Metamath Proof Explorer


Theorem aareccl

Description: The reciprocal of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion aareccl A 𝔸 A 0 1 A 𝔸

Proof

Step Hyp Ref Expression
1 elaa A 𝔸 A f Poly 0 𝑝 f A = 0
2 1 simprbi A 𝔸 f Poly 0 𝑝 f A = 0
3 2 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0
4 aacn A 𝔸 A
5 reccl A A 0 1 A
6 4 5 sylan A 𝔸 A 0 1 A
7 6 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 1 A
8 zsscn
9 8 a1i A 𝔸 A 0 f Poly 0 𝑝 f A = 0
10 simprl A 𝔸 A 0 f Poly 0 𝑝 f A = 0 f Poly 0 𝑝
11 eldifsn f Poly 0 𝑝 f Poly f 0 𝑝
12 10 11 sylib A 𝔸 A 0 f Poly 0 𝑝 f A = 0 f Poly f 0 𝑝
13 12 simpld A 𝔸 A 0 f Poly 0 𝑝 f A = 0 f Poly
14 dgrcl f Poly deg f 0
15 13 14 syl A 𝔸 A 0 f Poly 0 𝑝 f A = 0 deg f 0
16 13 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f f Poly
17 0z 0
18 eqid coeff f = coeff f
19 18 coef2 f Poly 0 coeff f : 0
20 16 17 19 sylancl A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f coeff f : 0
21 fznn0sub k 0 deg f deg f k 0
22 21 adantl A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f deg f k 0
23 20 22 ffvelrnd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f coeff f deg f k
24 9 15 23 elplyd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 z k = 0 deg f coeff f deg f k z k Poly
25 0cn 0
26 eqid coeff z k = 0 deg f coeff f deg f k z k = coeff z k = 0 deg f coeff f deg f k z k
27 26 coefv0 z k = 0 deg f coeff f deg f k z k Poly z k = 0 deg f coeff f deg f k z k 0 = coeff z k = 0 deg f coeff f deg f k z k 0
28 24 27 syl A 𝔸 A 0 f Poly 0 𝑝 f A = 0 z k = 0 deg f coeff f deg f k z k 0 = coeff z k = 0 deg f coeff f deg f k z k 0
29 23 zcnd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f coeff f deg f k
30 eqidd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 z k = 0 deg f coeff f deg f k z k = z k = 0 deg f coeff f deg f k z k
31 24 15 29 30 coeeq2 A 𝔸 A 0 f Poly 0 𝑝 f A = 0 coeff z k = 0 deg f coeff f deg f k z k = k 0 if k deg f coeff f deg f k 0
32 31 fveq1d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 coeff z k = 0 deg f coeff f deg f k z k 0 = k 0 if k deg f coeff f deg f k 0 0
33 0nn0 0 0
34 breq1 k = 0 k deg f 0 deg f
35 oveq2 k = 0 deg f k = deg f 0
36 35 fveq2d k = 0 coeff f deg f k = coeff f deg f 0
37 34 36 ifbieq1d k = 0 if k deg f coeff f deg f k 0 = if 0 deg f coeff f deg f 0 0
38 eqid k 0 if k deg f coeff f deg f k 0 = k 0 if k deg f coeff f deg f k 0
39 fvex coeff f deg f 0 V
40 c0ex 0 V
41 39 40 ifex if 0 deg f coeff f deg f 0 0 V
42 37 38 41 fvmpt 0 0 k 0 if k deg f coeff f deg f k 0 0 = if 0 deg f coeff f deg f 0 0
43 33 42 ax-mp k 0 if k deg f coeff f deg f k 0 0 = if 0 deg f coeff f deg f 0 0
44 15 nn0ge0d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 0 deg f
45 44 iftrued A 𝔸 A 0 f Poly 0 𝑝 f A = 0 if 0 deg f coeff f deg f 0 0 = coeff f deg f 0
46 15 nn0cnd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 deg f
47 46 subid1d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 deg f 0 = deg f
48 47 fveq2d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 coeff f deg f 0 = coeff f deg f
49 45 48 eqtrd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 if 0 deg f coeff f deg f 0 0 = coeff f deg f
50 43 49 eqtrid A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 if k deg f coeff f deg f k 0 0 = coeff f deg f
51 28 32 50 3eqtrd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 z k = 0 deg f coeff f deg f k z k 0 = coeff f deg f
52 12 simprd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 f 0 𝑝
53 eqid deg f = deg f
54 53 18 dgreq0 f Poly f = 0 𝑝 coeff f deg f = 0
