Metamath Proof Explorer


Theorem jm2.22

Description: Lemma for jm2.20nn . Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion jm2.22 A2NJ0AYrm N J=ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12

Proof

Step Hyp Ref Expression
1 nn0z J0J
2 jm2.21 A2NJAXrm N J+A21AYrm N J=AXrmN+A21AYrmNJ
3 1 2 syl3an3 A2NJ0AXrm N J+A21AYrm N J=AXrmN+A21AYrmNJ
4 frmx Xrm:2×0
5 4 fovcl A2NAXrmN0
6 5 3adant3 A2NJ0AXrmN0
7 6 nn0cnd A2NJ0AXrmN
8 eluzelz A2A
9 zsqcl AA2
10 peano2zm A2A21
11 8 9 10 3syl A2A21
12 11 3ad2ant1 A2NJ0A21
13 12 zcnd A2NJ0A21
14 13 sqrtcld A2NJ0A21
15 frmy Yrm:2×
16 15 fovcl A2NAYrmN
17 16 3adant3 A2NJ0AYrmN
18 17 zcnd A2NJ0AYrmN
19 14 18 mulcld A2NJ0A21AYrmN
20 simp3 A2NJ0J0
21 binom AXrmNA21AYrmNJ0AXrmN+A21AYrmNJ=i=0J(Ji)AXrmNJiA21AYrmNi
22 7 19 20 21 syl3anc A2NJ0AXrmN+A21AYrmNJ=i=0J(Ji)AXrmNJiA21AYrmNi
23 rabnc x0J|2xx0J|¬2x=
24 23 a1i A2NJ0x0J|2xx0J|¬2x=
25 rabxm 0J=x0J|2xx0J|¬2x
26 25 a1i A2NJ00J=x0J|2xx0J|¬2x
27 fzfid A2NJ00JFin
28 simpl3 A2NJ0i0JJ0
29 elfzelz i0Ji
30 29 adantl A2NJ0i0Ji
31 bccl J0i(Ji)0
32 31 nn0zd J0i(Ji)
33 28 30 32 syl2anc A2NJ0i0J(Ji)
34 33 zcnd A2NJ0i0J(Ji)
35 6 nn0zd A2NJ0AXrmN
36 35 adantr A2NJ0i0JAXrmN
37 36 zcnd A2NJ0i0JAXrmN
38 fznn0sub i0JJi0
39 38 adantl A2NJ0i0JJi0
40 37 39 expcld A2NJ0i0JAXrmNJi
41 12 adantr A2NJ0i0JA21
42 41 zcnd A2NJ0i0JA21
43 42 sqrtcld A2NJ0i0JA21
44 17 adantr A2NJ0i0JAYrmN
45 44 zcnd A2NJ0i0JAYrmN
46 43 45 mulcld A2NJ0i0JA21AYrmN
47 elfznn0 i0Ji0
48 47 adantl A2NJ0i0Ji0
49 46 48 expcld A2NJ0i0JA21AYrmNi
50 40 49 mulcld A2NJ0i0JAXrmNJiA21AYrmNi
51 34 50 mulcld A2NJ0i0J(Ji)AXrmNJiA21AYrmNi
52 24 26 27 51 fsumsplit A2NJ0i=0J(Ji)AXrmNJiA21AYrmNi=ix0J|2x(Ji)AXrmNJiA21AYrmNi+ix0J|¬2x(Ji)AXrmNJiA21AYrmNi
53 fzfi 0JFin
54 ssrab2 x0J|¬2x0J
55 ssfi 0JFinx0J|¬2x0Jx0J|¬2xFin
56 53 54 55 mp2an x0J|¬2xFin
57 56 a1i A2NJ0x0J|¬2xFin
58 breq2 x=i2x2i
59 58 notbid x=i¬2x¬2i
60 59 elrab ix0J|¬2xi0J¬2i
61 34 adantrr A2NJ0i0J¬2i(Ji)
62 40 adantrr A2NJ0i0J¬2iAXrmNJi
63 zexpcl AYrmNi0AYrmNi
64 17 47 63 syl2an A2NJ0i0JAYrmNi
65 64 zcnd A2NJ0i0JAYrmNi
66 65 adantrr A2NJ0i0J¬2iAYrmNi
67 42 adantrr A2NJ0i0J¬2iA21
68 29 adantr i0J¬2ii
69 simpr i0J¬2i¬2i
70 1zzd i0J¬2i1
71 n2dvds1 ¬21
72 71 a1i i0J¬2i¬21
73 omoe i¬2i1¬212i1
74 68 69 70 72 73 syl22anc i0J¬2i2i1
75 2z 2
76 75 a1i i0J¬2i2
