Metamath Proof Explorer


Theorem ovolunlem1

Description: Lemma for ovolun . (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses ovolun.a φAvol*A
ovolun.b φBvol*B
ovolun.c φC+
ovolun.s S=seq1+absF
ovolun.t T=seq1+absG
ovolun.u U=seq1+absH
ovolun.f1 φF2
ovolun.f2 φAran.F
ovolun.f3 φsupranS*<vol*A+C2
ovolun.g1 φG2
ovolun.g2 φBran.G
ovolun.g3 φsupranT*<vol*B+C2
ovolun.h H=nifn2Gn2Fn+12
Assertion ovolunlem1 φvol*ABvol*A+vol*B+C

Proof

Step Hyp Ref Expression
1 ovolun.a φAvol*A
2 ovolun.b φBvol*B
3 ovolun.c φC+
4 ovolun.s S=seq1+absF
5 ovolun.t T=seq1+absG
6 ovolun.u U=seq1+absH
7 ovolun.f1 φF2
8 ovolun.f2 φAran.F
9 ovolun.f3 φsupranS*<vol*A+C2
10 ovolun.g1 φG2
11 ovolun.g2 φBran.G
12 ovolun.g3 φsupranT*<vol*B+C2
13 ovolun.h H=nifn2Gn2Fn+12
14 1 simpld φA
15 2 simpld φB
16 14 15 unssd φAB
17 elovolmlem G2G:2
18 10 17 sylib φG:2
19 18 adantr φnG:2
20 19 ffvelcdmda φnn2Gn22
21 nneo nn2¬n+12
22 21 adantl φnn2¬n+12
23 22 con2bid φnn+12¬n2
24 23 biimpar φn¬n2n+12
25 elovolmlem F2F:2
26 7 25 sylib φF:2
27 26 adantr φnF:2
28 27 ffvelcdmda φnn+12Fn+122
29 24 28 syldan φn¬n2Fn+122
30 20 29 ifclda φnifn2Gn2Fn+122
31 30 13 fmptd φH:2
32 eqid absH=absH
33 32 6 ovolsf H:2U:0+∞
34 31 33 syl φU:0+∞
35 rge0ssre 0+∞
36 fss U:0+∞0+∞U:
37 34 35 36 sylancl φU:
38 37 frnd φranU
39 1nn 1
40 1z 1
41 seqfn 1seq1+absHFn1
42 40 41 mp1i φseq1+absHFn1
43 6 fneq1i UFnseq1+absHFn
44 nnuz =1
45 44 fneq2i seq1+absHFnseq1+absHFn1
46 43 45 bitri UFnseq1+absHFn1
47 42 46 sylibr φUFn
48 47 fndmd φdomU=
49 39 48 eleqtrrid φ1domU
50 49 ne0d φdomU
51 dm0rn0 domU=ranU=
52 51 necon3bii domUranU
53 50 52 sylib φranU
54 1 simprd φvol*A
55 2 simprd φvol*B
56 54 55 readdcld φvol*A+vol*B
57 3 rpred φC
58 56 57 readdcld φvol*A+vol*B+C
59 1 2 3 4 5 6 7 8 9 10 11 12 13 ovolunlem1a φkUkvol*A+vol*B+C
60 59 ralrimiva φkUkvol*A+vol*B+C
61 breq1 z=Ukzvol*A+vol*B+CUkvol*A+vol*B+C
62 61 ralrn UFnzranUzvol*A+vol*B+CkUkvol*A+vol*B+C
63 47 62 syl φzranUzvol*A+vol*B+CkUkvol*A+vol*B+C
64 60 63 mpbird φzranUzvol*A+vol*B+C
65 brralrspcev vol*A+vol*B+CzranUzvol*A+vol*B+CkzranUzk
66 58 64 65 syl2anc φkzranUzk
67 ressxr *
68 38 67 sstrdi φranU*
69 supxrbnd2 ranU*kzranUzksupranU*<<+∞
70 68 69 syl φkzranUzksupranU*<<+∞
71 66 70 mpbid φsupranU*<<+∞
72 supxrbnd ranUranUsupranU*<<+∞supranU*<
73 38 53 71 72 syl3anc φsupranU*<
74 nncn mm
75 74 adantl φmm
76 1cnd φm1
77 75 2timesd φm2m=m+m
78 77 oveq1d φm2m1=m+m-1
79 75 75 76 78 assraddsubd φm2m1=m+m-1
80 simpr φmm
81 nnm1nn0 mm10
82 nnnn0addcl mm10m+m-1
83 80 81 82 syl2anc2 φmm+m-1
84 79 83 eqeltrd φm2m1
85 oveq1 n=2m1n2=2m12
86 85 eleq1d n=2m1n22m12
87 85 fveq2d n=2m1Gn2=G2m12
88 oveq1 n=2m1n+1=2m-1+1
89 88 fvoveq1d n=2m1Fn+12=F2m-1+12
90 86 87 89 ifbieq12d n=2m1ifn2Gn2Fn+12=if2m12G2m12F2m-1+12
91 fvex G2m12V
92 fvex F2m-1+12V
93 91 92 ifex if2m12G2m12F2m-1+12V
94 90 13 93 fvmpt 2m1H2m1=if2m12G2m12F2m-1+12
95 84 94 syl φmH2m1=if2m12G2m12F2m-1+12
96 2nn 2
97 nnmulcl 2m2m
98 96 80 97 sylancr φm2m
