Metamath Proof Explorer


Theorem nn0sumshdiglemB

Description: Lemma for nn0sumshdig (induction step, odd multiplier). (Contributed by AV, 7-Jun-2020)

Ref Expression
Assertion nn0sumshdiglemB aa120yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k

Proof

Step Hyp Ref Expression
1 elnn1uz2 aa=1a2
2 1t1e1 11=1
3 2 eqcomi 1=11
4 simpl a=1#b a = y+1 a=1
5 oveq2 y+1=#b a 0..^y+1=0..^#b a
6 5 eqcoms #b a = y+1 0..^y+1=0..^#b a
7 fveq2 a=1#b a = #b 1
8 blen1 #b 1 = 1
9 7 8 eqtrdi a=1#b a = 1
10 9 oveq2d a=10..^#b a = 0..^1
11 fzo01 0..^1=0
12 10 11 eqtrdi a=10..^#b a = 0
13 6 12 sylan9eqr a=1#b a = y+1 0..^y+1=0
14 13 sumeq1d a=1#b a = y+1 k0..^y+1kdigit2a2k=k0kdigit2a2k
15 oveq2 a=1kdigit2a=kdigit21
16 15 oveq1d a=1kdigit2a2k=kdigit212k
17 16 sumeq2sdv a=1k0kdigit2a2k=k0kdigit212k
18 c0ex 0V
19 ax-1cn 1
20 19 19 mulcli 11
21 oveq1 k=0kdigit21=0digit21
22 1ex 1V
23 22 prid2 101
24 0dig2pr01 1010digit21=1
25 23 24 ax-mp 0digit21=1
26 21 25 eqtrdi k=0kdigit21=1
27 oveq2 k=02k=20
28 2cn 2
29 exp0 220=1
30 28 29 ax-mp 20=1
31 27 30 eqtrdi k=02k=1
32 26 31 oveq12d k=0kdigit212k=11
33 32 sumsn 0V11k0kdigit212k=11
34 18 20 33 mp2an k0kdigit212k=11
35 17 34 eqtrdi a=1k0kdigit2a2k=11
36 35 adantr a=1#b a = y+1 k0kdigit2a2k=11
37 14 36 eqtrd a=1#b a = y+1 k0..^y+1kdigit2a2k=11
38 3 4 37 3eqtr4a a=1#b a = y+1 a=k0..^y+1kdigit2a2k
39 38 ex a=1#b a = y+1 a=k0..^y+1kdigit2a2k
40 39 a1d a=1x0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
41 40 2a1d a=1a120yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
42 eluzge2nn0 a2a0
43 nn0ob a0a+120a120
44 43 bicomd a0a120a+120
45 42 44 syl a2a120a+120
46 blennngt2o2 a2a+120#b a = #b a12+1
47 46 ex a2a+120#b a = #b a12+1
48 45 47 sylbid a2a120#b a = #b a12+1
49 48 imp a2a120#b a = #b a12+1
50 fveqeq2 x=a12#b x = y #b a12=y
51 id x=a12x=a12
52 oveq2 x=a12kdigit2x=kdigit2a12
53 52 oveq1d x=a12kdigit2x2k=kdigit2a122k
54 53 sumeq2sdv x=a12k0..^ykdigit2x2k=k0..^ykdigit2a122k
55 51 54 eqeq12d x=a12x=k0..^ykdigit2x2ka12=k0..^ykdigit2a122k
56 50 55 imbi12d x=a12#b x = y x=k0..^ykdigit2x2k #b a12=ya12=k0..^ykdigit2a122k
57 56 rspcva a120x0#b x = y x=k0..^ykdigit2x2k #b a12=ya12=k0..^ykdigit2a122k
58 eqeq1 #b a = y+1 #b a=#b a12+1y+1=#b a12+1
59 nncn yy
60 59 ad2antll #b a = y+1 a120a2y y
61 blennn0elnn a120#b a12
62 61 nncnd a120#b a12
63 62 adantr a120a2#b a12
64 63 ad2antrl #b a = y+1 a120a2y #b a12
65 1cnd #b a = y+1 a120a2y 1
66 60 64 65 addcan2d #b a = y+1 a120a2y y+1=#b a12+1y=#b a12
67 eqcom y=#b a12 #b a12=y
68 nnz yy
69 68 ad2antll #b a = y+1 a120a2y y
70 fzval3 y0y=0..^y+1
71 69 70 syl #b a = y+1 a120a2y 0y=0..^y+1
72 71 eqcomd #b a = y+1 a120a2y 0..^y+1=0y
73 72 sumeq1d #b a = y+1 a120a2y k0..^y+1kdigit2a2k=k=0ykdigit2a2k
74 nnnn0 yy0
75 elnn0uz y0y0
76 74 75 sylib yy0
77 76 ad2antll #b a = y+1 a120a2y y0
