| Step | Hyp | Ref | Expression | 
						
							| 1 |  | binomcxp.a |  | 
						
							| 2 |  | binomcxp.b |  | 
						
							| 3 |  | binomcxp.lt |  | 
						
							| 4 |  | binomcxp.c |  | 
						
							| 5 | 1 | rpcnd |  | 
						
							| 6 | 2 | recnd |  | 
						
							| 7 |  | binom |  | 
						
							| 8 | 7 | 3expia |  | 
						
							| 9 | 5 6 8 | syl2anc |  | 
						
							| 10 | 9 | imp |  | 
						
							| 11 | 5 | adantr |  | 
						
							| 12 | 6 | adantr |  | 
						
							| 13 | 11 12 | addcld |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 |  | cxpexp |  | 
						
							| 16 | 13 14 15 | syl2anc |  | 
						
							| 17 |  | elfznn0 |  | 
						
							| 18 |  | simplr |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 | 18 19 | bccbc |  | 
						
							| 21 | 17 20 | sylan2 |  | 
						
							| 22 | 5 | ad2antrr |  | 
						
							| 23 |  | elfzle2 |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 |  | nn0sub |  | 
						
							| 26 | 25 | ancoms |  | 
						
							| 27 | 26 | adantll |  | 
						
							| 28 | 17 27 | sylan2 |  | 
						
							| 29 | 24 28 | mpbid |  | 
						
							| 30 |  | cxpexp |  | 
						
							| 31 | 22 29 30 | syl2anc |  | 
						
							| 32 | 31 | oveq1d |  | 
						
							| 33 | 21 32 | oveq12d |  | 
						
							| 34 | 33 | sumeq2dv |  | 
						
							| 35 | 10 16 34 | 3eqtr4d |  | 
						
							| 36 | 4 | adantr |  | 
						
							| 37 | 13 36 | cxpcld |  | 
						
							| 38 | 35 37 | eqeltrrd |  | 
						
							| 39 | 38 | addridd |  | 
						
							| 40 |  | nn0uz |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | 1nn0 |  | 
						
