Metamath Proof Explorer


Theorem minvecolem4

Description: Lemma for minveco . The convergent point of the cauchy sequence F attains the minimum distance, and so is closer to A than any other point in Y . (Contributed by Mario Carneiro, 7-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
minveco.d D=IndMetU
minveco.j J=MetOpenD
minveco.r R=ranyYNAMy
minveco.s S=supR<
minveco.f φF:Y
minveco.1 φnADFn2S2+1n
minveco.t T=1ADtJF+S22S2
Assertion minvecolem4 φxYyYNAMxNAMy

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 minveco.d D=IndMetU
9 minveco.j J=MetOpenD
10 minveco.r R=ranyYNAMy
11 minveco.s S=supR<
12 minveco.f φF:Y
13 minveco.1 φnADFn2S2+1n
14 minveco.t T=1ADtJF+S22S2
15 phnv UCPreHilOLDUNrmCVec
16 1 8 imsxmet UNrmCVecD∞MetX
17 5 15 16 3syl φD∞MetX
18 9 methaus D∞MetXJHaus
19 lmfun JHausFuntJ
20 17 18 19 3syl φFuntJ
21 1 2 3 4 5 6 7 8 9 10 11 12 13 minvecolem4a φFtMetOpenDY×YtMetOpenDY×YF
22 eqid J𝑡Y=J𝑡Y
23 nnuz =1
24 4 fvexi YV
25 24 a1i φYV
26 5 15 syl φUNrmCVec
27 9 mopntop D∞MetXJTop
28 26 16 27 3syl φJTop
29 elin WSubSpUCBanWSubSpUWCBan
30 6 29 sylib φWSubSpUWCBan
31 30 simpld φWSubSpU
32 eqid SubSpU=SubSpU
33 1 4 32 sspba UNrmCVecWSubSpUYX
34 26 31 33 syl2anc φYX
35 xmetres2 D∞MetXYXDY×Y∞MetY
36 17 34 35 syl2anc φDY×Y∞MetY
37 eqid MetOpenDY×Y=MetOpenDY×Y
38 37 mopntopon DY×Y∞MetYMetOpenDY×YTopOnY
39 36 38 syl φMetOpenDY×YTopOnY
40 lmcl MetOpenDY×YTopOnYFtMetOpenDY×YtMetOpenDY×YFtMetOpenDY×YFY
41 39 21 40 syl2anc φtMetOpenDY×YFY
42 1zzd φ1
43 22 23 25 28 41 42 12 lmss φFtJtMetOpenDY×YFFtJ𝑡YtMetOpenDY×YF
44 eqid DY×Y=DY×Y
45 44 9 37 metrest D∞MetXYXJ𝑡Y=MetOpenDY×Y
46 17 34 45 syl2anc φJ𝑡Y=MetOpenDY×Y
47 46 fveq2d φtJ𝑡Y=tMetOpenDY×Y
48 47 breqd φFtJ𝑡YtMetOpenDY×YFFtMetOpenDY×YtMetOpenDY×YF
49 43 48 bitrd φFtJtMetOpenDY×YFFtMetOpenDY×YtMetOpenDY×YF
50 21 49 mpbird φFtJtMetOpenDY×YF
51 funbrfv FuntJFtJtMetOpenDY×YFtJF=tMetOpenDY×YF
52 20 50 51 sylc φtJF=tMetOpenDY×YF
53 52 41 eqeltrd φtJFY
54 1 2 3 4 5 6 7 8 9 10 11 12 13 minvecolem4b φtJFX
55 1 2 3 8 imsdval UNrmCVecAXtJFXADtJF=NAMtJF
56 26 7 54 55 syl3anc φADtJF=NAMtJF
57 56 adantr φyYADtJF=NAMtJF
58 1 8 imsmet UNrmCVecDMetX
59 5 15 58 3syl φDMetX
60 metcl DMetXAXtJFXADtJF
61 59 7 54 60 syl3anc φADtJF
62 61 adantr φyYADtJF
63 1 2 3 4 5 6 7 8 9 10 11 12 13 minvecolem4c φS
64 63 adantr φyYS
65 26 adantr φyYUNrmCVec
