Step |
Hyp |
Ref |
Expression |
1 |
|
elaa |
|
2 |
1
|
simprbi |
|
3 |
2
|
adantr |
|
4 |
|
aacn |
|
5 |
|
reccl |
|
6 |
4 5
|
sylan |
|
7 |
6
|
adantr |
|
8 |
|
zsscn |
|
9 |
8
|
a1i |
|
10 |
|
simprl |
|
11 |
|
eldifsn |
|
12 |
10 11
|
sylib |
|
13 |
12
|
simpld |
|
14 |
|
dgrcl |
|
15 |
13 14
|
syl |
|
16 |
13
|
adantr |
|
17 |
|
0z |
|
18 |
|
eqid |
|
19 |
18
|
coef2 |
|
20 |
16 17 19
|
sylancl |
|
21 |
|
fznn0sub |
|
22 |
21
|
adantl |
|
23 |
20 22
|
ffvelrnd |
|
24 |
9 15 23
|
elplyd |
|
25 |
|
0cn |
|
26 |
|
eqid |
|
27 |
26
|
coefv0 |
|
28 |
24 27
|
syl |
|
29 |
23
|
zcnd |
|
30 |
|
eqidd |
|
31 |
24 15 29 30
|
coeeq2 |
|
32 |
31
|
fveq1d |
|
33 |
|
0nn0 |
|
34 |
|
breq1 |
|
35 |
|
oveq2 |
|
36 |
35
|
fveq2d |
|
37 |
34 36
|
ifbieq1d |
|
38 |
|
eqid |
|
39 |
|
fvex |
|
40 |
|
c0ex |
|
41 |
39 40
|
ifex |
|
42 |
37 38 41
|
fvmpt |
|
43 |
33 42
|
ax-mp |
|
44 |
15
|
nn0ge0d |
|
45 |
44
|
iftrued |
|
46 |
15
|
nn0cnd |
|
47 |
46
|
subid1d |
|
48 |
47
|
fveq2d |
|
49 |
45 48
|
eqtrd |
|
50 |
43 49
|
eqtrid |
|
51 |
28 32 50
|
3eqtrd |
|
52 |
12
|
simprd |
|
53 |
|
eqid |
|
54 |
53 18
|
dgreq0 |
|
55 |
13 54
|
syl |
|
56 |
55
|
necon3bid |
|
57 |
52 56
|
mpbid |
|
58 |
51 57
|
eqnetrd |
|
59 |
|
ne0p |
|
60 |
25 58 59
|
sylancr |
|
61 |
|
eldifsn |
|
62 |
24 60 61
|
sylanbrc |
|
63 |
|
oveq1 |
|
64 |
63
|
oveq2d |
|
65 |
64
|
sumeq2sdv |
|
66 |
|
eqid |
|
67 |
|
sumex |
|
68 |
65 66 67
|
fvmpt |
|
69 |
7 68
|
syl |
|
70 |
18
|
coef3 |
|
71 |
13 70
|
syl |
|
72 |
|
elfznn0 |
|
73 |
|
ffvelrn |
|
74 |
71 72 73
|
syl2an |
|
75 |
4
|
ad2antrr |
|
76 |
|
expcl |
|
77 |
75 72 76
|
syl2an |
|
78 |
74 77
|
mulcld |
|
79 |
75 15
|
expcld |
|
80 |
79
|
adantr |
|
81 |
|
simplr |
|
82 |
15
|
nn0zd |
|
83 |
75 81 82
|
expne0d |
|
84 |
83
|
adantr |
|
85 |
78 80 84
|
divcld |
|
86 |
|
fveq2 |
|
87 |
|
oveq2 |
|
88 |
86 87
|
oveq12d |
|
89 |
88
|
oveq1d |
|
90 |
85 89
|
fsumrev2 |
|
91 |
46
|
adantr |
|
92 |
91
|
addid2d |
|
93 |
92
|
oveq1d |
|
94 |
93
|
fveq2d |
|
95 |
93
|
oveq2d |
|
96 |
75
|
adantr |
|
97 |
81
|
adantr |
|
98 |
|
elfznn0 |
|
99 |
98
|
adantl |
|
100 |
99
|
nn0zd |
|
101 |
82
|
adantr |
|
102 |
96 97 100 101
|
expsubd |
|
103 |
95 102
|
eqtrd |
|
104 |
94 103
|
oveq12d |
|
105 |
104
|
oveq1d |
|
106 |
79
|
adantr |
|
107 |
|
expcl |
|
108 |
75 98 107
|
syl2an |
|
109 |
96 97 100
|
expne0d |
|
110 |
106 108 109
|
divcld |
|
111 |
83
|
adantr |
|
112 |
29 110 106 111
|
divassd |
|
113 |
106 111
|
dividd |
|
114 |
113
|
oveq1d |
|
115 |
106 108 106 109 111
|
divdiv32d |
|
116 |
96 97 100
|
exprecd |
|
117 |
114 115 116
|
3eqtr4d |
|
118 |
117
|
oveq2d |
|
119 |
105 112 118
|
3eqtrd |
|
120 |
119
|
sumeq2dv |
|
121 |
90 120
|
eqtrd |
|
122 |
18 53
|
coeid2 |
|
123 |
13 75 122
|
syl2anc |
|
124 |
|
simprr |
|
125 |
123 124
|
eqtr3d |
|
126 |
125
|
oveq1d |
|
127 |
|
fzfid |
|
128 |
127 79 78 83
|
fsumdivc |
|
129 |
79 83
|
div0d |
|
130 |
126 128 129
|
3eqtr3d |
|
131 |
69 121 130
|
3eqtr2d |
|
132 |
|
fveq1 |
|
133 |
132
|
eqeq1d |
|
134 |
133
|
rspcev |
|
135 |
62 131 134
|
syl2anc |
|
136 |
|
elaa |
|
137 |
7 135 136
|
sylanbrc |
|
138 |
3 137
|
rexlimddv |
|