Description: Lemma for minveco . The convergent point of the cauchy sequence F attains the minimum distance, and so is closer to A than any other point in Y . (Contributed by Mario Carneiro, 7-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | minveco.x | |
|
minveco.m | |
||
minveco.n | |
||
minveco.y | |
||
minveco.u | |
||
minveco.w | |
||
minveco.a | |
||
minveco.d | |
||
minveco.j | |
||
minveco.r | |
||
minveco.s | |
||
minveco.f | |
||
minveco.1 | |
||
minveco.t | |
||
Assertion | minvecolem4 | |