77 2ne0 20
78 77 a1i i0J¬2i20
79 peano2zm ii1
80 29 79 syl i0Ji1
81 80 adantr i0J¬2ii1
82 dvdsval2 220i12i1i12
83 76 78 81 82 syl3anc i0J¬2i2i1i12
84 74 83 mpbid i0J¬2ii12
85 80 zred i0Ji1
86 85 adantr i0J¬2ii1
87 dvds0 220
88 75 87 ax-mp 20
89 breq2 i=02i20
90 88 89 mpbiri i=02i
91 90 con3i ¬2i¬i=0
92 91 adantl i0J¬2i¬i=0
93 47 adantr i0J¬2ii0
94 elnn0 i0ii=0
95 93 94 sylib i0J¬2iii=0
96 orel2 ¬i=0ii=0i
97 92 95 96 sylc i0J¬2ii
98 nnm1nn0 ii10
99 97 98 syl i0J¬2ii10
100 99 nn0ge0d i0J¬2i0i1
101 2re 2
102 101 a1i i0J¬2i2
103 2pos 0<2
104 103 a1i i0J¬2i0<2
105 divge0 i10i120<20i12
106 86 100 102 104 105 syl22anc i0J¬2i0i12
107 elnn0z i120i120i12
108 84 106 107 sylanbrc i0J¬2ii120
109 108 adantl A2NJ0i0J¬2ii120
110 67 109 expcld A2NJ0i0J¬2iA21i12
111 66 110 mulcld A2NJ0i0J¬2iAYrmNiA21i12
112 62 111 mulcld A2NJ0i0J¬2iAXrmNJiAYrmNiA21i12
113 61 112 mulcld A2NJ0i0J¬2i(Ji)AXrmNJiAYrmNiA21i12
114 60 113 sylan2b A2NJ0ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
115 57 14 114 fsummulc2 A2NJ0A21ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12=ix0J|¬2xA21(Ji)AXrmNJiAYrmNiA21i12
116 43 adantrr A2NJ0i0J¬2iA21
117 116 61 112 mul12d A2NJ0i0J¬2iA21(Ji)AXrmNJiAYrmNiA21i12=(Ji)A21AXrmNJiAYrmNiA21i12
118 116 62 111 mul12d A2NJ0i0J¬2iA21AXrmNJiAYrmNiA21i12=AXrmNJiA21AYrmNiA21i12
119 43 48 expcld A2NJ0i0JA21i
120 119 adantrr A2NJ0i0J¬2iA21i
121 66 120 mulcomd A2NJ0i0J¬2iAYrmNiA21i=A21iAYrmNi
122 116 66 110 mul12d A2NJ0i0J¬2iA21AYrmNiA21i12=AYrmNiA21A21i12
123 2nn0 20
124 123 a1i A2NJ0i0J¬2i20
125 116 109 124 expmuld A2NJ0i0J¬2iA212i12=A212i12
126 80 zcnd i0Ji1
127 126 ad2antrl A2NJ0i0J¬2ii1
128 2cnd A2NJ0i0J¬2i2
129 77 a1i A2NJ0i0J¬2i20
130 127 128 129 divcan2d A2NJ0i0J¬2i2i12=i1
131 130 oveq2d A2NJ0i0J¬2iA212i12=A21i1
132 67 sqsqrtd A2NJ0i0J¬2iA212=A21
133 132 oveq1d A2NJ0i0J¬2iA212i12=A21i12
134 125 131 133 3eqtr3rd A2NJ0i0J¬2iA21i12=A21i1
135 134 oveq1d A2NJ0i0J¬2iA21i12A21=A21i1A21
136 116 110 mulcomd A2NJ0i0J¬2iA21A21i12=A21i12A21
137 97 adantl A2NJ0i0J¬2ii
138 expm1t A21iA21i=A21i1A21
139 116 137 138 syl2anc A2NJ0i0J¬2iA21i=A21i1A21
140 135 136 139 3eqtr4d A2NJ0i0J¬2iA21A21i12=A21i
141 140 oveq2d A2NJ0i0J¬2iAYrmNiA21A21i12=AYrmNiA21i
142 122 141 eqtrd A2NJ0i0J¬2iA21AYrmNiA21i12=AYrmNiA21i
143 43 45 48 mulexpd A2NJ0i0JA21AYrmNi=A21iAYrmNi
