| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval3.b |
|
| 2 |
|
gsumval3.0 |
|
| 3 |
|
gsumval3.p |
|
| 4 |
|
gsumval3.z |
|
| 5 |
|
gsumval3.g |
|
| 6 |
|
gsumval3.a |
|
| 7 |
|
gsumval3.f |
|
| 8 |
|
gsumval3.c |
|
| 9 |
|
gsumval3.m |
|
| 10 |
|
gsumval3.h |
|
| 11 |
|
gsumval3.n |
|
| 12 |
|
gsumval3.w |
|
| 13 |
2
|
gsumz |
|
| 14 |
5 6 13
|
syl2anc |
|
| 15 |
14
|
adantr |
|
| 16 |
7
|
feqmptd |
|
| 17 |
16
|
adantr |
|
| 18 |
|
f1f |
|
| 19 |
10 18
|
syl |
|
| 20 |
19
|
ad2antrr |
|
| 21 |
|
f1f1orn |
|
| 22 |
10 21
|
syl |
|
| 23 |
22
|
adantr |
|
| 24 |
|
f1ocnv |
|
| 25 |
|
f1of |
|
| 26 |
23 24 25
|
3syl |
|
| 27 |
26
|
ffvelcdmda |
|
| 28 |
|
fvco3 |
|
| 29 |
20 27 28
|
syl2anc |
|
| 30 |
|
simpr |
|
| 31 |
30
|
difeq2d |
|
| 32 |
|
dif0 |
|
| 33 |
31 32
|
eqtrdi |
|
| 34 |
33
|
adantr |
|
| 35 |
27 34
|
eleqtrrd |
|
| 36 |
|
fco |
|
| 37 |
7 19 36
|
syl2anc |
|
| 38 |
37
|
adantr |
|
| 39 |
12
|
eqimss2i |
|
| 40 |
39
|
a1i |
|
| 41 |
|
ovexd |
|
| 42 |
2
|
fvexi |
|
| 43 |
42
|
a1i |
|
| 44 |
38 40 41 43
|
suppssr |
|
| 45 |
35 44
|
syldan |
|
| 46 |
|
f1ocnvfv2 |
|
| 47 |
23 46
|
sylan |
|
| 48 |
47
|
fveq2d |
|
| 49 |
29 45 48
|
3eqtr3rd |
|
| 50 |
|
fvex |
|
| 51 |
50
|
elsn |
|
| 52 |
49 51
|
sylibr |
|
| 53 |
52
|
adantlr |
|
| 54 |
|
eldif |
|
| 55 |
42
|
a1i |
|
| 56 |
7 11 6 55
|
suppssr |
|
| 57 |
56 51
|
sylibr |
|
| 58 |
54 57
|
sylan2br |
|
| 59 |
58
|
adantlr |
|
| 60 |
59
|
anassrs |
|
| 61 |
53 60
|
pm2.61dan |
|
| 62 |
61 51
|
sylib |
|
| 63 |
62
|
mpteq2dva |
|
| 64 |
17 63
|
eqtrd |
|
| 65 |
64
|
oveq2d |
|
| 66 |
1 2
|
mndidcl |
|
| 67 |
1 3 2
|
mndlid |
|
| 68 |
5 66 67
|
syl2anc2 |
|
| 69 |
68
|
adantr |
|
| 70 |
|
nnuz |
|
| 71 |
9 70
|
eleqtrdi |
|
| 72 |
71
|
adantr |
|
| 73 |
33
|
eleq2d |
|
| 74 |
73
|
biimpar |
|
| 75 |
38 40 41 43
|
suppssr |
|
| 76 |
74 75
|
syldan |
|
| 77 |
69 72 76
|
seqid3 |
|
| 78 |
15 65 77
|
3eqtr4d |
|
| 79 |
|
fzf |
|
| 80 |
|
ffn |
|
| 81 |
|
ovelrn |
|
| 82 |
79 80 81
|
mp2b |
|
| 83 |
5
|
ad2antrr |
|
| 84 |
|
simpr |
|
| 85 |
|
frel |
|
| 86 |
|
reldm0 |
|
| 87 |
7 85 86
|
3syl |
|
| 88 |
7
|
fdmd |
|
| 89 |
88
|
eqeq1d |
|
| 90 |
87 89
|
bitrd |
|
| 91 |
|
coeq1 |
|
| 92 |
|
co01 |
|
| 93 |
91 92
|
eqtrdi |
|
| 94 |
93
|
oveq1d |
|
| 95 |
|
supp0 |
|
| 96 |
42 95
|
ax-mp |
|
| 97 |
94 96
|
eqtrdi |
|
| 98 |
12 97
|
eqtrid |
|
| 99 |
90 98
|
biimtrrdi |
|
| 100 |
99
|
necon3d |
|
| 101 |
100
|