55 13 54 syl A 𝔸 A 0 f Poly 0 𝑝 f A = 0 f = 0 𝑝 coeff f deg f = 0
56 55 necon3bid A 𝔸 A 0 f Poly 0 𝑝 f A = 0 f 0 𝑝 coeff f deg f 0
57 52 56 mpbid A 𝔸 A 0 f Poly 0 𝑝 f A = 0 coeff f deg f 0
58 51 57 eqnetrd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 z k = 0 deg f coeff f deg f k z k 0 0
59 ne0p 0 z k = 0 deg f coeff f deg f k z k 0 0 z k = 0 deg f coeff f deg f k z k 0 𝑝
60 25 58 59 sylancr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 z k = 0 deg f coeff f deg f k z k 0 𝑝
61 eldifsn z k = 0 deg f coeff f deg f k z k Poly 0 𝑝 z k = 0 deg f coeff f deg f k z k Poly z k = 0 deg f coeff f deg f k z k 0 𝑝
62 24 60 61 sylanbrc A 𝔸 A 0 f Poly 0 𝑝 f A = 0 z k = 0 deg f coeff f deg f k z k Poly 0 𝑝
63 oveq1 z = 1 A z k = 1 A k
64 63 oveq2d z = 1 A coeff f deg f k z k = coeff f deg f k 1 A k
65 64 sumeq2sdv z = 1 A k = 0 deg f coeff f deg f k z k = k = 0 deg f coeff f deg f k 1 A k
66 eqid z k = 0 deg f coeff f deg f k z k = z k = 0 deg f coeff f deg f k z k
67 sumex k = 0 deg f coeff f deg f k 1 A k V
68 65 66 67 fvmpt 1 A z k = 0 deg f coeff f deg f k z k 1 A = k = 0 deg f coeff f deg f k 1 A k
69 7 68 syl A 𝔸 A 0 f Poly 0 𝑝 f A = 0 z k = 0 deg f coeff f deg f k z k 1 A = k = 0 deg f coeff f deg f k 1 A k
70 18 coef3 f Poly coeff f : 0
71 13 70 syl A 𝔸 A 0 f Poly 0 𝑝 f A = 0 coeff f : 0
72 elfznn0 n 0 deg f n 0
73 ffvelrn coeff f : 0 n 0 coeff f n
74 71 72 73 syl2an A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n 0 deg f coeff f n
75 4 ad2antrr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 A
76 expcl A n 0 A n
77 75 72 76 syl2an A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n 0 deg f A n
78 74 77 mulcld A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n 0 deg f coeff f n A n
79 75 15 expcld A 𝔸 A 0 f Poly 0 𝑝 f A = 0 A deg f
80 79 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n 0 deg f A deg f
81 simplr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 A 0
82 15 nn0zd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 deg f
83 75 81 82 expne0d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 A deg f 0
84 83 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n 0 deg f A deg f 0
85 78 80 84 divcld A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n 0 deg f coeff f n A n A deg f
86 fveq2 n = 0 + deg f - k coeff f n = coeff f 0 + deg f - k
87 oveq2 n = 0 + deg f - k A n = A 0 + deg f - k
88 86 87 oveq12d n = 0 + deg f - k coeff f n A n = coeff f 0 + deg f - k A 0 + deg f - k
89 88 oveq1d n = 0 + deg f - k coeff f n A n A deg f = coeff f 0 + deg f - k A 0 + deg f - k A deg f
90 85 89 fsumrev2 A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n = 0 deg f coeff f n A n A deg f = k = 0 deg f coeff f 0 + deg f - k A 0 + deg f - k A deg f
91 46 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f deg f
92 91 addid2d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f 0 + deg f = deg f
93 92 oveq1d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f 0 + deg f - k = deg f k
94 93 fveq2d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f coeff f 0 + deg f - k = coeff f deg f k
95 93 oveq2d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A 0 + deg f - k = A deg f k
96 75 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A
97 81 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A 0
98 elfznn0 k 0 deg f k 0
99 98 adantl A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f k 0
100 99 nn0zd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f k
101 82 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f deg f
