Metamath Proof Explorer


Theorem poimir

Description: Poincare-Miranda theorem. Theorem on Kulpa p. 547. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimir.i I=011N
poimir.r R=𝑡1N×topGenran.
poimir.1 φFR𝑡ICnR
poimir.2 φn1NzIzn=0Fzn0
poimir.3 φn1NzIzn=10Fzn
Assertion poimir φcIFc=1N×0

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimir.i I=011N
3 poimir.r R=𝑡1N×topGenran.
4 poimir.1 φFR𝑡ICnR
5 poimir.2 φn1NzIzn=0Fzn0
6 poimir.3 φn1NzIzn=10Fzn
7 1 2 3 4 5 6 poimirlem32 φcIn1NvR𝑡Icvr-1zv0rFzn
8 ovex 1NV
9 retopon topGenran.TopOn
10 3 pttoponconst 1NVtopGenran.TopOnRTopOn1N
11 8 9 10 mp2an RTopOn1N
12 11 topontopi RTop
13 reex V
14 unitssre 01
15 mapss V01011N1N
16 13 14 15 mp2an 011N1N
17 2 16 eqsstri I1N
18 11 toponunii 1N=R
19 18 restuni RTopI1NI=R𝑡I
20 12 17 19 mp2an I=R𝑡I
21 20 18 cnf FR𝑡ICnRF:I1N
22 4 21 syl φF:I1N
23 22 ffvelcdmda φcIFc1N
24 elmapi Fc1NFc:1N
25 23 24 syl φcIFc:1N
26 25 ffvelcdmda φcIn1NFcn
27 recn FcnFcn
28 absrpcl FcnFcn0Fcn+
29 28 ex FcnFcn0Fcn+
30 27 29 syl FcnFcn0Fcn+
31 ltsubrp FcnFcn+FcnFcn<Fcn
32 ltaddrp FcnFcn+Fcn<Fcn+Fcn
33 31 32 jca FcnFcn+FcnFcn<FcnFcn<Fcn+Fcn
34 33 ex FcnFcn+FcnFcn<FcnFcn<Fcn+Fcn
35 30 34 syld FcnFcn0FcnFcn<FcnFcn<Fcn+Fcn
36 27 abscld FcnFcn
37 resubcl FcnFcnFcnFcn
38 36 37 mpdan FcnFcnFcn
39 38 rexrd FcnFcnFcn*
40 readdcl FcnFcnFcn+Fcn
41 36 40 mpdan FcnFcn+Fcn
42 41 rexrd FcnFcn+Fcn*
43 rexr FcnFcn*
44 elioo5 FcnFcn*Fcn+Fcn*Fcn*FcnFcnFcnFcn+FcnFcnFcn<FcnFcn<Fcn+Fcn
45 39 42 43 44 syl3anc FcnFcnFcnFcnFcn+FcnFcnFcn<FcnFcn<Fcn+Fcn
46 35 45 sylibrd FcnFcn0FcnFcnFcnFcn+Fcn
47 26 46 syl φcIn1NFcn0FcnFcnFcnFcn+Fcn
48 fveq2 x=cFx=Fc
49 48 fveq1d x=cFxn=Fcn
50 eqid xIFxn=xIFxn
51 fvex FcnV
52 49 50 51 fvmpt cIxIFxnc=Fcn
53 52 eleq1d cIxIFxncFcnFcnFcn+FcnFcnFcnFcnFcn+Fcn
54 53 ad2antlr φcIn1NxIFxncFcnFcnFcn+FcnFcnFcnFcnFcn+Fcn
55 47 54 sylibrd φcIn1NFcn0xIFxncFcnFcnFcn+Fcn
56 iooretop FcnFcnFcn+FcntopGenran.
57 resttopon RTopOn1NI1NR𝑡ITopOnI
58 11 17 57 mp2an R𝑡ITopOnI
59 58 a1i φn1NR𝑡ITopOnI
60 22 feqmptd φF=xIFx
61 60 4 eqeltrrd φxIFxR𝑡ICnR
62 61 adantr φn1NxIFxR𝑡ICnR
63 11 a1i φn1NRTopOn1N
64 retop topGenran.Top
65 64 fconst6 1N×topGenran.:1NTop
66 18 3 ptpjcn 1NV1N×topGenran.:1NTopn1Nz1NznRCn1N×topGenran.n
67 8 65 66 mp3an12 n1Nz1NznRCn1N×topGenran.n
68 fvex topGenran.V
69 68 fvconst2 n1N1N×topGenran.n=topGenran.
