Step |
Hyp |
Ref |
Expression |
1 |
|
iundjiun.nph |
|
2 |
|
iundjiun.z |
|
3 |
|
iundjiun.e |
|
4 |
|
iundjiun.f |
|
5 |
|
eliun |
|
6 |
5
|
biimpi |
|
7 |
6
|
adantl |
|
8 |
|
nfcv |
|
9 |
|
nfiu1 |
|
10 |
8 9
|
nfel |
|
11 |
|
simp2 |
|
12 |
|
simpl |
|
13 |
|
elfzuz |
|
14 |
2
|
eqcomi |
|
15 |
13 14
|
eleqtrdi |
|
16 |
15
|
adantl |
|
17 |
|
simpr |
|
18 |
3
|
ffvelrnda |
|
19 |
18
|
difexd |
|
20 |
4
|
fvmpt2 |
|
21 |
17 19 20
|
syl2anc |
|
22 |
|
difssd |
|
23 |
21 22
|
eqsstrd |
|
24 |
12 16 23
|
syl2anc |
|
25 |
24
|
3adant3 |
|
26 |
|
simp3 |
|
27 |
25 26
|
sseldd |
|
28 |
|
rspe |
|
29 |
11 27 28
|
syl2anc |
|
30 |
|
eliun |
|
31 |
29 30
|
sylibr |
|
32 |
31
|
3exp |
|
33 |
1 10 32
|
rexlimd |
|
34 |
33
|
adantr |
|
35 |
7 34
|
mpd |
|
36 |
35
|
ralrimiva |
|
37 |
|
dfss3 |
|
38 |
36 37
|
sylibr |
|
39 |
|
fzssuz |
|
40 |
39
|
a1i |
|
41 |
30
|
biimpi |
|
42 |
|
nfv |
|
43 |
|
fveq2 |
|
44 |
43
|
eleq2d |
|
45 |
42 44
|
uzwo4 |
|
46 |
40 41 45
|
syl2anc |
|
47 |
46
|
adantl |
|
48 |
|
simprl |
|
49 |
|
nfv |
|
50 |
|
nfra1 |
|
51 |
49 50
|
nfan |
|
52 |
|
elfzoelz |
|
53 |
52
|
zred |
|
54 |
53
|
adantl |
|
55 |
|
elfzelz |
|
56 |
55
|
zred |
|
57 |
56
|
adantr |
|
58 |
|
1red |
|
59 |
57 58
|
resubcld |
|
60 |
|
elfzolem1 |
|
61 |
60
|
adantl |
|
62 |
57
|
ltm1d |
|
63 |
54 59 57 61 62
|
lelttrd |
|
64 |
63
|
ad4ant24 |
|
65 |
|
simplr |
|
66 |
|
elfzel1 |
|
67 |
66
|
adantr |
|
68 |
|
elfzel2 |
|
69 |
68
|
adantr |
|
70 |
52
|
adantl |
|
71 |
|
elfzole1 |
|
72 |
71
|
adantl |
|
73 |
69
|
zred |
|
74 |
|
1red |
|
75 |
56 74
|
resubcld |
|
76 |
68
|
zred |
|
77 |
56
|
ltm1d |
|
78 |
|
elfzle2 |
|
79 |
75 56 76 77 78
|
ltletrd |
|
80 |
79
|
adantr |
|
81 |
54 59 73 61 80
|
lelttrd |
|
82 |
54 73 81
|
ltled |
|
83 |
67 69 70 72 82
|
elfzd |
|
84 |
83
|
adantlr |
|
85 |
|
rspa |
|
86 |
65 84 85
|
syl2anc |
|
87 |
86
|
adantlll |
|
88 |
64 87
|
mpd |
|
89 |
88
|
ex |
|
90 |
51 89
|
ralrimi |
|
91 |
|
ralnex |
|
92 |
90 91
|
sylib |
|
93 |
|
eliun |
|
94 |
92 93
|
sylnibr |
|
95 |
94
|
adantrl |
|
96 |
48 95
|
eldifd |
|
97 |
16 21
|
syldan |
|
98 |
97
|
eqcomd |
|
99 |
98
|
adantr |
|
100 |
96 99
|