102 96 97 100 101 expsubd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A deg f k = A deg f A k
103 95 102 eqtrd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A 0 + deg f - k = A deg f A k
104 94 103 oveq12d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f coeff f 0 + deg f - k A 0 + deg f - k = coeff f deg f k A deg f A k
105 104 oveq1d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f coeff f 0 + deg f - k A 0 + deg f - k A deg f = coeff f deg f k A deg f A k A deg f
106 79 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A deg f
107 expcl A k 0 A k
108 75 98 107 syl2an A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A k
109 96 97 100 expne0d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A k 0
110 106 108 109 divcld A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A deg f A k
111 83 adantr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A deg f 0
112 29 110 106 111 divassd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f coeff f deg f k A deg f A k A deg f = coeff f deg f k A deg f A k A deg f
113 106 111 dividd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A deg f A deg f = 1
114 113 oveq1d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A deg f A deg f A k = 1 A k
115 106 108 106 109 111 divdiv32d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A deg f A k A deg f = A deg f A deg f A k
116 96 97 100 exprecd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f 1 A k = 1 A k
117 114 115 116 3eqtr4d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f A deg f A k A deg f = 1 A k
118 117 oveq2d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f coeff f deg f k A deg f A k A deg f = coeff f deg f k 1 A k
119 105 112 118 3eqtrd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k 0 deg f coeff f 0 + deg f - k A 0 + deg f - k A deg f = coeff f deg f k 1 A k
120 119 sumeq2dv A 𝔸 A 0 f Poly 0 𝑝 f A = 0 k = 0 deg f coeff f 0 + deg f - k A 0 + deg f - k A deg f = k = 0 deg f coeff f deg f k 1 A k
121 90 120 eqtrd A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n = 0 deg f coeff f n A n A deg f = k = 0 deg f coeff f deg f k 1 A k
122 18 53 coeid2 f Poly A f A = n = 0 deg f coeff f n A n
123 13 75 122 syl2anc A 𝔸 A 0 f Poly 0 𝑝 f A = 0 f A = n = 0 deg f coeff f n A n
124 simprr A 𝔸 A 0 f Poly 0 𝑝 f A = 0 f A = 0
125 123 124 eqtr3d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n = 0 deg f coeff f n A n = 0
126 125 oveq1d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n = 0 deg f coeff f n A n A deg f = 0 A deg f
127 fzfid A 𝔸 A 0 f Poly 0 𝑝 f A = 0 0 deg f Fin
128 127 79 78 83 fsumdivc A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n = 0 deg f coeff f n A n A deg f = n = 0 deg f coeff f n A n A deg f
129 79 83 div0d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 0 A deg f = 0
130 126 128 129 3eqtr3d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 n = 0 deg f coeff f n A n A deg f = 0
131 69 121 130 3eqtr2d A 𝔸 A 0 f Poly 0 𝑝 f A = 0 z k = 0 deg f coeff f deg f k z k 1 A = 0
132 fveq1 g = z k = 0 deg f coeff f deg f k z k g 1 A = z k = 0 deg f coeff f deg f k z k 1 A
133 132 eqeq1d g = z k = 0 deg f coeff f deg f k z k g 1 A = 0 z k = 0 deg f coeff f deg f k z k 1 A = 0
134 133 rspcev z k = 0 deg f coeff f deg f k z k Poly 0 𝑝 z k = 0 deg f coeff f deg f k z k 1 A = 0 g Poly 0 𝑝 g 1 A = 0
135 62 131 134 syl2anc A 𝔸 A 0 f Poly 0 𝑝 f A = 0 g Poly 0 𝑝 g 1 A = 0
136 elaa 1 A 𝔸 1 A g Poly 0 𝑝 g 1 A = 0
137 7 135 136 sylanbrc A 𝔸 A 0 f Poly 0 𝑝 f A = 0 1 A 𝔸
138 3 137 rexlimddv A 𝔸 A 0 1 A 𝔸