Metamath Proof Explorer


Theorem c1liplem1

Description: Lemma for c1lip1 . (Contributed by Stefan O'Rear, 15-Nov-2014)

Ref Expression
Hypotheses c1liplem1.a φA
c1liplem1.b φB
c1liplem1.le φAB
c1liplem1.f φF𝑝𝑚
c1liplem1.dv φFAB:ABcn
c1liplem1.cn φFAB:ABcn
c1liplem1.k K=supabsFAB<
Assertion c1liplem1 φKxAByABx<yFyFxKyx

Proof

Step Hyp Ref Expression
1 c1liplem1.a φA
2 c1liplem1.b φB
3 c1liplem1.le φAB
4 c1liplem1.f φF𝑝𝑚
5 c1liplem1.dv φFAB:ABcn
6 c1liplem1.cn φFAB:ABcn
7 c1liplem1.k K=supabsFAB<
8 imassrn absFABranabs
9 absf abs:
10 frn abs:ranabs
11 9 10 ax-mp ranabs
12 8 11 sstri absFAB
13 12 a1i φabsFAB
14 dvf F:domF
15 ffun F:domFFunF
16 14 15 ax-mp FunF
17 16 a1i φFunF
18 cncff FAB:ABcnFAB:AB
19 fdm FAB:ABdomFAB=AB
20 5 18 19 3syl φdomFAB=AB
21 ssdmres ABdomFdomFAB=AB
22 20 21 sylibr φABdomF
23 1 rexrd φA*
24 2 rexrd φB*
25 lbicc2 A*B*ABAAB
26 23 24 3 25 syl3anc φAAB
27 funfvima2 FunFABdomFAABFAFAB
28 27 imp FunFABdomFAABFAFAB
29 17 22 26 28 syl21anc φFAFAB
30 ffun abs:Funabs
31 9 30 ax-mp Funabs
32 imassrn FABranF
33 frn F:domFranF
34 14 33 ax-mp ranF
35 32 34 sstri FAB
36 9 fdmi domabs=
37 35 36 sseqtrri FABdomabs
38 funfvima2 FunabsFABdomabsFAFABFAabsFAB
39 31 37 38 mp2an FAFABFAabsFAB
40 ne0i FAabsFABabsFAB
41 29 39 40 3syl φabsFAB
42 ax-resscn
43 ssid
44 cncfss ABcnABcn
45 42 43 44 mp2an ABcnABcn
46 45 5 sselid φFAB:ABcn
47 cniccbdd ABFAB:ABcnaxABFABxa
48 1 2 46 47 syl3anc φaxABFABxa
49 fvelima FunabsbabsFAByFABy=b
50 31 49 mpan babsFAByFABy=b
51 fvres bABFABb=Fb
52 51 adantl xABFABxabABFABb=Fb
53 52 fveq2d xABFABxabABFABb=Fb
54 2fveq3 x=bFABx=FABb
55 54 breq1d x=bFABxaFABba
56 55 rspccva xABFABxabABFABba
57 53 56 eqbrtrrd xABFABxabABFba
58 57 adantll φaxABFABxabABFba
59 fveq2 Fb=yFb=y
60 59 breq1d Fb=yFbaya
61 58 60 syl5ibcom φaxABFABxabABFb=yya
62 61 rexlimdva φaxABFABxabABFb=yya
63 fvelima FunFyFABbABFb=y
64 16 63 mpan yFABbABFb=y
65 62 64 impel φaxABFABxayFABya
66 breq1 y=byaba
67 65 66 syl5ibcom φaxABFABxayFABy=bba
68 67 rexlimdva φaxABFABxayFABy=bba
69 50 68 syl5 φaxABFABxababsFABba
70 69 ralrimiv φaxABFABxababsFABba
71 70 ex φaxABFABxababsFABba
72 71 reximdva φaxABFABxaababsFABba
73 48 72 mpd φababsFABba
74 13 41 73 suprcld φsupabsFAB<
75 7 74 eqeltrid φK
76 simplrr φxAByABx<yyAB
77 76 fvresd φxAByABx<yFABy=Fy
78 cncff FAB:ABcnFAB:AB
79 6 78 syl φFAB:AB
80 79 ad2antrr φxAByABx<yFAB:AB
81 80 76 ffvelcdmd φxAByABx<yFABy
82 81 recnd φxAByABx<yFABy
83 77 82 eqeltrrd φxAByABx<yFy
84 simplrl φxAByABx<yxAB
85 84 fvresd φxAByABx<yFABx=Fx
86 80 84 ffvelcdmd φxAByABx<yFABx
87 86 recnd φxAByABx<yFABx
88 85 87 eqeltrrd φxAByABx<yFx
89 83 88 subcld φxAByABx<yFyFx
90 iccssre ABAB
91 1 2 90 syl2anc φAB
92 91 ad2antrr φxAByABx<yAB
93 92 76 sseldd φxAByABx<yy
94 92 84 sseldd φxAByABx<yx
95 93 94 resubcld φxAByABx<yyx
96 95 recnd φxAByABx<yyx
97 simpr φxAByABx<yx<y
98 difrp xyx<yyx+
99 94 93 98 syl2anc φxAByABx<yx<yyx+
100 97 99 mpbid φxAByABx<yyx+
101 100 rpne0d φxAByABx<yyx0
102 89 96 101 absdivd φxAByABx<yFyFxyx=FyFxyx
103 12 a1i φxAByABx<yabsFAB
104 41 ad2antrr φxAByABx<yabsFAB
105 73 ad2antrr φxAByABx<yababsFABba
106 31 a1i φxAByABx<yFunabs