70 69 oveq2d n1NRCn1N×topGenran.n=RCntopGenran.
71 67 70 eleqtrd n1Nz1NznRCntopGenran.
72 71 adantl φn1Nz1NznRCntopGenran.
73 fveq1 z=Fxzn=Fxn
74 59 62 63 72 73 cnmpt11 φn1NxIFxnR𝑡ICntopGenran.
75 20 cncnpi xIFxnR𝑡ICntopGenran.cIxIFxnR𝑡ICnPtopGenran.c
76 74 75 sylan φn1NcIxIFxnR𝑡ICnPtopGenran.c
77 76 an32s φcIn1NxIFxnR𝑡ICnPtopGenran.c
78 iscnp R𝑡ITopOnItopGenran.TopOncIxIFxnR𝑡ICnPtopGenran.cxIFxn:IztopGenran.xIFxnczvR𝑡IcvxIFxnvz
79 58 9 78 mp3an12 cIxIFxnR𝑡ICnPtopGenran.cxIFxn:IztopGenran.xIFxnczvR𝑡IcvxIFxnvz
80 79 ad2antlr φcIn1NxIFxnR𝑡ICnPtopGenran.cxIFxn:IztopGenran.xIFxnczvR𝑡IcvxIFxnvz
81 77 80 mpbid φcIn1NxIFxn:IztopGenran.xIFxnczvR𝑡IcvxIFxnvz
82 81 simprd φcIn1NztopGenran.xIFxnczvR𝑡IcvxIFxnvz
83 eleq2 z=FcnFcnFcn+FcnxIFxnczxIFxncFcnFcnFcn+Fcn
84 sseq2 z=FcnFcnFcn+FcnxIFxnvzxIFxnvFcnFcnFcn+Fcn
85 84 anbi2d z=FcnFcnFcn+FcncvxIFxnvzcvxIFxnvFcnFcnFcn+Fcn
86 85 rexbidv z=FcnFcnFcn+FcnvR𝑡IcvxIFxnvzvR𝑡IcvxIFxnvFcnFcnFcn+Fcn
87 83 86 imbi12d z=FcnFcnFcn+FcnxIFxnczvR𝑡IcvxIFxnvzxIFxncFcnFcnFcn+FcnvR𝑡IcvxIFxnvFcnFcnFcn+Fcn
88 87 rspcv FcnFcnFcn+FcntopGenran.ztopGenran.xIFxnczvR𝑡IcvxIFxnvzxIFxncFcnFcnFcn+FcnvR𝑡IcvxIFxnvFcnFcnFcn+Fcn
89 56 82 88 mpsyl φcIn1NxIFxncFcnFcnFcn+FcnvR𝑡IcvxIFxnvFcnFcnFcn+Fcn
90 55 89 syld φcIn1NFcn0vR𝑡IcvxIFxnvFcnFcnFcn+Fcn
91 0re 0
92 letric Fcn0Fcn00Fcn
93 26 91 92 sylancl φcIn1NFcn00Fcn
94 90 93 jctird φcIn1NFcn0vR𝑡IcvxIFxnvFcnFcnFcn+FcnFcn00Fcn
95 r19.41v vR𝑡IcvxIFxnvFcnFcnFcn+FcnFcn00FcnvR𝑡IcvxIFxnvFcnFcnFcn+FcnFcn00Fcn
96 anass cvxIFxnvFcnFcnFcn+FcnFcn00FcncvxIFxnvFcnFcnFcn+FcnFcn00Fcn
97 96 rexbii vR𝑡IcvxIFxnvFcnFcnFcn+FcnFcn00FcnvR𝑡IcvxIFxnvFcnFcnFcn+FcnFcn00Fcn
98 95 97 bitr3i vR𝑡IcvxIFxnvFcnFcnFcn+FcnFcn00FcnvR𝑡IcvxIFxnvFcnFcnFcn+FcnFcn00Fcn
99 94 98 imbitrdi φcIn1NFcn0vR𝑡IcvxIFxnvFcnFcnFcn+FcnFcn00Fcn
100 58 topontopi R𝑡ITop
101 20 eltopss R𝑡ITopvR𝑡IvI
102 100 101 mpan vR𝑡IvI
103 fvex FxnV
104 103 50 dmmpti domxIFxn=I
