| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0z |
|
| 2 |
|
jm2.21 |
|
| 3 |
1 2
|
syl3an3 |
|
| 4 |
|
frmx |
|
| 5 |
4
|
fovcl |
|
| 6 |
5
|
3adant3 |
|
| 7 |
6
|
nn0cnd |
|
| 8 |
|
eluzelz |
|
| 9 |
|
zsqcl |
|
| 10 |
|
peano2zm |
|
| 11 |
8 9 10
|
3syl |
|
| 12 |
11
|
3ad2ant1 |
|
| 13 |
12
|
zcnd |
|
| 14 |
13
|
sqrtcld |
|
| 15 |
|
frmy |
|
| 16 |
15
|
fovcl |
|
| 17 |
16
|
3adant3 |
|
| 18 |
17
|
zcnd |
|
| 19 |
14 18
|
mulcld |
|
| 20 |
|
simp3 |
|
| 21 |
|
binom |
|
| 22 |
7 19 20 21
|
syl3anc |
|
| 23 |
|
rabnc |
|
| 24 |
23
|
a1i |
|
| 25 |
|
rabxm |
|
| 26 |
25
|
a1i |
|
| 27 |
|
fzfid |
|
| 28 |
|
simpl3 |
|
| 29 |
|
elfzelz |
|
| 30 |
29
|
adantl |
|
| 31 |
|
bccl |
|
| 32 |
31
|
nn0zd |
|
| 33 |
28 30 32
|
syl2anc |
|
| 34 |
33
|
zcnd |
|
| 35 |
6
|
nn0zd |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
zcnd |
|
| 38 |
|
fznn0sub |
|
| 39 |
38
|
adantl |
|
| 40 |
37 39
|
expcld |
|
| 41 |
12
|
adantr |
|
| 42 |
41
|
zcnd |
|
| 43 |
42
|
sqrtcld |
|
| 44 |
17
|
adantr |
|
| 45 |
44
|
zcnd |
|
| 46 |
43 45
|
mulcld |
|
| 47 |
|
elfznn0 |
|
| 48 |
47
|
adantl |
|
| 49 |
46 48
|
expcld |
|
| 50 |
40 49
|
mulcld |
|
| 51 |
34 50
|
mulcld |
|
| 52 |
24 26 27 51
|
fsumsplit |
|
| 53 |
|
fzfi |
|
| 54 |
|
ssrab2 |
|
| 55 |
|
ssfi |
|
| 56 |
53 54 55
|
mp2an |
|
| 57 |
56
|
a1i |
|
| 58 |
|
breq2 |
|
| 59 |
58
|
notbid |
|
| 60 |
59
|
elrab |
|
| 61 |
34
|
adantrr |
|
| 62 |
40
|
adantrr |
|
| 63 |
|
zexpcl |
|
| 64 |
17 47 63
|
syl2an |
|
| 65 |
64
|
zcnd |
|
| 66 |
65
|
adantrr |
|
| 67 |
42
|
adantrr |
|
| 68 |
29
|
adantr |
|
| 69 |
|
simpr |
|
| 70 |
|
1zzd |
|
| 71 |
|
n2dvds1 |
|
| 72 |
71
|
a1i |
|
| 73 |
|
omoe |
|
| 74 |
68 69 70 72 73
|
syl22anc |
|
| 75 |
|
2z |
|
| 76 |
75
|
a1i |
|
| 77 |
|
2ne0 |
|
| 78 |
77
|
a1i |
|
| 79 |
|
peano2zm |
|
| 80 |
29 79
|
syl |
|
| 81 |
80
|
adantr |
|
| 82 |
|
dvdsval2 |
|
| 83 |
76 78 81 82
|
syl3anc |
|
| 84 |
74 83
|
mpbid |
|
| 85 |
80
|
zred |
|
| 86 |
85
|
adantr |
|
| 87 |
|
dvds0 |
|
| 88 |
75 87
|
ax-mp |
|
| 89 |
|
breq2 |
|
| 90 |
88 89
|
mpbiri |
|
| 91 |
90
|
con3i |
|
| 92 |
91
|
adantl |
|
| 93 |
47
|
adantr |
|
| 94 |
|
elnn0 |
|
| 95 |
93 94
|
sylib |
|
| 96 |
|
orel2 |
|
| 97 |
92 95 96
|
sylc |
|
| 98 |
|
nnm1nn0 |
|
| 99 |
97 98
|
syl |
|
| 100 |
99
|
nn0ge0d |
|
| 101 |
|
2re |
|
| 102 |
101
|
a1i |
|
| 103 |
|
2pos |
|
| 104 |
103
|
a1i |
|
| 105 |
|
divge0 |
|
| 106 |
86 100 102 104 105
|
syl22anc |
|
| 107 |
|
elnn0z |
|
| 108 |
84 106 107
|
sylanbrc |
|
| 109 |
108
|
adantl |
|
| 110 |
67 109
|
expcld |
|
| 111 |
66 110
|
mulcld |
|
| 112 |
62 111
|
mulcld |
|
| 113 |
61 112
|
mulcld |
|
| 114 |
60 113
|
sylan2b |
|
| 115 |
57 14 114
|
fsummulc2 |
|
| 116 |
43
|
adantrr |
|
| 117 |
116 61 112
|
mul12d |
|
| 118 |
116 62 111
|
mul12d |
|
| 119 |
43 48
|
expcld |
|
| 120 |
119
|
adantrr |
|
| 121 |
66 120
|
mulcomd |
|
| 122 |
116 66 110
|
mul12d |
|
| 123 |
|
2nn0 |
|
| 124 |
123
|
a1i |
|
| 125 |
116 109 124
|
expmuld |
|
| 126 |
80
|
zcnd |
|
| 127 |
126
|
ad2antrl |
|
| 128 |
|
2cnd |
