Metamath Proof Explorer


Theorem meadjiunlem

Description: The sum of nonnegative extended reals, restricted to the range of another function. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meadjiunlem.f φMMeas
meadjiunlem.3 S=domM
meadjiunlem.x φXV
meadjiunlem.g φG:XS
meadjiunlem.y Y=iX|Gi
meadjiunlem.dj φDisjiXGi
Assertion meadjiunlem φsum^MranG=sum^MG

Proof

Step Hyp Ref Expression
1 meadjiunlem.f φMMeas
2 meadjiunlem.3 S=domM
3 meadjiunlem.x φXV
4 meadjiunlem.g φG:XS
5 meadjiunlem.y Y=iX|Gi
6 meadjiunlem.dj φDisjiXGi
7 nfv kφ
8 4 3 jca φG:XSXV
9 fex G:XSXVGV
10 rnexg GVranGV
11 8 9 10 3syl φranGV
12 difssd φranGranG
13 1 2 meaf φM:S0+∞
14 13 adantr φkranGM:S0+∞
15 4 frnd φranGS
16 15 adantr φkranGranGS
17 12 sselda φkranGkranG
18 16 17 sseldd φkranGkS
19 14 18 ffvelcdmd φkranGMk0+∞
20 simpl φkranGranGφ
21 id kranGranGkranGranG
22 dfin4 ranG=ranGranG
23 22 eqcomi ranGranG=ranG
24 21 23 eleqtrdi kranGranGkranG
25 elinel2 kranGk
26 elsni kk=
27 25 26 syl kranGk=
28 24 27 syl kranGranGk=
29 28 adantl φkranGranGk=
30 simpr φk=k=
31 30 fveq2d φk=Mk=M
32 1 mea0 φM=0
33 32 adantr φk=M=0
34 31 33 eqtrd φk=Mk=0
35 20 29 34 syl2anc φkranGranGMk=0
36 7 11 12 19 35 sge0ss φsum^kranGMk=sum^kranGMk
37 36 eqcomd φsum^kranGMk=sum^kranGMk
38 13 15 feqresmpt φMranG=kranGMk
39 38 fveq2d φsum^MranG=sum^kranGMk
40 4 ffvelcdmda φjXGjS
41 4 feqmptd φG=jXGj
42 13 feqmptd φM=kSMk
43 fveq2 k=GjMk=MGj
44 40 41 42 43 fmptco φMG=jXMGj
45 44 fveq2d φsum^MG=sum^jXMGj
46 nfv jφ
47 ssrab2 iX|GiX
48 47 a1i φiX|GiX
49 5 48 eqsstrid φYX
50 13 adantr φjYM:S0+∞
51 4 adantr φjYG:XS
52 49 sselda φjYjX
53 51 52 ffvelcdmd φjYGjS
54 50 53 ffvelcdmd φjYMGj0+∞
55 eldifi jXYjX
56 55 ad2antlr φjXYMGj0jX
57 fveq2 Gj=MGj=M
58 57 adantl φGj=MGj=M
59 1 adantr φGj=MMeas
60 59 mea0 φGj=M=0
61 58 60 eqtrd φGj=MGj=0
62 61 ad4ant14 φjXYMGj0Gj=MGj=0
63 neneq MGj0¬MGj=0
64 63 ad2antlr φjXYMGj0Gj=¬MGj=0
65 62 64 pm2.65da φjXYMGj0¬Gj=
66 65 neqned φjXYMGj0Gj
67 56 66 jca φjXYMGj0jXGj
68 fveq2 i=jGi=Gj
69 68 neeq1d i=jGiGj
70 69 elrab jiX|GijXGj
71 67 70 sylibr φjXYMGj0jiX|Gi
72 71 5 eleqtrrdi φjXYMGj0jY
73 eldifn jXY¬jY
74 73 ad2antlr φjXYMGj0¬jY
75 72 74 pm2.65da φjXY¬MGj0
76 nne ¬MGj0MGj=0
77 75 76 sylib φjXYMGj=0