105 104 sseq2i vdomxIFxnvI
106 funmpt FunxIFxn
107 funimass4 FunxIFxnvdomxIFxnxIFxnvFcnFcnFcn+FcnzvxIFxnzFcnFcnFcn+Fcn
108 106 107 mpan vdomxIFxnxIFxnvFcnFcnFcn+FcnzvxIFxnzFcnFcnFcn+Fcn
109 105 108 sylbir vIxIFxnvFcnFcnFcn+FcnzvxIFxnzFcnFcnFcn+Fcn
110 ssel2 vIzvzI
111 fveq2 x=zFx=Fz
112 111 fveq1d x=zFxn=Fzn
113 fvex FznV
114 112 50 113 fvmpt zIxIFxnz=Fzn
115 114 eleq1d zIxIFxnzFcnFcnFcn+FcnFznFcnFcnFcn+Fcn
116 eliooord FznFcnFcnFcn+FcnFcnFcn<FznFzn<Fcn+Fcn
117 115 116 syl6bi zIxIFxnzFcnFcnFcn+FcnFcnFcn<FznFzn<Fcn+Fcn
118 110 117 syl vIzvxIFxnzFcnFcnFcn+FcnFcnFcn<FznFzn<Fcn+Fcn
119 118 ralimdva vIzvxIFxnzFcnFcnFcn+FcnzvFcnFcn<FznFzn<Fcn+Fcn
120 109 119 sylbid vIxIFxnvFcnFcnFcn+FcnzvFcnFcn<FznFzn<Fcn+Fcn
121 120 adantl φcIn1NvIxIFxnvFcnFcnFcn+FcnzvFcnFcn<FznFzn<Fcn+Fcn
122 absnid FcnFcn0Fcn=Fcn
123 122 oveq2d FcnFcn0Fcn+Fcn=Fcn+Fcn
124 27 negidd FcnFcn+Fcn=0
125 124 adantr FcnFcn0Fcn+Fcn=0
126 123 125 eqtrd FcnFcn0Fcn+Fcn=0
127 26 126 sylan φcIn1NFcn0Fcn+Fcn=0
128 127 adantr φcIn1NFcn0zIFcn+Fcn=0
129 128 breq2d φcIn1NFcn0zIFzn<Fcn+FcnFzn<0
130 22 ffvelcdmda φzIFz1N
131 elmapi Fz1NFz:1N
132 130 131 syl φzIFz:1N
133 132 ffvelcdmda φzIn1NFzn
134 133 an32s φn1NzIFzn
135 0red φn1NzI0
136 134 135 ltnled φn1NzIFzn<0¬0Fzn
137 136 adantllr φcIn1NzIFzn<0¬0Fzn
138 137 adantlr φcIn1NFcn0zIFzn<0¬0Fzn
139 129 138 bitrd φcIn1NFcn0zIFzn<Fcn+Fcn¬0Fzn
140 139 biimpd φcIn1NFcn0zIFzn<Fcn+Fcn¬0Fzn
141 110 140 sylan2 φcIn1NFcn0vIzvFzn<Fcn+Fcn¬0Fzn
142 141 anassrs φcIn1NFcn0vIzvFzn<Fcn+Fcn¬0Fzn
143 142 adantld φcIn1NFcn0vIzvFcnFcn<FznFzn<Fcn+Fcn¬0Fzn
144 143 ralimdva φcIn1NFcn0vIzvFcnFcn<FznFzn<Fcn+Fcnzv¬0Fzn
145 144 an32s φcIn1NvIFcn0zvFcnFcn<FznFzn<Fcn+Fcnzv¬0Fzn
146 145 impancom φcIn1NvIzvFcnFcn<FznFzn<Fcn+FcnFcn0zv¬0Fzn
147 absid Fcn0FcnFcn=Fcn
148 147 oveq2d Fcn0FcnFcnFcn=FcnFcn
149 27 subidd FcnFcnFcn=0
150 149 adantr Fcn0FcnFcnFcn=0
