Metamath Proof Explorer


Theorem binomcxplemnn0

Description: Lemma for binomcxp . When C is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set ( 0 ... C ) , and when the index set is widened beyond C the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φA+
binomcxp.b φB
binomcxp.lt φB<A
binomcxp.c φC
Assertion binomcxplemnn0 φC0A+BC=k0CC𝑐kACkBk

Proof

Step Hyp Ref Expression
1 binomcxp.a φA+
2 binomcxp.b φB
3 binomcxp.lt φB<A
4 binomcxp.c φC
5 1 rpcnd φA
6 2 recnd φB
7 binom ABC0A+BC=k=0C(Ck)ACkBk
8 7 3expia ABC0A+BC=k=0C(Ck)ACkBk
9 5 6 8 syl2anc φC0A+BC=k=0C(Ck)ACkBk
10 9 imp φC0A+BC=k=0C(Ck)ACkBk
11 5 adantr φC0A
12 6 adantr φC0B
13 11 12 addcld φC0A+B
14 simpr φC0C0
15 cxpexp A+BC0A+BC=A+BC
16 13 14 15 syl2anc φC0A+BC=A+BC
17 elfznn0 k0Ck0
18 simplr φC0k0C0
19 simpr φC0k0k0
20 18 19 bccbc φC0k0CC𝑐k=(Ck)
21 17 20 sylan2 φC0k0CCC𝑐k=(Ck)
22 5 ad2antrr φC0k0CA
23 elfzle2 k0CkC
24 23 adantl φC0k0CkC
25 nn0sub k0C0kCCk0
26 25 ancoms C0k0kCCk0
27 26 adantll φC0k0kCCk0
28 17 27 sylan2 φC0k0CkCCk0
29 24 28 mpbid φC0k0CCk0
30 cxpexp ACk0ACk=ACk
31 22 29 30 syl2anc φC0k0CACk=ACk
32 31 oveq1d φC0k0CACkBk=ACkBk
33 21 32 oveq12d φC0k0CCC𝑐kACkBk=(Ck)ACkBk
34 33 sumeq2dv φC0k=0CCC𝑐kACkBk=k=0C(Ck)ACkBk
35 10 16 34 3eqtr4d φC0A+BC=k=0CCC𝑐kACkBk
36 4 adantr φC0C
37 13 36 cxpcld φC0A+BC
38 35 37 eqeltrrd φC0k=0CCC𝑐kACkBk
39 38 addridd φC0k=0CCC𝑐kACkBk+0=k=0CCC𝑐kACkBk
40 nn0uz 0=0
41 eqid C+1=C+1
42 1nn0 10
43 42 a1i φC010
44 14 43 nn0addcld φC0C+10
45 eqidd φC0k0j0CC𝑐jACjBj=j0CC𝑐jACjBj
46 simpr φC0k0j=kj=k
47 46 oveq2d φC0k0j=kCC𝑐j=CC𝑐k
48 46 oveq2d φC0k0j=kCj=Ck
49 48 oveq2d φC0k0j=kACj=ACk
50 46 oveq2d φC0k0j=kBj=Bk
51 49 50 oveq12d φC0k0j=kACjBj=ACkBk
52 47 51 oveq12d φC0k0j=kCC𝑐jACjBj=CC𝑐kACkBk
53 4 ad2antrr φC0k0C
54 53 19 bcccl φC0k0CC𝑐k
55 5 ad2antrr φC0k0A
56 19 nn0cnd φC0k0k
57 53 56 subcld φC0k0Ck
58 55 57 cxpcld φC0k0ACk
59 6 ad2antrr φC0k0B
60 59 19 expcld φC0k0Bk
61 58 60 mulcld φC0k0ACkBk
62 54 61 mulcld φC0k0CC𝑐kACkBk
63 45 52 19 62 fvmptd φC0k0j0CC𝑐jACjBjk=CC𝑐kACkBk
64 peano2nn0 C0C+10
65 64 adantl φC0C+10
66 c0ex 0V
67 66 fconst 0×0:00
68 67 a1i φC00×0:00
69 0red φC00
70 69 snssd φC00
71 68 70 fssd φC00×0:0
72 71 ffvelcdmda φC0k00×0k
73 63 62 eqeltrd φC0k0j0CC𝑐jACjBjk