|
| 129 |
77
|
a1i |
|
| 130 |
127 128 129
|
divcan2d |
|
| 131 |
130
|
oveq2d |
|
| 132 |
67
|
sqsqrtd |
|
| 133 |
132
|
oveq1d |
|
| 134 |
125 131 133
|
3eqtr3rd |
|
| 135 |
134
|
oveq1d |
|
| 136 |
116 110
|
mulcomd |
|
| 137 |
97
|
adantl |
|
| 138 |
|
expm1t |
|
| 139 |
116 137 138
|
syl2anc |
|
| 140 |
135 136 139
|
3eqtr4d |
|
| 141 |
140
|
oveq2d |
|
| 142 |
122 141
|
eqtrd |
|
| 143 |
43 45 48
|
mulexpd |
|
| 144 |
143
|
adantrr |
|
| 145 |
121 142 144
|
3eqtr4d |
|
| 146 |
145
|
oveq2d |
|
| 147 |
118 146
|
eqtrd |
|
| 148 |
147
|
oveq2d |
|
| 149 |
117 148
|
eqtrd |
|
| 150 |
60 149
|
sylan2b |
|
| 151 |
150
|
sumeq2dv |
|
| 152 |
115 151
|
eqtr2d |
|
| 153 |
152
|
oveq2d |
|
| 154 |
52 153
|
eqtrd |
|
| 155 |
3 22 154
|
3eqtrd |
|
| 156 |
|
rmspecsqrtnq |
|
| 157 |
156
|
3ad2ant1 |
|
| 158 |
|
nn0ssq |
|
| 159 |
|
simp1 |
|
| 160 |
|
simp2 |
|
| 161 |
1
|
3ad2ant3 |
|
| 162 |
160 161
|
zmulcld |
|
| 163 |
4
|
fovcl |
|
| 164 |
159 162 163
|
syl2anc |
|
| 165 |
158 164
|
sselid |
|
| 166 |
|
zssq |
|
| 167 |
15
|
fovcl |
|
| 168 |
159 162 167
|
syl2anc |
|
| 169 |
166 168
|
sselid |
|
| 170 |
|
ssrab2 |
|
| 171 |
|
ssfi |
|
| 172 |
53 170 171
|
mp2an |
|
| 173 |
172
|
a1i |
|
| 174 |
58
|
elrab |
|
| 175 |
33
|
adantrr |
|
| 176 |
|
zexpcl |
|
| 177 |
36 39 176
|
syl2anc |
|
| 178 |
177
|
adantrr |
|
| 179 |
43
|
adantrr |
|
| 180 |
45
|
adantrr |
|
| 181 |
47
|
ad2antrl |
|
| 182 |
179 180 181
|
mulexpd |
|
| 183 |
29
|
zcnd |
|
| 184 |
183
|
adantl |
|
| 185 |
|
2cnd |
|
| 186 |
77
|
a1i |
|
| 187 |
184 185 186
|
divcan2d |
|
| 188 |
187
|
eqcomd |
|
| 189 |
188
|
adantrr |
|
| 190 |
189
|
oveq2d |
|
| 191 |
75
|
a1i |
|
| 192 |
77
|
a1i |
|
| 193 |
|
nn0z |
|
| 194 |
|
dvdsval2 |
|
| 195 |
191 192 193 194
|
syl3anc |
|
| 196 |
195
|
biimpa |
|
| 197 |
|
nn0re |
|
| 198 |
197
|
adantr |
|
| 199 |
|
nn0ge0 |
|
| 200 |
199
|
adantr |
|
| 201 |
101
|
a1i |
|
| 202 |
103
|
a1i |
|
| 203 |
|
divge0 |
|
| 204 |
198 200 201 202 203
|
syl22anc |
|
| 205 |
|
elnn0z |
|
| 206 |
196 204 205
|
sylanbrc |
|
| 207 |
47 206
|
sylan |
|
| 208 |
207
|
adantl |
|
| 209 |
123
|
a1i |
|
| 210 |
179 208 209
|
expmuld |
|
| 211 |
42
|
adantrr |
|
| 212 |
211
|
sqsqrtd |
|
| 213 |
212
|
oveq1d |
|
| 214 |
190 210 213
|
3eqtrd |
|
| 215 |
214
|
oveq1d |
|
| 216 |
182 215
|
eqtrd |
|
| 217 |
|
zexpcl |
|
| 218 |
12 207 217
|
syl2an |
|
| 219 |
64
|
adantrr |
|
| 220 |
218 219
|
zmulcld |
|
| 221 |
216 220
|
eqeltrd |
|
| 222 |
178 221
|
zmulcld |
|
| 223 |
175 222
|
zmulcld |
|
| 224 |
174 223
|
sylan2b |
|
| 225 |
173 224
|
fsumzcl |
|
| 226 |
166 225
|
sselid |
|
| 227 |
33
|
adantrr |
|
| 228 |
177
|
adantrr |
|
| 229 |
64
|
adantrr |
|
| 230 |
|
zexpcl |
|
| 231 |
12 108 230
|
syl2an |
|
| 232 |
229 231
|
zmulcld |
|
| 233 |
228 232
|
zmulcld |
|
| 234 |
227 233
|
zmulcld |
|
| 235 |
60 234
|
sylan2b |
|
| 236 |
57 235
|
fsumzcl |
|
| 237 |
166 236
|
sselid |
|
| 238 |
|
qirropth |
|
| 239 |
157 165 169 226 237 238
|
syl122anc |
|
| 240 |
155 239
|
mpbid |
|
| 241 |
240
|
simprd |
|