=coefffdegfk1Ak
119 105 112 118 3eqtrd A𝔸A0fPoly0𝑝fA=0k0degfcoefff0+degf-kA0+degf-kAdegf=coefffdegfk1Ak
120 119 sumeq2dv A𝔸A0fPoly0𝑝fA=0k=0degfcoefff0+degf-kA0+degf-kAdegf=k=0degfcoefffdegfk1Ak
121 90 120 eqtrd A𝔸A0fPoly0𝑝fA=0n=0degfcoefffnAnAdegf=k=0degfcoefffdegfk1Ak
122 18 53 coeid2 fPolyAfA=n=0degfcoefffnAn
123 13 75 122 syl2anc A𝔸A0fPoly0𝑝fA=0fA=n=0degfcoefffnAn
124 simprr A𝔸A0fPoly0𝑝fA=0fA=0
125 123 124 eqtr3d A𝔸A0fPoly0𝑝fA=0n=0degfcoefffnAn=0
126 125 oveq1d A𝔸A0fPoly0𝑝fA=0n=0degfcoefffnAnAdegf=0Adegf
127 fzfid A𝔸A0fPoly0𝑝fA=00degfFin
128 127 79 78 83 fsumdivc A𝔸A0fPoly0𝑝fA=0n=0degfcoefffnAnAdegf=n=0degfcoefffnAnAdegf
129 79 83 div0d A𝔸A0fPoly0𝑝fA=00Adegf=0
130 126 128 129 3eqtr3d A𝔸A0fPoly0𝑝fA=0n=0degfcoefffnAnAdegf=0
131 69 121 130 3eqtr2d A𝔸A0fPoly0𝑝fA=0zk=0degfcoefffdegfkzk1A=0
132 fveq1 g=zk=0degfcoefffdegfkzkg1A=zk=0degfcoefffdegfkzk1A
133 132 eqeq1d g=zk=0degfcoefffdegfkzkg1A=0zk=0degfcoefffdegfkzk1A=0
134 133 rspcev zk=0degfcoefffdegfkzkPoly0𝑝zk=0degfcoefffdegfkzk1A=0gPoly0𝑝g1A=0
135 62 131 134 syl2anc A𝔸A0fPoly0𝑝fA=0gPoly0𝑝g1A=0
136 elaa 1A𝔸1AgPoly0𝑝g1A=0
137 7 135 136 sylanbrc A𝔸A0fPoly0𝑝fA=01A𝔸
138 3 137 rexlimddv A𝔸A01A𝔸