144 143 adantrr A2NJ0i0J¬2iA21AYrmNi=A21iAYrmNi
145 121 142 144 3eqtr4d A2NJ0i0J¬2iA21AYrmNiA21i12=A21AYrmNi
146 145 oveq2d A2NJ0i0J¬2iAXrmNJiA21AYrmNiA21i12=AXrmNJiA21AYrmNi
147 118 146 eqtrd A2NJ0i0J¬2iA21AXrmNJiAYrmNiA21i12=AXrmNJiA21AYrmNi
148 147 oveq2d A2NJ0i0J¬2i(Ji)A21AXrmNJiAYrmNiA21i12=(Ji)AXrmNJiA21AYrmNi
149 117 148 eqtrd A2NJ0i0J¬2iA21(Ji)AXrmNJiAYrmNiA21i12=(Ji)AXrmNJiA21AYrmNi
150 60 149 sylan2b A2NJ0ix0J|¬2xA21(Ji)AXrmNJiAYrmNiA21i12=(Ji)AXrmNJiA21AYrmNi
151 150 sumeq2dv A2NJ0ix0J|¬2xA21(Ji)AXrmNJiAYrmNiA21i12=ix0J|¬2x(Ji)AXrmNJiA21AYrmNi
152 115 151 eqtr2d A2NJ0ix0J|¬2x(Ji)AXrmNJiA21AYrmNi=A21ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
153 152 oveq2d A2NJ0ix0J|2x(Ji)AXrmNJiA21AYrmNi+ix0J|¬2x(Ji)AXrmNJiA21AYrmNi=ix0J|2x(Ji)AXrmNJiA21AYrmNi+A21ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
154 52 153 eqtrd A2NJ0i=0J(Ji)AXrmNJiA21AYrmNi=ix0J|2x(Ji)AXrmNJiA21AYrmNi+A21ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
155 3 22 154 3eqtrd A2NJ0AXrm N J+A21AYrm N J=ix0J|2x(Ji)AXrmNJiA21AYrmNi+A21ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
156 rmspecsqrtnq A2A21
157 156 3ad2ant1 A2NJ0A21
158 nn0ssq 0
159 simp1 A2NJ0A2
160 simp2 A2NJ0N
161 1 3ad2ant3 A2NJ0J
162 160 161 zmulcld A2NJ0 N J
163 4 fovcl A2 N JAXrm N J0
164 159 162 163 syl2anc A2NJ0AXrm N J0
165 158 164 sselid A2NJ0AXrm N J
166 zssq
167 15 fovcl A2 N JAYrm N J
168 159 162 167 syl2anc A2NJ0AYrm N J
169 166 168 sselid A2NJ0AYrm N J
170 ssrab2 x0J|2x0J
171 ssfi 0JFinx0J|2x0Jx0J|2xFin
172 53 170 171 mp2an x0J|2xFin
173 172 a1i A2NJ0x0J|2xFin
174 58 elrab ix0J|2xi0J2i
175 33 adantrr A2NJ0i0J2i(Ji)
176 zexpcl AXrmNJi0AXrmNJi
177 36 39 176 syl2anc A2NJ0i0JAXrmNJi
178 177 adantrr A2NJ0i0J2iAXrmNJi
179 43 adantrr A2NJ0i0J2iA21
180 45 adantrr A2NJ0i0J2iAYrmN
181 47 ad2antrl A2NJ0i0J2ii0
182 179 180 181 mulexpd A2NJ0i0J2iA21AYrmNi=A21iAYrmNi
183 29 zcnd i0Ji
184 183 adantl A2NJ0i0Ji
185 2cnd A2NJ0i0J2
186 77 a1i A2NJ0i0J20
187 184 185 186 divcan2d A2NJ0i0J2i2=i
188 187 eqcomd A2NJ0i0Ji=2i2
189 188 adantrr A2NJ0i0J2ii=2i2
190 189 oveq2d A2NJ0i0J2iA21i=A212i2
191 75 a1i i02
192 77 a1i i020
193 nn0z i0i
194 dvdsval2 220i2ii2
195 191 192 193 194 syl3anc i02ii2
196 195 biimpa i02ii2
197 nn0re i0i
198 197 adantr i02ii
199 nn0ge0 i00i