							| 43 | 42 | a1i |  | 
						
							| 44 | 14 43 | nn0addcld |  | 
						
							| 45 |  | eqidd |  | 
						
							| 46 |  | simpr |  | 
						
							| 47 | 46 | oveq2d |  | 
						
							| 48 | 46 | oveq2d |  | 
						
							| 49 | 48 | oveq2d |  | 
						
							| 50 | 46 | oveq2d |  | 
						
							| 51 | 49 50 | oveq12d |  | 
						
							| 52 | 47 51 | oveq12d |  | 
						
							| 53 | 4 | ad2antrr |  | 
						
							| 54 | 53 19 | bcccl |  | 
						
							| 55 | 5 | ad2antrr |  | 
						
							| 56 | 19 | nn0cnd |  | 
						
							| 57 | 53 56 | subcld |  | 
						
							| 58 | 55 57 | cxpcld |  | 
						
							| 59 | 6 | ad2antrr |  | 
						
							| 60 | 59 19 | expcld |  | 
						
							| 61 | 58 60 | mulcld |  | 
						
							| 62 | 54 61 | mulcld |  | 
						
							| 63 | 45 52 19 62 | fvmptd |  | 
						
							| 64 |  | peano2nn0 |  | 
						
							| 65 | 64 | adantl |  | 
						
							| 66 |  | c0ex |  | 
						
							| 67 | 66 | fconst |  | 
						
							| 68 | 67 | a1i |  | 
						
							| 69 |  | 0red |  | 
						
							| 70 | 69 | snssd |  | 
						
							| 71 | 68 70 | fssd |  | 
						
							| 72 | 71 | ffvelcdmda |  | 
						
							| 73 | 63 62 | eqeltrd |  | 
						
							| 74 |  | climrel |  | 
						
							| 75 | 40 | xpeq1i |  | 
						
							| 76 |  | seqeq3 |  | 
						
							| 77 | 75 76 | ax-mp |  | 
						
							| 78 |  | 0z |  | 
						
							| 79 |  | serclim0 |  | 
						
							| 80 | 78 79 | ax-mp |  | 
						
							| 81 | 77 80 | eqbrtri |  | 
						
							| 82 |  | releldm |  | 
						
							| 83 | 74 81 82 | mp2an |  | 
						
							| 84 | 83 | a1i |  | 
						
							| 85 |  | eluznn0 |  | 
						
							| 86 | 65 85 | sylan |  | 
						
							| 87 | 86 63 | syldan |  | 
						
							| 88 |  | 0zd |  | 
						
							| 89 | 86 | nn0zd |  | 
						
							| 90 |  | 1zzd |  | 
						
							| 91 | 89 90 | zsubcld |  | 
						
							| 92 | 14 | nn0zd |  | 
						
							| 93 | 92 | adantr |  | 
						
							| 94 | 14 | nn0ge0d |  | 
						
							| 95 | 94 | adantr |  | 
						
							| 96 |  | eluzle |  | 
						
							| 97 | 96 | adantl |  | 
						
							| 98 | 93 | zred |  | 
						
							| 99 |  | 1red |  | 
						
							| 100 | 86 | nn0red |  | 
						
							| 101 |  | leaddsub |  | 
						
							| 102 | 98 99 100 101 | syl3anc |  | 
						
							| 103 | 97 102 | mpbid |  | 
						
							| 104 | 88 91 93 95 103 | elfzd |  | 
						
							| 105 | 4 | ad2antrr |  | 
						
							| 106 | 105 86 | bcc0 |  | 
						
							| 107 | 104 106 | mpbird |  | 
						
							| 108 | 107 | oveq1d |  | 
						
							| 109 | 5 | ad2antrr |  | 
						
							| 110 |  | eluzelcn |  | 
						
							| 111 | 110 | adantl |  | 
						
							| 112 | 105 111 | subcld |  | 
						
							| 113 | 109 112 | cxpcld |  | 
						
							| 114 | 6 | ad2antrr |  | 
						
							| 115 | 114 86 | expcld |  | 
						
							| 116 | 113 115 | mulcld |  | 
						
							| 117 | 116 | mul02d |  | 
						
							| 118 | 108 117 | eqtrd |  | 
						
							| 119 | 87 118 | eqtrd |  | 
						
							| 120 | 119 | abs00bd |  | 
						
							| 121 |  | 0re |  | 
						
							| 122 | 120 121 | eqeltrdi |  | 
						
							| 123 |  | eqle |  | 
						
							| 124 | 122 120 123 | syl2anc |  | 
						
							| 125 | 72 | recnd |  | 
						
							| 126 | 86 125 | syldan |  | 
						
							| 127 | 126 | mul02d |  | 
						
							| 128 | 124 127 | breqtrrd |  | 
						
							| 129 | 40 65 72 73 84 69 128 | cvgcmpce |  | 
						
							| 130 | 40 41 44 63 62 129 | isumsplit |  | 
						
							| 131 |  | 1cnd |  | 
						
							| 132 | 36 131 | pncand |  | 
						
							| 133 | 132 | oveq2d |  | 
						
							| 134 | 133 | sumeq1d |  | 
						
							| 135 | 134 | oveq1d |  | 
						
							| 136 | 118 | sumeq2dv |  | 
						
							| 137 |  | ssid |  | 
						
							| 138 | 137 | orci |  | 
						
							| 139 |  | sumz |  | 
						
							| 140 | 138 139 | ax-mp |  | 
						
							| 141 | 136 140 | eqtrdi |  | 
						
							| 142 | 141 | oveq2d |  | 
						
							| 143 | 130 135 142 | 3eqtrd |  | 
						
							| 144 | 39 143 35 | 3eqtr4rd |  |