78 46 3 49 54 77 sge0ss φsum^jYMGj=sum^jXMGj
79 78 eqcomd φsum^jXMGj=sum^jYMGj
80 3 49 ssexd φYV
81 nfv iφ
82 eqid iYGi=iYGi
83 4 ffnd φGFnX
84 dffn3 GFnXG:XranG
85 83 84 sylib φG:XranG
86 85 adantr φiYG:XranG
87 49 sselda φiYiX
88 86 87 ffvelcdmd φiYGiranG
89 5 eleq2i iYiiX|Gi
90 rabid iiX|GiiXGi
91 89 90 bitri iYiXGi
92 91 biimpi iYiXGi
93 92 simprd iYGi
94 93 adantl φiYGi
95 nelsn Gi¬Gi
96 94 95 syl φiY¬Gi
97 88 96 eldifd φiYGiranG
98 disjss1 YXDisjiXGiDisjiYGi
99 49 6 98 sylc φDisjiYGi
100 81 82 97 94 99 disjf1 φiYGi:Y1-1ranG
101 4 49 feqresmpt φGY=iYGi
102 f1eq1 GY=iYGiGY:Y1-1ranGiYGi:Y1-1ranG
103 101 102 syl φGY:Y1-1ranGiYGi:Y1-1ranG
104 100 103 mpbird φGY:Y1-1ranG
105 101 rneqd φranGY=raniYGi
106 97 ralrimiva φiYGiranG
107 82 rnmptss iYGiranGraniYGiranG
108 106 107 syl φraniYGiranG
109 105 108 eqsstrd φranGYranG
110 simpl φxranGφ
111 eldifi xranGxranG
112 111 adantl φxranGxranG
113 eldifsni xranGx
114 113 adantl φxranGx
115 simpr φxranGxranG
116 fvelrnb GFnXxranGiXGi=x
117 83 116 syl φxranGiXGi=x
118 117 adantr φxranGxranGiXGi=x
119 115 118 mpbid φxranGiXGi=x
120 119 3adant3 φxranGxiXGi=x
121 id Gi=xGi=x
122 121 eqcomd Gi=xx=Gi
123 122 3ad2ant3 φxiXGi=xx=Gi
124 simp1l φxiXGi=xφ
125 simp2 φxiXGi=xiX
126 simpr xGi=xGi=x
127 simpl xGi=xx
128 126 127 eqnetrd xGi=xGi
129 128 adantll φxGi=xGi
130 129 3adant2 φxiXGi=xGi
131 91 biimpri iXGiiY
132 fvexd iXGiGiV
133 82 elrnmpt1 iYGiVGiraniYGi
134 131 132 133 syl2anc iXGiGiraniYGi
135 134 3adant1 φiXGiGiraniYGi
136 105 eqcomd φraniYGi=ranGY
137 136 3ad2ant1 φiXGiraniYGi=ranGY
138 135 137 eleqtrd φiXGiGiranGY
139 124 125 130 138 syl3anc φxiXGi=xGiranGY
140 123 139 eqeltrd φxiXGi=xxranGY
141 140 3exp φxiXGi=xxranGY
142 141 rexlimdv φxiXGi=xxranGY
143 142 3adant2 φxranGxiXGi=xxranGY
144 120 143 mpd φxranGxxranGY
145 110 112 114 144 syl3anc φxranGxranGY
146 109 145 eqelssd φranGY=ranG
147 104 146 jca φGY:Y1-1ranGranGY=ranG
148 dff1o5 GY:Y1-1 ontoranGGY:Y1-1ranGranGY=ranG
149 147 148 sylibr φGY:Y1-1 ontoranG
150 fvres jYGYj=Gj
151 150 adantl φjYGYj=Gj
152 7 46 43 80 149 151 19 sge0f1o φsum^kranGMk=sum^jYMGj
153 152 eqcomd φsum^jYMGj=sum^kranGMk
154 45 79 153 3eqtrd φsum^MG=sum^kranGMk
155 37 39 154 3eqtr4d φsum^MranG=sum^MG