78 2nn 2
79 78 a1i a120a2k0y2
80 elfzelz k0yk
81 80 adantl a120a2k0yk
82 nn0rp0 a0a0+∞
83 42 82 syl a2a0+∞
84 83 adantl a120a2a0+∞
85 84 adantr a120a2k0ya0+∞
86 digvalnn0 2ka0+∞kdigit2a0
87 79 81 85 86 syl3anc a120a2k0ykdigit2a0
88 87 ex a120a2k0ykdigit2a0
89 88 ad2antrl #b a = y+1 a120a2y k0ykdigit2a0
90 89 imp #b a = y+1 a120a2y k0y kdigit2a0
91 90 nn0cnd #b a = y+1 a120a2y k0y kdigit2a
92 2nn0 20
93 92 a1i k0y20
94 elfznn0 k0yk0
95 93 94 nn0expcld k0y2k0
96 95 nn0cnd k0y2k
97 96 adantl #b a = y+1 a120a2y k0y 2k
98 91 97 mulcld #b a = y+1 a120a2y k0y kdigit2a2k
99 oveq1 k=0kdigit2a=0digit2a
100 99 27 oveq12d k=0kdigit2a2k=0digit2a20
101 30 oveq2i 0digit2a20=0digit2a1
102 100 101 eqtrdi k=0kdigit2a2k=0digit2a1
103 77 98 102 fsum1p #b a = y+1 a120a2y k=0ykdigit2a2k=0digit2a1+k=0+1ykdigit2a2k
104 42 adantl a120a2a0
105 42 43 syl a2a+120a120
106 105 biimparc a120a2a+120
107 0dig2nn0o a0a+1200digit2a=1
108 104 106 107 syl2anc a120a20digit2a=1
109 108 ad2antrl #b a = y+1 a120a2y 0digit2a=1
110 109 oveq1d #b a = y+1 a120a2y 0digit2a1=11
111 110 2 eqtrdi #b a = y+1 a120a2y 0digit2a1=1
112 1z 1
113 112 a1i #b a = y+1 a120a2y 1
114 0p1e1 0+1=1
115 114 112 eqeltri 0+1
116 115 a1i #b a = y+1 a120a2y 0+1
117 78 a1i a2k0+1y2
118 elfzelz k0+1yk
119 118 adantl a2k0+1yk
120 42 adantr a2k0+1ya0
121 120 82 syl a2k0+1ya0+∞
122 117 119 121 86 syl3anc a2k0+1ykdigit2a0
123 122 ex a2k0+1ykdigit2a0
124 123 adantl a120a2k0+1ykdigit2a0
125 124 ad2antrl #b a = y+1 a120a2y k0+1ykdigit2a0
126 125 imp #b a = y+1 a120a2y k0+1y kdigit2a0
127 126 nn0cnd #b a = y+1 a120a2y k0+1y kdigit2a
128 2cnd k0+1y2
129 elfznn k1yk
130 129 nnnn0d k1yk0
131 114 oveq1i 0+1y=1y
132 130 131 eleq2s k0+1yk0
133 128 132 expcld k0+1y2k
134 133 adantl #b a = y+1 a120a2y k0+1y 2k
135 127 134 mulcld #b a = y+1 a120a2y k0+1y kdigit2a2k
136 oveq1 k=i+1kdigit2a=i+1digit2a
137 oveq2 k=i+12k=2i+1
138 136 137 oveq12d k=i+1kdigit2a2k=i+1digit2a2i+1
139 113 116 69 135 138 fsumshftm #b a = y+1 a120a2y k=0+1ykdigit2a2k=i=0+1-1y1i+1digit2a2i+1
140 111 139 oveq12d #b a = y+1 a120a2y 0digit2a1+k=0+1ykdigit2a2k=1+i=0+1-1y1i+1digit2a2i+1
141 73 103 140 3eqtrd #b a = y+1 a120a2y k0..^y+1kdigit2a2k=1+i=0+1-1y1i+1digit2a2i+1
142 141 adantl a12=k0..^ykdigit2a122k#b a = y+1 a120a2y k0..^y+1kdigit2a2k=1+i=0+1-1y1i+1digit2a2i+1
143 78 a1i a120a2i0..^y2
144 elfzoelz i0..^yi
145 144 adantl a120a2i0..^yi
146 nn0rp0 a120a120+∞
147 146 adantr a120a2a120+∞
148 147 adantr a120a2i0..^ya120+∞
149 digvalnn0 2ia120+∞idigit2a120
150 143 145 148 149 syl3anc a120a2i0..^yidigit2a120
151 150 nn0cnd a120a2i0..^yidigit2a12
152 151 ex a120a2i0..^yidigit2a12
153 152 ad2antrl #b a = y+1 a120a2y i0..^yidigit2a12
154 153 imp #b a = y+1 a120a2y i0..^y idigit2a12
155 92 a1i i0..^y20
156 elfzonn0 i0..^yi0
157 155 156 nn0expcld i0..^y2i0