eleqtrd |
|
101 |
100
|
ex |
|
102 |
101
|
ex |
|
103 |
1 102
|
reximdai |
|
104 |
103
|
adantr |
|
105 |
47 104
|
mpd |
|
106 |
105 5
|
sylibr |
|
107 |
38 106
|
eqelssd |
|
108 |
107
|
ralrimivw |
|
109 |
2
|
iuneqfzuz |
|
110 |
108 109
|
syl |
|
111 |
|
fveq2 |
|
112 |
|
oveq2 |
|
113 |
112
|
iuneq1d |
|
114 |
111 113
|
difeq12d |
|
115 |
114
|
cbvmptv |
|
116 |
4 115
|
eqtri |
|
117 |
|
simpllr |
|
118 |
|
simplr |
|
119 |
|
simpr |
|
120 |
2 116 117 118 119
|
iundjiunlem |
|
121 |
120
|
adantlr |
|
122 |
|
simpll |
|
123 |
|
neqne |
|
124 |
|
id |
|
125 |
124 2
|
eleqtrdi |
|
126 |
|
eluzelz |
|
127 |
125 126
|
syl |
|
128 |
127
|
zred |
|
129 |
128
|
adantl |
|
130 |
129
|
ad2antrr |
|
131 |
|
id |
|
132 |
131 2
|
eleqtrdi |
|
133 |
|
eluzelz |
|
134 |
132 133
|
syl |
|
135 |
134
|
zred |
|
136 |
135
|
ad3antrrr |
|
137 |
|
simpr |
|
138 |
129
|
adantr |
|
139 |
135
|
ad2antrr |
|
140 |
138 139
|
lenltd |
|
141 |
137 140
|
mpbird |
|
142 |
141
|
adantlr |
|
143 |
|
simplr |
|
144 |
130 136 142 143
|
leneltd |
|
145 |
123 144
|
sylanl2 |
|
146 |
145
|
ad5ant2345 |
|
147 |
|
anass |
|
148 |
|
incom |
|
149 |
148
|
a1i |
|
150 |
|
simplrr |
|
151 |
|
simplrl |
|
152 |
|
simpr |
|
153 |
2 116 150 151 152
|
iundjiunlem |
|
154 |
149 153
|
eqtrd |
|
155 |
147 154
|
sylanb |
|
156 |
122 146 155
|
syl2anc |
|
157 |
121 156
|
pm2.61dan |
|
158 |
157
|
ex |
|
159 |
|
df-or |
|
160 |
158 159
|
sylibr |
|
161 |
160
|
ralrimiva |
|
162 |
161
|
ex |
|
163 |
1 162
|
ralrimi |
|
164 |
|
nfcv |
|
165 |
|
nfmpt1 |
|
166 |
4 165
|
nfcxfr |
|
167 |
|
nfcv |
|
168 |
166 167
|
nffv |
|
169 |
|
fveq2 |
|
170 |
164 168 169
|
cbvdisj |
|
171 |
|
fveq2 |
|
172 |
171
|
disjor |
|
173 |
|
nfcv |
|
174 |
|
nfv |
|
175 |
|
nfcv |
|
176 |
166 175
|
nffv |
|
177 |
168 176
|
nfin |
|
178 |
|
nfcv |
|
179 |
177 178
|
nfeq |
|
180 |
174 179
|
nfor |
|
181 |
173 180
|
nfralw |
|
182 |
|
nfv |
|
183 |
|
equequ1 |
|
184 |
|
fveq2 |
|
185 |
184
|
ineq1d |
|
186 |
185
|
eqeq1d |
|
187 |
183 186
|
orbi12d |
|
188 |
187
|
ralbidv |
|
189 |
181 182 188
|
cbvralw |
|
190 |
170 172 189
|
3bitri |
|
191 |
163 190
|
sylibr |
|
192 |
108 110 191
|
jca31 |
|