Metamath Proof Explorer


Theorem iundjiun

Description: Given a sequence E of sets, a sequence F of disjoint sets is built, such that the indexed union stays the same. As in the proof of Property 112C (d) of Fremlin1 p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses iundjiun.nph n φ
iundjiun.z Z = N
iundjiun.e φ E : Z V
iundjiun.f F = n Z E n i N ..^ n E i
Assertion iundjiun φ m Z n = N m F n = n = N m E n n Z F n = n Z E n Disj n Z F n

Proof

Step Hyp Ref Expression
1 iundjiun.nph n φ
2 iundjiun.z Z = N
3 iundjiun.e φ E : Z V
4 iundjiun.f F = n Z E n i N ..^ n E i
5 eliun x n = N m F n n N m x F n
6 5 biimpi x n = N m F n n N m x F n
7 6 adantl φ x n = N m F n n N m x F n
8 nfcv _ n x
9 nfiu1 _ n n = N m E n
10 8 9 nfel n x n = N m E n
11 simp2 φ n N m x F n n N m
12 simpl φ n N m φ
13 elfzuz n N m n N
14 2 eqcomi N = Z
15 13 14 eleqtrdi n N m n Z
16 15 adantl φ n N m n Z
17 simpr φ n Z n Z
18 3 ffvelrnda φ n Z E n V
19 18 difexd φ n Z E n i N ..^ n E i V
20 4 fvmpt2 n Z E n i N ..^ n E i V F n = E n i N ..^ n E i
21 17 19 20 syl2anc φ n Z F n = E n i N ..^ n E i
22 difssd φ n Z E n i N ..^ n E i E n
23 21 22 eqsstrd φ n Z F n E n
24 12 16 23 syl2anc φ n N m F n E n
25 24 3adant3 φ n N m x F n F n E n
26 simp3 φ n N m x F n x F n
27 25 26 sseldd φ n N m x F n x E n
28 rspe n N m x E n n N m x E n
29 11 27 28 syl2anc φ n N m x F n n N m x E n
30 eliun x n = N m E n n N m x E n
31 29 30 sylibr φ n N m x F n x n = N m E n
32 31 3exp φ n N m x F n x n = N m E n
33 1 10 32 rexlimd φ n N m x F n x n = N m E n
34 33 adantr φ x n = N m F n n N m x F n x n = N m E n
35 7 34 mpd φ x n = N m F n x n = N m E n
36 35 ralrimiva φ x n = N m F n x n = N m E n
37 dfss3 n = N m F n n = N m E n x n = N m F n x n = N m E n
38 36 37 sylibr φ n = N m F n n = N m E n
39 fzssuz N m N
40 39 a1i x n = N m E n N m N
41 30 biimpi x n = N m E n n N m x E n
42 nfv n x E i
43 fveq2 n = i E n = E i
44 43 eleq2d n = i x E n x E i
45 42 44 uzwo4 N m N n N m x E n n N m x E n i N m i < n ¬ x E i
46 40 41 45 syl2anc x n = N m E n n N m x E n i N m i < n ¬ x E i
47 46 adantl φ x n = N m E n n N m x E n i N m i < n ¬ x E i
48 simprl φ n N m x E n i N m i < n ¬ x E i x E n
49 nfv i φ n N m
50 nfra1 i i N m i < n ¬ x E i
51 49 50 nfan i φ n N m i N m i < n ¬ x E i
52 elfzoelz i N ..^ n i
53 52 zred i N ..^ n i
54 53 adantl n N m i N ..^ n i
55 elfzelz n N m n
56 55 zred n N m n
57 56 adantr n N m i N ..^ n n
58 1red n N m i N ..^ n 1
59 57 58 resubcld n N m i N ..^ n n 1
60 elfzolem1 i N ..^ n i n 1
61 60 adantl n N m i N ..^ n i n 1
62 57 ltm1d n N m i N ..^ n n 1 < n