66 7 adantr φyYAX
67 34 sselda φyYyX
68 1 2 nvmcl UNrmCVecAXyXAMyX
69 65 66 67 68 syl3anc φyYAMyX
70 1 3 nvcl UNrmCVecAMyXNAMy
71 65 69 70 syl2anc φyYNAMy
72 63 61 ltnled φS<ADtJF¬ADtJFS
73 eqid T+1=T+1
74 17 adantr φS<ADtJFD∞MetX
75 61 63 readdcld φADtJF+S
76 75 rehalfcld φADtJF+S2
77 76 resqcld φADtJF+S22
78 63 resqcld φS2
79 77 78 resubcld φADtJF+S22S2
80 79 adantr φS<ADtJFADtJF+S22S2
81 63 61 63 ltadd1d φS<ADtJFS+S<ADtJF+S
82 63 recnd φS
83 82 2timesd φ2S=S+S
84 83 breq1d φ2S<ADtJF+SS+S<ADtJF+S
85 2re 2
86 2pos 0<2
87 85 86 pm3.2i 20<2
88 87 a1i φ20<2
89 ltmuldiv2 SADtJF+S20<22S<ADtJF+SS<ADtJF+S2
90 63 75 88 89 syl3anc φ2S<ADtJF+SS<ADtJF+S2
91 81 84 90 3bitr2d φS<ADtJFS<ADtJF+S2
92 1 2 3 4 5 6 7 8 9 10 minvecolem1 φRRwR0w
93 92 simp3d φwR0w
94 92 simp1d φR
95 92 simp2d φR
96 0re 0
97 breq1 x=0xw0w
98 97 ralbidv x=0wRxwwR0w
99 98 rspcev 0wR0wxwRxw
100 96 93 99 sylancr φxwRxw
101 96 a1i φ0
102 infregelb RRxwRxw00supR<wR0w
103 94 95 100 101 102 syl31anc φ0supR<wR0w
104 93 103 mpbird φ0supR<
105 104 11 breqtrrdi φ0S
106 metge0 DMetXAXtJFX0ADtJF
107 59 7 54 106 syl3anc φ0ADtJF
108 61 63 107 105 addge0d φ0ADtJF+S
109 divge0 ADtJF+S0ADtJF+S20<20ADtJF+S2
110 75 108 88 109 syl21anc φ0ADtJF+S2
111 63 76 105 110 lt2sqd φS<ADtJF+S2S2<ADtJF+S22
112 78 77 posdifd φS2<ADtJF+S220<ADtJF+S22S2
113 91 111 112 3bitrd φS<ADtJF0<ADtJF+S22S2
114 113 biimpa φS<ADtJF0<ADtJF+S22S2
115 80 114 elrpd φS<ADtJFADtJF+S22S2+
116 115 rpreccld φS<ADtJF1ADtJF+S22S2+
117 14 116 eqeltrid φS<ADtJFT+
118 117 rprege0d φS<ADtJFT0T
119 flge0nn0 T0TT0
120 nn0p1nn T0T+1
121 118 119 120 3syl φS<ADtJFT+1
122 121 nnzd φS<ADtJFT+1
123 50 52 breqtrrd φFtJtJF
124 123 adantr φS<ADtJFFtJtJF
125 7 adantr φS<ADtJFAX
126 76 adantr φS<ADtJFADtJF+S2
127 126 rexrd φS<ADtJFADtJF+S2*
128 simpll φS<ADtJFnT+1φ
129 eluznn T+1nT+1n
130 121 129 sylan φS<ADtJFnT+1n
131 59 adantr φnDMetX
132 7 adantr φnAX
133 12 34 fssd φF:X
134 133 ffvelcdmda φnFnX
135 metcl DMetXAXFnXADFn
136 131 132 134 135 syl3anc φnADFn
137 128 130 136 syl2anc φS<ADtJFnT+1ADFn
138 137 resqcld φS<ADtJFnT+1ADFn2
139 63 ad2antrr φS<ADtJFnT+1S
140 139 resqcld φS<ADtJFnT+1S2
141 130 nnrecred φS<ADtJFnT+11n
142 140 141 readdcld φS<ADtJFnT+1S2+1n
143 77 ad2antrr φS<ADtJFnT+1ADtJF+S22
144 128 130 13 syl2anc φS<ADtJFnT+1ADFn2S2+1n
145 117 adantr φS<ADtJFnT+1T+
146 145 rpred φS<ADtJFnT+1T
