Metamath Proof Explorer


Theorem dvfsumabs

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Hypotheses dvfsumabs.m φNM
dvfsumabs.a φxMNA:MNcn
dvfsumabs.v φxMNBV
dvfsumabs.b φdxMNAdx=xMNB
dvfsumabs.c x=MA=C
dvfsumabs.d x=NA=D
dvfsumabs.x φkM..^NX
dvfsumabs.y φkM..^NY
dvfsumabs.l φkM..^Nxkk+1XBY
Assertion dvfsumabs φkM..^NXDCkM..^NY

Proof

Step Hyp Ref Expression
1 dvfsumabs.m φNM
2 dvfsumabs.a φxMNA:MNcn
3 dvfsumabs.v φxMNBV
4 dvfsumabs.b φdxMNAdx=xMNB
5 dvfsumabs.c x=MA=C
6 dvfsumabs.d x=NA=D
7 dvfsumabs.x φkM..^NX
8 dvfsumabs.y φkM..^NY
9 dvfsumabs.l φkM..^Nxkk+1XBY
10 fzofi M..^NFin
11 10 a1i φM..^NFin
12 eluzel2 NMM
13 1 12 syl φM
14 eluzelz NMN
15 1 14 syl φN
16 fzval2 MNMN=MN
17 13 15 16 syl2anc φMN=MN
18 inss1 MNMN
19 17 18 eqsstrdi φMNMN
20 19 sselda φyMNyMN
21 cncff xMNA:MNcnxMNA:MN
22 2 21 syl φxMNA:MN
23 eqid xMNA=xMNA
24 23 fmpt xMNAxMNA:MN
25 22 24 sylibr φxMNA
26 nfcsb1v _xy/xA
27 26 nfel1 xy/xA
28 csbeq1a x=yA=y/xA
29 28 eleq1d x=yAy/xA
30 27 29 rspc yMNxMNAy/xA
31 25 30 mpan9 φyMNy/xA
32 20 31 syldan φyMNy/xA
33 32 ralrimiva φyMNy/xA
34 fzofzp1 kM..^Nk+1MN
35 csbeq1 y=k+1y/xA=k+1/xA
36 35 eleq1d y=k+1y/xAk+1/xA
37 36 rspccva yMNy/xAk+1MNk+1/xA
38 33 34 37 syl2an φkM..^Nk+1/xA
39 elfzofz kM..^NkMN
40 csbeq1 y=ky/xA=k/xA
41 40 eleq1d y=ky/xAk/xA
42 41 rspccva yMNy/xAkMNk/xA
43 33 39 42 syl2an φkM..^Nk/xA
44 38 43 subcld φkM..^Nk+1/xAk/xA
45 11 7 44 fsumsub φkM..^NXk+1/xAk/xA=kM..^NXkM..^Nk+1/xAk/xA
46 vex yV
47 46 a1i y=MyV
48 eqeq2 y=Mx=yx=M
49 48 biimpa y=Mx=yx=M
50 49 5 syl y=Mx=yA=C
51 47 50 csbied y=My/xA=C
52 46 a1i y=NyV
53 eqeq2 y=Nx=yx=N
54 53 biimpa y=Nx=yx=N
55 54 6 syl y=Nx=yA=D
56 52 55 csbied y=Ny/xA=D
57 40 35 51 56 1 32 telfsumo2 φkM..^Nk+1/xAk/xA=DC
58 57 oveq2d φkM..^NXkM..^Nk+1/xAk/xA=kM..^NXDC
59 45 58 eqtrd φkM..^NXk+1/xAk/xA=kM..^NXDC
60 59 fveq2d φkM..^NXk+1/xAk/xA=kM..^NXDC
61 7 44 subcld φkM..^NXk+1/xAk/xA
62 11 61 fsumcl φkM..^NXk+1/xAk/xA
63 62 abscld φkM..^NXk+1/xAk/xA
64 61 abscld φkM..^NXk+1/xAk/xA
65 11 64 fsumrecl φkM..^NXk+1/xAk/xA
66 11 8 fsumrecl φkM..^NY
67 11 61 fsumabs φkM..^NXk+1/xAk/xAkM..^NXk+1/xAk/xA
68 elfzoelz kM..^Nk
69 68 adantl φkM..^Nk
70 69 zred φkM..^Nk
71 70 rexrd φkM..^Nk*
72 peano2re kk+1
73 70 72 syl φkM..^Nk+1
74 73 rexrd φkM..^Nk+1*
75 70 lep1d φkM..^Nkk+1
76 ubicc2 k*k+1*kk+1k+1kk+1
77 71 74 75 76 syl3anc φkM..^Nk+1kk+1
78 lbicc2 k*k+1*kk+1kkk+1
79 71 74 75 78 syl3anc φkM..^Nkkk+1
80 13 zred φM
81 80 adantr φkM..^NM
82 15 zred φN