74 climrel Rel
75 40 xpeq1i 0×0=0×0
76 seqeq3 0×0=0×0seq0+0×0=seq0+0×0
77 75 76 ax-mp seq0+0×0=seq0+0×0
78 0z 0
79 serclim0 0seq0+0×00
80 78 79 ax-mp seq0+0×00
81 77 80 eqbrtri seq0+0×00
82 releldm Relseq0+0×00seq0+0×0dom
83 74 81 82 mp2an seq0+0×0dom
84 83 a1i φC0seq0+0×0dom
85 eluznn0 C+10kC+1k0
86 65 85 sylan φC0kC+1k0
87 86 63 syldan φC0kC+1j0CC𝑐jACjBjk=CC𝑐kACkBk
88 0zd φC0kC+10
89 86 nn0zd φC0kC+1k
90 1zzd φC0kC+11
91 89 90 zsubcld φC0kC+1k1
92 14 nn0zd φC0C
93 92 adantr φC0kC+1C
94 14 nn0ge0d φC00C
95 94 adantr φC0kC+10C
96 eluzle kC+1C+1k
97 96 adantl φC0kC+1C+1k
98 93 zred φC0kC+1C
99 1red φC0kC+11
100 86 nn0red φC0kC+1k
101 leaddsub C1kC+1kCk1
102 98 99 100 101 syl3anc φC0kC+1C+1kCk1
103 97 102 mpbid φC0kC+1Ck1
104 88 91 93 95 103 elfzd φC0kC+1C0k1
105 4 ad2antrr φC0kC+1C
106 105 86 bcc0 φC0kC+1CC𝑐k=0C0k1
107 104 106 mpbird φC0kC+1CC𝑐k=0
108 107 oveq1d φC0kC+1CC𝑐kACkBk=0ACkBk
109 5 ad2antrr φC0kC+1A
110 eluzelcn kC+1k
111 110 adantl φC0kC+1k
112 105 111 subcld φC0kC+1Ck
113 109 112 cxpcld φC0kC+1ACk
114 6 ad2antrr φC0kC+1B
115 114 86 expcld φC0kC+1Bk
116 113 115 mulcld φC0kC+1ACkBk
117 116 mul02d φC0kC+10ACkBk=0
118 108 117 eqtrd φC0kC+1CC𝑐kACkBk=0
119 87 118 eqtrd φC0kC+1j0CC𝑐jACjBjk=0
120 119 abs00bd φC0kC+1j0CC𝑐jACjBjk=0
121 0re 0
122 120 121 eqeltrdi φC0kC+1j0CC𝑐jACjBjk
123 eqle j0CC𝑐jACjBjkj0CC𝑐jACjBjk=0j0CC𝑐jACjBjk0
124 122 120 123 syl2anc φC0kC+1j0CC𝑐jACjBjk0
125 72 recnd φC0k00×0k
126 86 125 syldan φC0kC+10×0k
127 126 mul02d φC0kC+100×0k=0
128 124 127 breqtrrd φC0kC+1j0CC𝑐jACjBjk00×0k
129 40 65 72 73 84 69 128 cvgcmpce φC0seq0+j0CC𝑐jACjBjdom
130 40 41 44 63 62 129 isumsplit φC0k0CC𝑐kACkBk=k=0C+1-1CC𝑐kACkBk+kC+1CC𝑐kACkBk
131 1cnd φC01
132 36 131 pncand φC0C+1-1=C
133 132 oveq2d φC00C+1-1=0C
134 133 sumeq1d φC0k=0C+1-1CC𝑐kACkBk=k=0CCC𝑐kACkBk
135 134 oveq1d φC0k=0C+1-1CC𝑐kACkBk+kC+1CC𝑐kACkBk=k=0CCC𝑐kACkBk+kC+1CC𝑐kACkBk
136 118 sumeq2dv φC0kC+1CC𝑐kACkBk=kC+10
137 ssid C+1C+1
138 137 orci C+1C+1C+1Fin
139 sumz C+1C+1C+1FinkC+10=0
140 138 139 ax-mp kC+10=0
141 136 140 eqtrdi φC0kC+1CC𝑐kACkBk=0
142 141 oveq2d φC0k=0CCC𝑐kACkBk+kC+1CC𝑐kACkBk=k=0CCC𝑐kACkBk+0
143 130 135 142 3eqtrd φC0k0CC𝑐kACkBk=k=0CCC𝑐kACkBk+0
144 39 143 35 3eqtr4rd φC0A+BC=k0CC𝑐kACkBk