147 reflcl TT
148 peano2re TT+1
149 146 147 148 3syl φS<ADtJFnT+1T+1
150 130 nnred φS<ADtJFnT+1n
151 fllep1 TTT+1
152 146 151 syl φS<ADtJFnT+1TT+1
153 eluzle nT+1T+1n
154 153 adantl φS<ADtJFnT+1T+1n
155 146 149 150 152 154 letrd φS<ADtJFnT+1Tn
156 14 155 eqbrtrrid φS<ADtJFnT+11ADtJF+S22S2n
157 1red φS<ADtJFnT+11
158 79 ad2antrr φS<ADtJFnT+1ADtJF+S22S2
159 114 adantr φS<ADtJFnT+10<ADtJF+S22S2
160 130 nngt0d φS<ADtJFnT+10<n
161 lediv23 1ADtJF+S22S20<ADtJF+S22S2n0<n1ADtJF+S22S2n1nADtJF+S22S2
162 157 158 159 150 160 161 syl122anc φS<ADtJFnT+11ADtJF+S22S2n1nADtJF+S22S2
163 156 162 mpbid φS<ADtJFnT+11nADtJF+S22S2
164 140 141 143 leaddsub2d φS<ADtJFnT+1S2+1nADtJF+S221nADtJF+S22S2
165 163 164 mpbird φS<ADtJFnT+1S2+1nADtJF+S22
166 138 142 143 144 165 letrd φS<ADtJFnT+1ADFn2ADtJF+S22
167 76 ad2antrr φS<ADtJFnT+1ADtJF+S2
168 metge0 DMetXAXFnX0ADFn
169 131 132 134 168 syl3anc φn0ADFn
170 128 130 169 syl2anc φS<ADtJFnT+10ADFn
171 110 ad2antrr φS<ADtJFnT+10ADtJF+S2
172 137 167 170 171 le2sqd φS<ADtJFnT+1ADFnADtJF+S2ADFn2ADtJF+S22
173 166 172 mpbird φS<ADtJFnT+1ADFnADtJF+S2
174 73 9 74 122 124 125 127 173 lmle φS<ADtJFADtJFADtJF+S2
175 61 63 61 leadd2d φADtJFSADtJF+ADtJFADtJF+S
176 61 recnd φADtJF
177 176 2timesd φ2ADtJF=ADtJF+ADtJF
178 177 breq1d φ2ADtJFADtJF+SADtJF+ADtJFADtJF+S
179 lemuldiv2 ADtJFADtJF+S20<22ADtJFADtJF+SADtJFADtJF+S2
180 87 179 mp3an3 ADtJFADtJF+S2ADtJFADtJF+SADtJFADtJF+S2
181 61 75 180 syl2anc φ2ADtJFADtJF+SADtJFADtJF+S2
182 175 178 181 3bitr2d φADtJFSADtJFADtJF+S2
183 182 biimpar φADtJFADtJF+S2ADtJFS
184 174 183 syldan φS<ADtJFADtJFS
185 184 ex φS<ADtJFADtJFS
186 72 185 sylbird φ¬ADtJFSADtJFS
187 186 pm2.18d φADtJFS
188 187 adantr φyYADtJFS
189 94 adantr φyYR
190 100 adantr φyYxwRxw
191 simpr φyYyY
192 fvex NAMyV
193 eqid yYNAMy=yYNAMy
194 193 elrnmpt1 yYNAMyVNAMyranyYNAMy
195 191 192 194 sylancl φyYNAMyranyYNAMy
196 195 10 eleqtrrdi φyYNAMyR
197 infrelb RxwRxwNAMyRsupR<NAMy
198 189 190 196 197 syl3anc φyYsupR<NAMy
199 11 198 eqbrtrid φyYSNAMy
200 62 64 71 188 199 letrd φyYADtJFNAMy
201 57 200 eqbrtrrd φyYNAMtJFNAMy
202 201 ralrimiva φyYNAMtJFNAMy
203 oveq2 x=tJFAMx=AMtJF
204 203 fveq2d x=tJFNAMx=NAMtJF
205 204 breq1d x=tJFNAMxNAMyNAMtJFNAMy
206 205 ralbidv x=tJFyYNAMxNAMyyYNAMtJFNAMy
207 206 rspcev tJFYyYNAMtJFNAMyxYyYNAMxNAMy
208 53 202 207 syl2anc φxYyYNAMxNAMy