107 89 96 101 divcld φxAByABx<yFyFxyx
108 107 36 eleqtrrdi φxAByABx<yFyFxyxdomabs
109 94 rexrd φxAByABx<yx*
110 93 rexrd φxAByABx<yy*
111 94 93 97 ltled φxAByABx<yxy
112 ubicc2 x*y*xyyxy
113 109 110 111 112 syl3anc φxAByABx<yyxy
114 113 fvresd φxAByABx<yFxyy=Fy
115 lbicc2 x*y*xyxxy
116 109 110 111 115 syl3anc φxAByABx<yxxy
117 116 fvresd φxAByABx<yFxyx=Fx
118 114 117 oveq12d φxAByABx<yFxyyFxyx=FyFx
119 118 oveq1d φxAByABx<yFxyyFxyxyx=FyFxyx
120 iccss2 xAByABxyAB
121 120 ad2antlr φxAByABx<yxyAB
122 121 resabs1d φxAByABx<yFABxy=Fxy
123 6 ad2antrr φxAByABx<yFAB:ABcn
124 rescncf xyABFAB:ABcnFABxy:xycn
125 121 123 124 sylc φxAByABx<yFABxy:xycn
126 122 125 eqeltrrd φxAByABx<yFxy:xycn
127 42 a1i φxAByABx<y
128 4 ad2antrr φxAByABx<yF𝑝𝑚
129 cnex V
130 reex V
131 129 130 elpm2 F𝑝𝑚F:domFdomF
132 131 simplbi F𝑝𝑚F:domF
133 128 132 syl φxAByABx<yF:domF
134 131 simprbi F𝑝𝑚domF
135 128 134 syl φxAByABx<ydomF
136 iccssre xyxy
137 94 93 136 syl2anc φxAByABx<yxy
138 eqid TopOpenfld=TopOpenfld
139 138 tgioo2 topGenran.=TopOpenfld𝑡
140 138 139 dvres F:domFdomFxyDFxy=FinttopGenran.xy
141 127 133 135 137 140 syl22anc φxAByABx<yDFxy=FinttopGenran.xy
142 iccntr xyinttopGenran.xy=xy
143 94 93 142 syl2anc φxAByABx<yinttopGenran.xy=xy
144 143 reseq2d φxAByABx<yFinttopGenran.xy=Fxy
145 141 144 eqtrd φxAByABx<yDFxy=Fxy
146 145 dmeqd φxAByABx<ydomFxy=domFxy
147 ioossicc xyxy
148 147 121 sstrid φxAByABx<yxyAB
149 22 ad2antrr φxAByABx<yABdomF
150 148 149 sstrd φxAByABx<yxydomF
151 ssdmres xydomFdomFxy=xy
152 150 151 sylib φxAByABx<ydomFxy=xy
153 146 152 eqtrd φxAByABx<ydomFxy=xy
154 94 93 97 126 153 mvth φxAByABx<yaxyFxya=FxyyFxyxyx
155 145 fveq1d φxAByABx<yFxya=Fxya
156 155 adantrr φxAByABx<yaxyFxya=Fxya
157 fvres axyFxya=Fa
158 157 ad2antll φxAByABx<yaxyFxya=Fa
159 156 158 eqtrd φxAByABx<yaxyFxya=Fa
160 16 a1i φxAByABx<yaxyFunF
161 22 ad2antrr φxAByABx<yaxyABdomF
162 148 sseld φxAByABx<yaxyaAB
163 162 impr φxAByABx<yaxyaAB
164 funfvima2 FunFABdomFaABFaFAB
165 164 imp FunFABdomFaABFaFAB
166 160 161 163 165 syl21anc φxAByABx<yaxyFaFAB
167 159 166 eqeltrd φxAByABx<yaxyFxyaFAB
168 eleq1 Fxya=FxyyFxyxyxFxyaFABFxyyFxyxyxFAB
169 167 168 syl5ibcom φxAByABx<yaxyFxya=FxyyFxyxyxFxyyFxyxyxFAB
170 169 expr φxAByABx<yaxyFxya=FxyyFxyxyxFxyyFxyxyxFAB
171 170 rexlimdv φxAByABx<yaxyFxya=FxyyFxyxyxFxyyFxyxyxFAB
172 154 171 mpd φxAByABx<yFxyyFxyxyxFAB
173 119 172 eqeltrrd φxAByABx<yFyFxyxFAB
174 funfvima FunabsFyFxyxdomabsFyFxyxFABFyFxyxabsFAB
175 174 imp FunabsFyFxyxdomabsFyFxyxFABFyFxyxabsFAB
176 106 108 173 175 syl21anc φxAByABx<yFyFxyxabsFAB
177 103 104 105 176 suprubd φxAByABx<yFyFxyxsupabsFAB<
178 177 7 breqtrrdi φxAByABx<yFyFxyxK
179 102 178 eqbrtrrd φxAByABx<yFyFxyxK
180 89 abscld φxAByABx<yFyFx
181 75 ad2antrr φxAByABx<yK
182 96 101 absrpcld φxAByABx<yyx+
183 180 181 182 ledivmuld φxAByABx<yFyFxyxKFyFxyxK
184 179 183 mpbid φxAByABx<yFyFxyxK
185 182 rpcnd φxAByABx<yyx
186 181 recnd φxAByABx<yK
187 185 186 mulcomd φxAByABx<yyxK=Kyx
188 184 187 breqtrd φxAByABx<yFyFxKyx
189 188 ex φxAByABx<yFyFxKyx
190 189 ralrimivva φxAByABx<yFyFxKyx
191 75 190 jca φKxAByABx<yFyFxKyx