99 98 nncnd φm2m
100 ax-1cn 1
101 npcan 2m12m-1+1=2m
102 99 100 101 sylancl φm2m-1+1=2m
103 102 oveq1d φm2m-1+12=2m2
104 2cn 2
105 2ne0 20
106 divcan3 m2202m2=m
107 104 105 106 mp3an23 m2m2=m
108 75 107 syl φm2m2=m
109 103 108 eqtrd φm2m-1+12=m
110 109 80 eqeltrd φm2m-1+12
111 nneo 2m12m12¬2m-1+12
112 84 111 syl φm2m12¬2m-1+12
113 112 con2bid φm2m-1+12¬2m12
114 110 113 mpbid φm¬2m12
115 114 iffalsed φmif2m12G2m12F2m-1+12=F2m-1+12
116 109 fveq2d φmF2m-1+12=Fm
117 95 115 116 3eqtrd φmH2m1=Fm
118 fveqeq2 k=2m1Hk=FmH2m1=Fm
119 118 rspcev 2m1H2m1=FmkHk=Fm
120 84 117 119 syl2anc φmkHk=Fm
121 fveq2 Hk=Fm1stHk=1stFm
122 121 breq1d Hk=Fm1stHk<z1stFm<z
123 fveq2 Hk=Fm2ndHk=2ndFm
124 123 breq2d Hk=Fmz<2ndHkz<2ndFm
125 122 124 anbi12d Hk=Fm1stHk<zz<2ndHk1stFm<zz<2ndFm
126 125 biimprcd 1stFm<zz<2ndFmHk=Fm1stHk<zz<2ndHk
127 126 reximdv 1stFm<zz<2ndFmkHk=Fmk1stHk<zz<2ndHk
128 120 127 syl5com φm1stFm<zz<2ndFmk1stHk<zz<2ndHk
129 128 rexlimdva φm1stFm<zz<2ndFmk1stHk<zz<2ndHk
130 129 ralimdv φzAm1stFm<zz<2ndFmzAk1stHk<zz<2ndHk
131 ovolfioo AF:2Aran.FzAm1stFm<zz<2ndFm
132 14 26 131 syl2anc φAran.FzAm1stFm<zz<2ndFm
133 ovolfioo AH:2Aran.HzAk1stHk<zz<2ndHk
134 14 31 133 syl2anc φAran.HzAk1stHk<zz<2ndHk
135 130 132 134 3imtr4d φAran.FAran.H
136 8 135 mpd φAran.H
137 oveq1 n=2mn2=2m2
138 137 eleq1d n=2mn22m2
139 137 fveq2d n=2mGn2=G2m2
140 oveq1 n=2mn+1=2m+1
141 140 fvoveq1d n=2mFn+12=F2m+12
142 138 139 141 ifbieq12d n=2mifn2Gn2Fn+12=if2m2G2m2F2m+12
143 fvex G2m2V
144 fvex F2m+12V
145 143 144 ifex if2m2G2m2F2m+12V
146 142 13 145 fvmpt 2mH2m=if2m2G2m2F2m+12
147 98 146 syl φmH2m=if2m2G2m2F2m+12
148 108 80 eqeltrd φm2m2
149 148 iftrued φmif2m2G2m2F2m+12=G2m2
150 108 fveq2d φmG2m2=Gm
151 147 149 150 3eqtrd φmH2m=Gm
152 fveqeq2 k=2mHk=GmH2m=Gm
153 152 rspcev 2mH2m=GmkHk=Gm
154 98 151 153 syl2anc φmkHk=Gm
155 fveq2 Hk=Gm1stHk=1stGm
156 155 breq1d Hk=Gm1stHk<z1stGm<z
157 fveq2 Hk=Gm2ndHk=2ndGm
158 157 breq2d Hk=Gmz<2ndHkz<2ndGm
159 156 158 anbi12d Hk=Gm1stHk<zz<2ndHk1stGm<zz<2ndGm
160 159 biimprcd 1stGm<zz<2ndGmHk=Gm1stHk<zz<2ndHk
161 160 reximdv 1stGm<zz<2ndGmkHk=Gmk1stHk<zz<2ndHk
162 154 161 syl5com φm1stGm<zz<2ndGmk1stHk<zz<2ndHk
163 162 rexlimdva φm1stGm<zz<2ndGmk1stHk<zz<2ndHk
164 163 ralimdv φzBm1stGm<zz<2ndGmzBk1stHk<zz<2ndHk
165 ovolfioo BG:2Bran.GzBm1stGm<zz<2ndGm
166 15 18 165 syl2anc φBran.GzBm1stGm<zz<2ndGm
167 ovolfioo BH:2Bran.HzBk1stHk<zz<2ndHk
168 15 31 167 syl2anc φBran.HzBk1stHk<zz<2ndHk
169 164 166 168 3imtr4d φBran.GBran.H
170 11 169 mpd φBran.H
171 136 170 unssd φABran.H
172 6 ovollb H:2ABran.Hvol*ABsupranU*<
173 31 171 172 syl2anc φvol*ABsupranU*<
174 ovollecl ABsupranU*<vol*ABsupranU*<vol*AB
175 16 73 173 174 syl3anc φvol*AB
176 58 rexrd φvol*A+vol*B+C*
177 supxrleub ranU*vol*A+vol*B+C*supranU*<vol*A+vol*B+CzranUzvol*A+vol*B+C
178 68 176 177 syl2anc φsupranU*<vol*A+vol*B+CzranUzvol*A+vol*B+C
179 64 178 mpbird φsupranU*<vol*A+vol*B+C
180 175 73 58 173 179 letrd φvol*ABvol*A+vol*B+C