63 54 59 57 61 62 lelttrd n N m i N ..^ n i < n
64 63 ad4ant24 φ n N m i N m i < n ¬ x E i i N ..^ n i < n
65 simplr n N m i N m i < n ¬ x E i i N ..^ n i N m i < n ¬ x E i
66 elfzel1 n N m N
67 66 adantr n N m i N ..^ n N
68 elfzel2 n N m m
69 68 adantr n N m i N ..^ n m
70 52 adantl n N m i N ..^ n i
71 elfzole1 i N ..^ n N i
72 71 adantl n N m i N ..^ n N i
73 69 zred n N m i N ..^ n m
74 1red n N m 1
75 56 74 resubcld n N m n 1
76 68 zred n N m m
77 56 ltm1d n N m n 1 < n
78 elfzle2 n N m n m
79 75 56 76 77 78 ltletrd n N m n 1 < m
80 79 adantr n N m i N ..^ n n 1 < m
81 54 59 73 61 80 lelttrd n N m i N ..^ n i < m
82 54 73 81 ltled n N m i N ..^ n i m
83 67 69 70 72 82 elfzd n N m i N ..^ n i N m
84 83 adantlr n N m i N m i < n ¬ x E i i N ..^ n i N m
85 rspa i N m i < n ¬ x E i i N m i < n ¬ x E i
86 65 84 85 syl2anc n N m i N m i < n ¬ x E i i N ..^ n i < n ¬ x E i
87 86 adantlll φ n N m i N m i < n ¬ x E i i N ..^ n i < n ¬ x E i
88 64 87 mpd φ n N m i N m i < n ¬ x E i i N ..^ n ¬ x E i
89 88 ex φ n N m i N m i < n ¬ x E i i N ..^ n ¬ x E i
90 51 89 ralrimi φ n N m i N m i < n ¬ x E i i N ..^ n ¬ x E i
91 ralnex i N ..^ n ¬ x E i ¬ i N ..^ n x E i
92 90 91 sylib φ n N m i N m i < n ¬ x E i ¬ i N ..^ n x E i
93 eliun x i N ..^ n E i i N ..^ n x E i
94 92 93 sylnibr φ n N m i N m i < n ¬ x E i ¬ x i N ..^ n E i
95 94 adantrl φ n N m x E n i N m i < n ¬ x E i ¬ x i N ..^ n E i
96 48 95 eldifd φ n N m x E n i N m i < n ¬ x E i x E n i N ..^ n E i
97 16 21 syldan φ n N m F n = E n i N ..^ n E i
98 97 eqcomd φ n N m E n i N ..^ n E i = F n
99 98 adantr φ n N m x E n i N m i < n ¬ x E i E n i N ..^ n E i = F n
100 96 99 eleqtrd φ n N m x E n i N m i < n ¬ x E i x F n
101 100 ex φ n N m x E n i N m i < n ¬ x E i x F n
102 101 ex φ n N m x E n i N m i < n ¬ x E i x F n
103 1 102 reximdai φ n N m x E n i N m i < n ¬ x E i n N m x F n
104 103 adantr φ x n = N m E n n N m x E n i N m i < n ¬ x E i n N m x F n
105 47 104 mpd φ x n = N m E n n N m x F n
106 105 5 sylibr φ x n = N m E n x n = N m F n
107 38 106 eqelssd φ n = N m F n = n = N m E n
108 107 ralrimivw φ m Z n = N m F n = n = N m E n
109 2 iuneqfzuz m Z n = N m F n = n = N m E n n Z F n = n Z E n
110 108 109 syl φ n Z F n = n Z E n
111 fveq2 n = m E n = E m
112 oveq2 n = m N ..^ n = N ..^ m
113 112 iuneq1d n = m i N ..^ n E i = i N ..^ m E i
114 111 113 difeq12d n = m E n i N ..^ n E i = E m i N ..^ m E i
115 114 cbvmptv n Z E n i N ..^ n E i = m Z E m i N ..^ m E i
116 4 115 eqtri F = m Z E m i N ..^ m E i
117 simpllr φ n Z k Z n < k n Z
118 simplr φ n Z k Z n < k k Z
119 simpr φ n Z k Z n < k n < k