imp |
|
| 102 |
101
|
adantr |
|
| 103 |
84 102
|
eqnetrrd |
|
| 104 |
|
fzn0 |
|
| 105 |
103 104
|
sylib |
|
| 106 |
7
|
ad2antrr |
|
| 107 |
84
|
feq2d |
|
| 108 |
106 107
|
mpbid |
|
| 109 |
1 3 83 105 108
|
gsumval2 |
|
| 110 |
|
frn |
|
| 111 |
10 18 110
|
3syl |
|
| 112 |
111
|
ad2antrr |
|
| 113 |
112 84
|
sseqtrd |
|
| 114 |
|
fzssuz |
|
| 115 |
|
uzssz |
|
| 116 |
|
zssre |
|
| 117 |
115 116
|
sstri |
|
| 118 |
114 117
|
sstri |
|
| 119 |
113 118
|
sstrdi |
|
| 120 |
|
ltso |
|
| 121 |
|
soss |
|
| 122 |
119 120 121
|
mpisyl |
|
| 123 |
|
fzfi |
|
| 124 |
123
|
a1i |
|
| 125 |
19 124
|
fexd |
|
| 126 |
|
f1oen3g |
|
| 127 |
125 22 126
|
syl2anc |
|
| 128 |
|
enfi |
|
| 129 |
127 128
|
syl |
|
| 130 |
123 129
|
mpbii |
|
| 131 |
130
|
ad2antrr |
|
| 132 |
|
fz1iso |
|
| 133 |
122 131 132
|
syl2anc |
|
| 134 |
9
|
nnnn0d |
|
| 135 |
|
hashfz1 |
|
| 136 |
134 135
|
syl |
|
| 137 |
124 22
|
hasheqf1od |
|
| 138 |
136 137
|
eqtr3d |
|
| 139 |
138
|
ad2antrr |
|
| 140 |
139
|
fveq2d |
|
| 141 |
5
|
ad2antrr |
|
| 142 |
1 3
|
mndcl |
|
| 143 |
142
|
3expb |
|
| 144 |
141 143
|
sylan |
|
| 145 |
8
|
ad2antrr |
|
| 146 |
145
|
sselda |
|
| 147 |
3 4
|
cntzi |
|
| 148 |
146 147
|
sylan |
|
| 149 |
148
|
anasss |
|
| 150 |
1 3
|
mndass |
|
| 151 |
141 150
|
sylan |
|
| 152 |
71
|
ad2antrr |
|
| 153 |
7
|
ad2antrr |
|
| 154 |
153
|
frnd |
|
| 155 |
|
simprr |
|
| 156 |
|
isof1o |
|
| 157 |
155 156
|
syl |
|
| 158 |
139
|
oveq2d |
|
| 159 |
158
|
f1oeq2d |
|
| 160 |
157 159
|
mpbird |
|
| 161 |
|
f1ocnv |
|
| 162 |
160 161
|
syl |
|
| 163 |
22
|
ad2antrr |
|
| 164 |
|
f1oco |
|
| 165 |
162 163 164
|
syl2anc |
|
| 166 |
|
ffn |
|
| 167 |
|
dffn4 |
|
| 168 |
166 167
|
sylib |
|
| 169 |
|
fof |
|
| 170 |
153 168 169
|
3syl |
|
| 171 |
|
f1of |
|
| 172 |
160 171
|
syl |
|
| 173 |
111
|
ad2antrr |
|
| 174 |
172 173
|
fssd |
|
| 175 |
|
fco |
|
| 176 |
170 174 175
|
syl2anc |
|
| 177 |
176
|
ffvelcdmda |
|
| 178 |
|
f1ococnv2 |
|
| 179 |
160 178
|
syl |
|
| 180 |
179
|
coeq1d |
|
| 181 |
|
f1of |
|
| 182 |
|
fcoi2 |
|
| 183 |
163 181 182
|
3syl |
|
| 184 |
180 183
|
eqtr2d |
|
| 185 |
|
coass |
|
| 186 |
184 185
|
eqtrdi |
|
| 187 |
186
|
coeq2d |
|
| 188 |
|
coass |
|
| 189 |
187 188
|
eqtr4di |
|
| 190 |
189
|
fveq1d |
|
| 191 |
190
|
adantr |
|
| 192 |
|
f1of |
|
| 193 |
160 161 192
|
3syl |
|
| 194 |
163 181
|
syl |
|
| 195 |
|
fco |
|
| 196 |
193 194 195
|
syl2anc |
|
| 197 |
|