158 157 nn0cnd i0..^y2i
159 158 adantl #b a = y+1 a120a2y i0..^y 2i
160 2cnd #b a = y+1 a120a2y i0..^y 2
161 154 159 160 mulassd #b a = y+1 a120a2y i0..^y idigit2a122i2=idigit2a122i2
162 161 eqcomd #b a = y+1 a120a2y i0..^y idigit2a122i2=idigit2a122i2
163 162 sumeq2dv #b a = y+1 a120a2y i0..^yidigit2a122i2=i0..^yidigit2a122i2
164 163 adantl a12=k0..^ykdigit2a122k#b a = y+1 a120a2y i0..^yidigit2a122i2=i0..^yidigit2a122i2
165 0cn 0
166 pncan1 00+1-1=0
167 165 166 ax-mp 0+1-1=0
168 167 a1i y0+1-1=0
169 168 oveq1d y0+1-1y1=0y1
170 fzoval y0..^y=0y1
171 68 170 syl y0..^y=0y1
172 169 171 eqtr4d y0+1-1y1=0..^y
173 172 ad2antll #b a = y+1 a120a2y 0+1-1y1=0..^y
174 simprlr #b a = y+1 a120a2y a2
175 elfznn0 i0y1i0
176 167 oveq1i 0+1-1y1=0y1
177 175 176 eleq2s i0+1-1y1i0
178 dignn0flhalf a2i0i+1digit2a=idigit2a2
179 174 177 178 syl2an #b a = y+1 a120a2y i0+1-1y1 i+1digit2a=idigit2a2
180 eluzelz a2a
181 180 adantr a2a120a
182 nn0z a120a12
183 zob aa+12a12
184 180 183 syl a2a+12a12
185 182 184 imbitrrid a2a120a+12
186 185 imp a2a120a+12
187 181 186 jca a2a120aa+12
188 187 ancoms a120a2aa+12
189 188 ad2antrl #b a = y+1 a120a2y aa+12
190 189 adantr #b a = y+1 a120a2y i0+1-1y1 aa+12
191 zofldiv2 aa+12a2=a12
192 190 191 syl #b a = y+1 a120a2y i0+1-1y1 a2=a12
193 192 oveq2d #b a = y+1 a120a2y i0+1-1y1 idigit2a2=idigit2a12
194 179 193 eqtrd #b a = y+1 a120a2y i0+1-1y1 i+1digit2a=idigit2a12
195 2cnd i0+1-1y12
196 195 177 expp1d i0+1-1y12i+1=2i2
197 196 adantl #b a = y+1 a120a2y i0+1-1y1 2i+1=2i2
198 194 197 oveq12d #b a = y+1 a120a2y i0+1-1y1 i+1digit2a2i+1=idigit2a122i2
199 173 198 sumeq12dv #b a = y+1 a120a2y i=0+1-1y1i+1digit2a2i+1=i0..^yidigit2a122i2
200 199 adantl a12=k0..^ykdigit2a122k#b a = y+1 a120a2y i=0+1-1y1i+1digit2a2i+1=i0..^yidigit2a122i2
201 oveq1 k=ikdigit2a12=idigit2a12
202 oveq2 k=i2k=2i
203 201 202 oveq12d k=ikdigit2a122k=idigit2a122i
204 203 cbvsumv k0..^ykdigit2a122k=i0..^yidigit2a122i
205 204 eqeq2i a12=k0..^ykdigit2a122ka12=i0..^yidigit2a122i
206 205 biimpi a12=k0..^ykdigit2a122ka12=i0..^yidigit2a122i
207 206 adantr a12=k0..^ykdigit2a122k#b a = y+1 a120a2y a12=i0..^yidigit2a122i
208 207 oveq1d a12=k0..^ykdigit2a122k#b a = y+1 a120a2y a122=i0..^yidigit2a122i2
209 fzofi 0..^yFin
210 209 a1i a12=k0..^ykdigit2a122k#b a = y+1 a120a2y 0..^yFin
211 2cnd a12=k0..^ykdigit2a122k#b a = y+1 a120a2y 2
212 158 adantl a120a2i0..^y2i
213 151 212 mulcld a120a2i0..^yidigit2a122i
214 213 ex a120a2i0..^yidigit2a122i
215 214 adantr a120a2yi0..^yidigit2a122i
216 215 ad2antll a12=k0..^ykdigit2a122k#b a = y+1 a120a2y i0..^yidigit2a122i
217 216 imp a12=k0..^ykdigit2a122k#b a = y+1 a120a2y i0..^y idigit2a122i
218 210 211 217 fsummulc1 a12=k0..^ykdigit2a122k#b a = y+1 a120a2y i0..^yidigit2a122i2=i0..^yidigit2a122i2