120 2 116 117 118 119 iundjiunlem φ n Z k Z n < k F n F k =
121 120 adantlr φ n Z k Z ¬ n = k n < k F n F k =
122 simpll φ n Z k Z ¬ n = k ¬ n < k φ n Z k Z
123 neqne ¬ n = k n k
124 id k Z k Z
125 124 2 eleqtrdi k Z k N
126 eluzelz k N k
127 125 126 syl k Z k
128 127 zred k Z k
129 128 adantl n Z k Z k
130 129 ad2antrr n Z k Z n k ¬ n < k k
131 id n Z n Z
132 131 2 eleqtrdi n Z n N
133 eluzelz n N n
134 132 133 syl n Z n
135 134 zred n Z n
136 135 ad3antrrr n Z k Z n k ¬ n < k n
137 simpr n Z k Z ¬ n < k ¬ n < k
138 129 adantr n Z k Z ¬ n < k k
139 135 ad2antrr n Z k Z ¬ n < k n
140 138 139 lenltd n Z k Z ¬ n < k k n ¬ n < k
141 137 140 mpbird n Z k Z ¬ n < k k n
142 141 adantlr n Z k Z n k ¬ n < k k n
143 simplr n Z k Z n k ¬ n < k n k
144 130 136 142 143 leneltd n Z k Z n k ¬ n < k k < n
145 123 144 sylanl2 n Z k Z ¬ n = k ¬ n < k k < n
146 145 ad5ant2345 φ n Z k Z ¬ n = k ¬ n < k k < n
147 anass φ n Z k Z φ n Z k Z
148 incom F n F k = F k F n
149 148 a1i φ n Z k Z k < n F n F k = F k F n
150 simplrr φ n Z k Z k < n k Z
151 simplrl φ n Z k Z k < n n Z
152 simpr φ n Z k Z k < n k < n
153 2 116 150 151 152 iundjiunlem φ n Z k Z k < n F k F n =
154 149 153 eqtrd φ n Z k Z k < n F n F k =
155 147 154 sylanb φ n Z k Z k < n F n F k =
156 122 146 155 syl2anc φ n Z k Z ¬ n = k ¬ n < k F n F k =
157 121 156 pm2.61dan φ n Z k Z ¬ n = k F n F k =
158 157 ex φ n Z k Z ¬ n = k F n F k =
159 df-or n = k F n F k = ¬ n = k F n F k =
160 158 159 sylibr φ n Z k Z n = k F n F k =
161 160 ralrimiva φ n Z k Z n = k F n F k =
162 161 ex φ n Z k Z n = k F n F k =
163 1 162 ralrimi φ n Z k Z n = k F n F k =
164 nfcv _ m F n
165 nfmpt1 _ n n Z E n i N ..^ n E i
166 4 165 nfcxfr _ n F
167 nfcv _ n m
168 166 167 nffv _ n F m
169 fveq2 n = m F n = F m
170 164 168 169 cbvdisj Disj n Z F n Disj m Z F m
171 fveq2 m = k F m = F k
172 171 disjor Disj m Z F m m Z k Z m = k F m F k =
173 nfcv _ n Z
174 nfv n m = k
175 nfcv _ n k
176 166 175 nffv _ n F k
177 168 176 nfin _ n F m F k
178 nfcv _ n
179 177 178 nfeq n F m F k =
180 174 179 nfor n m = k F m F k =
181 173 180 nfralw n k Z m = k F m F k =
182 nfv m k Z n = k F n F k =
183 equequ1 m = n m = k n = k
184 fveq2 m = n F m = F n
185 184 ineq1d m = n F m F k = F n F k
186 185 eqeq1d m = n F m F k = F n F k =
187 183 186 orbi12d m = n m = k F m F k = n = k F n F k =
188 187 ralbidv m = n k Z m = k F m F k = k Z n = k F n F k =
189 181 182 188 cbvralw m Z k Z m = k F m F k = n Z k Z n = k F n F k =
190 170 172 189 3bitri Disj n Z F n n Z k Z n = k F n F k =
191 163 190 sylibr φ Disj n Z F n
192 108 110 191 jca31 φ m Z n = N m F n = n = N m E n n Z F n = n Z E n Disj n Z F n