83 82 adantr φkM..^NN
84 elfzole1 kM..^NMk
85 84 adantl φkM..^NMk
86 34 adantl φkM..^Nk+1MN
87 elfzle2 k+1MNk+1N
88 86 87 syl φkM..^Nk+1N
89 iccss MNMkk+1Nkk+1MN
90 81 83 85 88 89 syl22anc φkM..^Nkk+1MN
91 90 resmptd φkM..^NxMNXxAkk+1=xkk+1XxA
92 eqid TopOpenfld=TopOpenfld
93 92 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
94 93 a1i φkM..^NTopOpenfld×tTopOpenfldCnTopOpenfld
95 iccssre MNMN
96 80 82 95 syl2anc φMN
97 96 adantr φkM..^NMN
98 ax-resscn
99 97 98 sstrdi φkM..^NMN
100 ssid
101 100 a1i φkM..^N
102 cncfmptc XMNxMNX:MNcn
103 7 99 101 102 syl3anc φkM..^NxMNX:MNcn
104 cncfmptid MNxMNx:MNcn
105 99 100 104 sylancl φkM..^NxMNx:MNcn
106 103 105 mulcncf φkM..^NxMNXx:MNcn
107 2 adantr φkM..^NxMNA:MNcn
108 92 94 106 107 cncfmpt2f φkM..^NxMNXxA:MNcn
109 rescncf kk+1MNxMNXxA:MNcnxMNXxAkk+1:kk+1cn
110 90 108 109 sylc φkM..^NxMNXxAkk+1:kk+1cn
111 91 110 eqeltrrd φkM..^Nxkk+1XxA:kk+1cn
112 98 a1i φkM..^N
113 90 97 sstrd φkM..^Nkk+1
114 90 sselda φkM..^Nxkk+1xMN
115 7 adantr φkM..^NxMNX
116 99 sselda φkM..^NxMNx
117 115 116 mulcld φkM..^NxMNXx
118 25 r19.21bi φxMNA
119 118 adantlr φkM..^NxMNA
120 117 119 subcld φkM..^NxMNXxA
121 114 120 syldan φkM..^Nxkk+1XxA
122 92 tgioo2 topGenran.=TopOpenfld𝑡
123 iccntr kk+1inttopGenran.kk+1=kk+1
124 70 73 123 syl2anc φkM..^NinttopGenran.kk+1=kk+1
125 112 113 121 122 92 124 dvmptntr φkM..^Ndxkk+1XxAdx=dxkk+1XxAdx
126 reelprrecn
127 126 a1i φkM..^N
128 ioossicc MNMN
129 128 sseli xMNxMN
130 129 120 sylan2 φkM..^NxMNXxA
131 ovex XBV
132 131 a1i φkM..^NxMNXBV
133 129 117 sylan2 φkM..^NxMNXx
134 7 adantr φkM..^NxMNX
135 128 99 sstrid φkM..^NMN
136 135 sselda φkM..^NxMNx
137 1cnd φkM..^NxMN1
138 112 sselda φkM..^Nxx
139 1cnd φkM..^Nx1
140 127 dvmptid φkM..^Ndxxdx=x1
141 128 97 sstrid φkM..^NMN
142 iooretop MNtopGenran.
143 142 a1i φkM..^NMNtopGenran.
144 127 138 139 140 141 122 92 143 dvmptres φkM..^NdxMNxdx=xMN1
145 127 136 137 144 7 dvmptcmul φkM..^NdxMNXxdx=xMNX1
146 7 mulridd φkM..^NX1=X
147 146 mpteq2dv φkM..^NxMNX1=xMNX
148 145 147 eqtrd φkM..^NdxMNXxdx=xMNX
149 129 119 sylan2 φkM..^NxMNA
150 3 adantlr φkM..^NxMNBV
151 4 adantr φkM..^NdxMNAdx=xMNB
152 127 133 134 148 149 150 151 dvmptsub φkM..^NdxMNXxAdx=xMNXB
153 81 rexrd φkM..^NM*
154 iooss1 M*Mkkk+1Mk+1
155 153 85 154 syl2anc φkM..^Nkk+1Mk+1
156 83 rexrd φkM..^NN*
157 iooss2 N*k+1NMk+1MN
158 156 88 157 syl2anc φkM..^NMk+1MN
159 155 158 sstrd φkM..^Nkk+1MN
160 iooretop kk+1topGenran.
161 160 a1i φkM..^Nkk+1topGenran.