219 208 218 eqtrd a12=k0..^ykdigit2a122k#b a = y+1 a120a2y a122=i0..^yidigit2a122i2
220 164 200 219 3eqtr4d a12=k0..^ykdigit2a122k#b a = y+1 a120a2y i=0+1-1y1i+1digit2a2i+1=a122
221 220 oveq2d a12=k0..^ykdigit2a122k#b a = y+1 a120a2y 1+i=0+1-1y1i+1digit2a2i+1=1+a122
222 eluzelcn a2a
223 peano2cnm aa1
224 222 223 syl a2a1
225 2cnd a22
226 2ne0 20
227 226 a1i a220
228 224 225 227 3jca a2a1220
229 228 adantl a120a2a1220
230 divcan1 a1220a122=a1
231 229 230 syl a120a2a122=a1
232 231 oveq2d a120a21+a122=1+a-1
233 1cnd a21
234 233 222 jca a21a
235 234 adantl a120a21a
236 pncan3 1a1+a-1=a
237 235 236 syl a120a21+a-1=a
238 232 237 eqtrd a120a21+a122=a
239 238 adantr a120a2y1+a122=a
240 239 ad2antll a12=k0..^ykdigit2a122k#b a = y+1 a120a2y 1+a122=a
241 142 221 240 3eqtrrd a12=k0..^ykdigit2a122k#b a = y+1 a120a2y a=k0..^y+1kdigit2a2k
242 241 ex a12=k0..^ykdigit2a122k#b a = y+1 a120a2y a=k0..^y+1kdigit2a2k
243 242 imim2i #b a12 = y a12=k0..^ykdigit2a122k #b a12=y#b a=y+1a120a2ya=k0..^y+1kdigit2a2k
244 243 com13 #b a = y+1 a120a2y #b a12=y#b a12=ya12=k0..^ykdigit2a122ka=k0..^y+1kdigit2a2k
245 67 244 biimtrid #b a = y+1 a120a2y y=#b a12#b a12=ya12=k0..^ykdigit2a122ka=k0..^y+1kdigit2a2k
246 66 245 sylbid #b a = y+1 a120a2y y+1=#b a12+1#b a12=ya12=k0..^ykdigit2a122ka=k0..^y+1kdigit2a2k
247 246 ex #b a = y+1 a120a2yy+1=#b a12+1#b a12=ya12=k0..^ykdigit2a122ka=k0..^y+1kdigit2a2k
248 247 com23 #b a = y+1 y+1=#b a12+1a120a2y#b a12=ya12=k0..^ykdigit2a122ka=k0..^y+1kdigit2a2k
249 58 248 sylbid #b a = y+1 #b a=#b a12+1a120a2y#b a12=ya12=k0..^ykdigit2a122ka=k0..^y+1kdigit2a2k
250 249 com23 #b a = y+1 a120a2y#b a=#b a12+1#b a12=ya12=k0..^ykdigit2a122ka=k0..^y+1kdigit2a2k
251 250 com14 #b a12 = y a12=k0..^ykdigit2a122k a120a2y#b a=#b a12+1#b a=y+1a=k0..^y+1kdigit2a2k
252 251 exp4c #b a12 = y a12=k0..^ykdigit2a122k a120a2y#b a=#b a12+1#b a=y+1a=k0..^y+1kdigit2a2k
253 252 com35 #b a12 = y a12=k0..^ykdigit2a122k a120#b a=#b a12+1ya2#b a=y+1a=k0..^y+1kdigit2a2k
254 57 253 syl a120x0#b x = y x=k0..^ykdigit2x2k a120#b a=#b a12+1ya2#b a=y+1a=k0..^y+1kdigit2a2k
255 254 ex a120x0#b x = y x=k0..^ykdigit2x2k a120#b a=#b a12+1ya2#b a=y+1a=k0..^y+1kdigit2a2k
256 255 pm2.43a a120x0#b x = y x=k0..^ykdigit2x2k #b a=#b a12+1ya2#b a=y+1a=k0..^y+1kdigit2a2k
257 256 com25 a120a2#b a = #b a12+1 yx0#b x=yx=k0..^ykdigit2x2k#b a=y+1a=k0..^y+1kdigit2a2k
258 257 impcom a2a120#b a = #b a12+1 yx0#b x=yx=k0..^ykdigit2x2k#b a=y+1a=k0..^y+1kdigit2a2k
259 49 258 mpd a2a120yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
260 259 ex a2a120yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
261 41 260 jaoi a=1a2a120yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
262 1 261 sylbi aa120yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k
263 262 imp31 aa120yx0#b x = y x=k0..^ykdigit2x2k #b a=y+1a=k0..^y+1kdigit2a2k