fvco3 |
|
| 198 |
196 197
|
sylan |
|
| 199 |
191 198
|
eqtrd |
|
| 200 |
144 149 151 152 154 165 177 199
|
seqf1o |
|
| 201 |
1 3 2
|
mndlid |
|
| 202 |
141 201
|
sylan |
|
| 203 |
1 3 2
|
mndrid |
|
| 204 |
141 203
|
sylan |
|
| 205 |
141 66
|
syl |
|
| 206 |
|
fdm |
|
| 207 |
10 18 206
|
3syl |
|
| 208 |
|
eluzfz1 |
|
| 209 |
|
ne0i |
|
| 210 |
71 208 209
|
3syl |
|
| 211 |
207 210
|
eqnetrd |
|
| 212 |
|
dm0rn0 |
|
| 213 |
212
|
necon3bii |
|
| 214 |
211 213
|
sylib |
|
| 215 |
214
|
ad2antrr |
|
| 216 |
113
|
adantrr |
|
| 217 |
|
simprl |
|
| 218 |
217
|
eleq2d |
|
| 219 |
218
|
biimpar |
|
| 220 |
153
|
ffvelcdmda |
|
| 221 |
219 220
|
syldan |
|
| 222 |
217
|
difeq1d |
|
| 223 |
222
|
eleq2d |
|
| 224 |
223
|
biimpar |
|
| 225 |
56
|
ad4ant14 |
|
| 226 |
224 225
|
syldan |
|
| 227 |
|
f1of |
|
| 228 |
155 156 227
|
3syl |
|
| 229 |
|
fvco3 |
|
| 230 |
228 229
|
sylan |
|
| 231 |
202 204 144 205 155 215 216 221 226 230
|
seqcoll2 |
|
| 232 |
140 200 231
|
3eqtr4d |
|
| 233 |
232
|
expr |
|
| 234 |
233
|
exlimdv |
|
| 235 |
133 234
|
mpd |
|
| 236 |
109 235
|
eqtr4d |
|
| 237 |
236
|
ex |
|
| 238 |
237
|
rexlimdvw |
|
| 239 |
238
|
rexlimdvw |
|
| 240 |
82 239
|
biimtrid |
|
| 241 |
|
suppssdm |
|
| 242 |
12 241
|
eqsstri |
|
| 243 |
242 37
|
fssdm |
|
| 244 |
|
fz1ssnn |
|
| 245 |
|
nnssre |
|
| 246 |
244 245
|
sstri |
|
| 247 |
243 246
|
sstrdi |
|
| 248 |
|
soss |
|
| 249 |
247 120 248
|
mpisyl |
|
| 250 |
|
ssfi |
|
| 251 |
123 243 250
|
sylancr |
|
| 252 |
|
fz1iso |
|
| 253 |
249 251 252
|
syl2anc |
|
| 254 |
253
|
ad2antrr |
|
| 255 |
1 2 3 4 5 6 7 8 9 10 11 12
|
gsumval3lem2 |
|
| 256 |
5
|
ad2antrr |
|
| 257 |
256 201
|
sylan |
|
| 258 |
256 203
|
sylan |
|
| 259 |
256 143
|
sylan |
|
| 260 |
256 66
|
syl |
|
| 261 |
|
simprr |
|
| 262 |
|
simplr |
|
| 263 |
243
|
ad2antrr |
|
| 264 |
37
|
ad2antrr |
|
| 265 |
264
|
ffvelcdmda |
|
| 266 |
39
|
a1i |
|
| 267 |
|
ovexd |
|
| 268 |
42
|
a1i |
|
| 269 |
264 266 267 268
|
suppssr |
|
| 270 |
|
coass |
|
| 271 |
270
|
fveq1i |
|
| 272 |
|
isof1o |
|
| 273 |
|
f1of |
|
| 274 |
261 272 273
|
3syl |
|
| 275 |
|
fvco3 |
|
| 276 |
274 275
|
sylan |
|
| 277 |
271 276
|
eqtr3id |
|
| 278 |
257 258 259 260 261 262 263 265 269 277
|
seqcoll2 |
|
| 279 |
255 278
|
eqtr4d |
|
| 280 |
279
|
expr |
|
| 281 |
280
|
exlimdv |
|
| 282 |
254 281
|
mpd |
|
| 283 |
282
|
ex |
|
| 284 |
240 283
|
pm2.61d |
|
| 285 |
78 284
|
pm2.61dane |
|