162 127 130 132 152 159 122 92 161 dvmptres φkM..^Ndxkk+1XxAdx=xkk+1XB
163 125 162 eqtrd φkM..^Ndxkk+1XxAdx=xkk+1XB
164 163 dmeqd φkM..^Ndomdxkk+1XxAdx=domxkk+1XB
165 eqid xkk+1XB=xkk+1XB
166 131 165 dmmpti domxkk+1XB=kk+1
167 164 166 eqtrdi φkM..^Ndomdxkk+1XxAdx=kk+1
168 163 adantr φkM..^Nxkk+1dxkk+1XxAdx=xkk+1XB
169 168 fveq1d φkM..^Nxkk+1dxkk+1XxAdxx=xkk+1XBx
170 simpr φkM..^Nxkk+1xkk+1
171 165 fvmpt2 xkk+1XBVxkk+1XBx=XB
172 170 131 171 sylancl φkM..^Nxkk+1xkk+1XBx=XB
173 169 172 eqtrd φkM..^Nxkk+1dxkk+1XxAdxx=XB
174 173 fveq2d φkM..^Nxkk+1dxkk+1XxAdxx=XB
175 9 anassrs φkM..^Nxkk+1XBY
176 174 175 eqbrtrd φkM..^Nxkk+1dxkk+1XxAdxxY
177 176 ralrimiva φkM..^Nxkk+1dxkk+1XxAdxxY
178 nfcv _xabs
179 nfcv _x
180 nfcv _xD
181 nfmpt1 _xxkk+1XxA
182 179 180 181 nfov _xdxkk+1XxAdx
183 nfcv _xy
184 182 183 nffv _xdxkk+1XxAdxy
185 178 184 nffv _xdxkk+1XxAdxy
186 nfcv _x
187 nfcv _xY
188 185 186 187 nfbr xdxkk+1XxAdxyY
189 2fveq3 x=ydxkk+1XxAdxx=dxkk+1XxAdxy
190 189 breq1d x=ydxkk+1XxAdxxYdxkk+1XxAdxyY
191 188 190 rspc ykk+1xkk+1dxkk+1XxAdxxYdxkk+1XxAdxyY
192 177 191 mpan9 φkM..^Nykk+1dxkk+1XxAdxyY
193 70 73 111 167 8 192 dvlip φkM..^Nk+1kk+1kkk+1xkk+1XxAk+1xkk+1XxAkYk+1-k
194 193 ex φkM..^Nk+1kk+1kkk+1xkk+1XxAk+1xkk+1XxAkYk+1-k
195 77 79 194 mp2and φkM..^Nxkk+1XxAk+1xkk+1XxAkYk+1-k
196 ovex Xk+1k+1/xAV
197 nfcv _xk+1
198 nfcv _xXk+1
199 nfcv _x
200 nfcsb1v _xk+1/xA
201 198 199 200 nfov _xXk+1k+1/xA
202 oveq2 x=k+1Xx=Xk+1
203 csbeq1a x=k+1A=k+1/xA
204 202 203 oveq12d x=k+1XxA=Xk+1k+1/xA
205 eqid xkk+1XxA=xkk+1XxA
206 197 201 204 205 fvmptf k+1kk+1Xk+1k+1/xAVxkk+1XxAk+1=Xk+1k+1/xA
207 77 196 206 sylancl φkM..^Nxkk+1XxAk+1=Xk+1k+1/xA
208 70 recnd φkM..^Nk
209 7 208 mulcld φkM..^NXk
210 209 43 subcld φkM..^NXkk/xA
211 nfcv _xk
212 nfcv _xXk
213 nfcsb1v _xk/xA
214 212 199 213 nfov _xXkk/xA
215 oveq2 x=kXx=Xk
216 csbeq1a x=kA=k/xA
217 215 216 oveq12d x=kXxA=Xkk/xA
218 211 214 217 205 fvmptf kkk+1Xkk/xAxkk+1XxAk=Xkk/xA
219 79 210 218 syl2anc φkM..^Nxkk+1XxAk=Xkk/xA
220 207 219 oveq12d φkM..^Nxkk+1XxAk+1xkk+1XxAk=Xk+1-k+1/xA-Xkk/xA
221 peano2cn kk+1
222 208 221 syl φkM..^Nk+1
223 7 222 mulcld φkM..^NXk+1
224 223 209 38 43 sub4d φkM..^NXk+1-Xk-k+1/xAk/xA=Xk+1-k+1/xA-Xkk/xA
225 1cnd φkM..^N1
226 208 225 pncan2d φkM..^Nk+1-k=1
227 226 oveq2d φkM..^NXk+1-k=X1
228 7 222 208 subdid φkM..^NXk+1-k=Xk+1Xk
229 227 228 146 3eqtr3d φkM..^NXk+1Xk=X
230 229 oveq1d φkM..^NXk+1-Xk-k+1/xAk/xA=Xk+1/xAk/xA
231 220 224 230 3eqtr2rd φkM..^NXk+1/xAk/xA=xkk+1XxAk+1xkk+1XxAk
232 231 fveq2d φkM..^NXk+1/xAk/xA=xkk+1XxAk+1xkk+1XxAk
233 226 fveq2d φkM..^Nk+1-k=1
234 abs1 1=1
235 233 234 eqtrdi φkM..^Nk+1-k=1
236 235 oveq2d φkM..^NYk+1-k=Y1
237 8 recnd φkM..^NY
238 237 mulridd φkM..^NY1=Y
239 236 238 eqtr2d φkM..^NY=Yk+1-k
240 195 232 239 3brtr4d φkM..^NXk+1/xAk/xAY
241 11 64 8 240 fsumle φkM..^NXk+1/xAk/xAkM..^NY
242 63 65 66 67 241 letrd φkM..^NXk+1/xAk/xAkM..^NY
243 60 242 eqbrtrrd φkM..^NXDCkM..^NY