200 199 adantr i02i0i
201 101 a1i i02i2
202 103 a1i i02i0<2
203 divge0 i0i20<20i2
204 198 200 201 202 203 syl22anc i02i0i2
205 elnn0z i20i20i2
206 196 204 205 sylanbrc i02ii20
207 47 206 sylan i0J2ii20
208 207 adantl A2NJ0i0J2ii20
209 123 a1i A2NJ0i0J2i20
210 179 208 209 expmuld A2NJ0i0J2iA212i2=A212i2
211 42 adantrr A2NJ0i0J2iA21
212 211 sqsqrtd A2NJ0i0J2iA212=A21
213 212 oveq1d A2NJ0i0J2iA212i2=A21i2
214 190 210 213 3eqtrd A2NJ0i0J2iA21i=A21i2
215 214 oveq1d A2NJ0i0J2iA21iAYrmNi=A21i2AYrmNi
216 182 215 eqtrd A2NJ0i0J2iA21AYrmNi=A21i2AYrmNi
217 zexpcl A21i20A21i2
218 12 207 217 syl2an A2NJ0i0J2iA21i2
219 64 adantrr A2NJ0i0J2iAYrmNi
220 218 219 zmulcld A2NJ0i0J2iA21i2AYrmNi
221 216 220 eqeltrd A2NJ0i0J2iA21AYrmNi
222 178 221 zmulcld A2NJ0i0J2iAXrmNJiA21AYrmNi
223 175 222 zmulcld A2NJ0i0J2i(Ji)AXrmNJiA21AYrmNi
224 174 223 sylan2b A2NJ0ix0J|2x(Ji)AXrmNJiA21AYrmNi
225 173 224 fsumzcl A2NJ0ix0J|2x(Ji)AXrmNJiA21AYrmNi
226 166 225 sselid A2NJ0ix0J|2x(Ji)AXrmNJiA21AYrmNi
227 33 adantrr A2NJ0i0J¬2i(Ji)
228 177 adantrr A2NJ0i0J¬2iAXrmNJi
229 64 adantrr A2NJ0i0J¬2iAYrmNi
230 zexpcl A21i120A21i12
231 12 108 230 syl2an A2NJ0i0J¬2iA21i12
232 229 231 zmulcld A2NJ0i0J¬2iAYrmNiA21i12
233 228 232 zmulcld A2NJ0i0J¬2iAXrmNJiAYrmNiA21i12
234 227 233 zmulcld A2NJ0i0J¬2i(Ji)AXrmNJiAYrmNiA21i12
235 60 234 sylan2b A2NJ0ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
236 57 235 fsumzcl A2NJ0ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
237 166 236 sselid A2NJ0ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
238 qirropth A21AXrm N JAYrm N Jix0J|2x(Ji)AXrmNJiA21AYrmNiix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12AXrm N J+A21AYrm N J=ix0J|2x(Ji)AXrmNJiA21AYrmNi+A21ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12AXrm N J=ix0J|2x(Ji)AXrmNJiA21AYrmNiAYrm N J=ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
239 157 165 169 226 237 238 syl122anc A2NJ0AXrm N J+A21AYrm N J=ix0J|2x(Ji)AXrmNJiA21AYrmNi+A21ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12AXrm N J=ix0J|2x(Ji)AXrmNJiA21AYrmNiAYrm N J=ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
240 155 239 mpbid A2NJ0AXrm N J=ix0J|2x(Ji)AXrmNJiA21AYrmNiAYrm N J=ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12
241 240 simprd A2NJ0AYrm N J=ix0J|¬2x(Ji)AXrmNJiAYrmNiA21i12