151 148 150 eqtrd Fcn0FcnFcnFcn=0
152 26 151 sylan φcIn1N0FcnFcnFcn=0
153 152 adantr φcIn1N0FcnzIFcnFcn=0
154 153 breq1d φcIn1N0FcnzIFcnFcn<Fzn0<Fzn
155 135 134 ltnled φn1NzI0<Fzn¬Fzn0
156 155 adantllr φcIn1NzI0<Fzn¬Fzn0
157 156 adantlr φcIn1N0FcnzI0<Fzn¬Fzn0
158 154 157 bitrd φcIn1N0FcnzIFcnFcn<Fzn¬Fzn0
159 158 biimpd φcIn1N0FcnzIFcnFcn<Fzn¬Fzn0
160 110 159 sylan2 φcIn1N0FcnvIzvFcnFcn<Fzn¬Fzn0
161 160 anassrs φcIn1N0FcnvIzvFcnFcn<Fzn¬Fzn0
162 161 adantrd φcIn1N0FcnvIzvFcnFcn<FznFzn<Fcn+Fcn¬Fzn0
163 162 ralimdva φcIn1N0FcnvIzvFcnFcn<FznFzn<Fcn+Fcnzv¬Fzn0
164 163 an32s φcIn1NvI0FcnzvFcnFcn<FznFzn<Fcn+Fcnzv¬Fzn0
165 164 impancom φcIn1NvIzvFcnFcn<FznFzn<Fcn+Fcn0Fcnzv¬Fzn0
166 146 165 orim12d φcIn1NvIzvFcnFcn<FznFzn<Fcn+FcnFcn00Fcnzv¬0Fznzv¬Fzn0
167 166 expimpd φcIn1NvIzvFcnFcn<FznFzn<Fcn+FcnFcn00Fcnzv¬0Fznzv¬Fzn0
168 121 167 syland φcIn1NvIxIFxnvFcnFcnFcn+FcnFcn00Fcnzv¬0Fznzv¬Fzn0
169 102 168 sylan2 φcIn1NvR𝑡IxIFxnvFcnFcnFcn+FcnFcn00Fcnzv¬0Fznzv¬Fzn0
170 169 anim2d φcIn1NvR𝑡IcvxIFxnvFcnFcnFcn+FcnFcn00Fcncvzv¬0Fznzv¬Fzn0
171 170 reximdva φcIn1NvR𝑡IcvxIFxnvFcnFcnFcn+FcnFcn00FcnvR𝑡Icvzv¬0Fznzv¬Fzn0
172 99 171 syld φcIn1NFcn0vR𝑡Icvzv¬0Fznzv¬Fzn0
173 ralnex zv¬0rFzn¬zv0rFzn
174 173 rexbii r-1zv¬0rFznr-1¬zv0rFzn
175 letsr TosetRel
176 175 elexi V
177 176 cnvex -1V
178 breq r=0rFzn0Fzn
179 178 notbid r=¬0rFzn¬0Fzn
180 179 ralbidv r=zv¬0rFznzv¬0Fzn
181 breq r=-10rFzn0-1Fzn
182 c0ex 0V
183 182 113 brcnv 0-1FznFzn0
184 181 183 bitrdi r=-10rFznFzn0
185 184 notbid r=-1¬0rFzn¬Fzn0
186 185 ralbidv r=-1zv¬0rFznzv¬Fzn0
187 176 177 180 186 rexpr r-1zv¬0rFznzv¬0Fznzv¬Fzn0
188 rexnal r-1¬zv0rFzn¬r-1zv0rFzn
189 174 187 188 3bitr3i zv¬0Fznzv¬Fzn0¬r-1zv0rFzn
190 189 anbi2i cvzv¬0Fznzv¬Fzn0cv¬r-1zv0rFzn
191 annim cv¬r-1zv0rFzn¬cvr-1zv0rFzn
192 190 191 bitri cvzv¬0Fznzv¬Fzn0¬cvr-1zv0rFzn
193 192 rexbii vR𝑡Icvzv¬0Fznzv¬Fzn0vR𝑡I¬cvr-1zv0rFzn
194 rexnal vR𝑡I¬cvr-1zv0rFzn¬vR𝑡Icvr-1zv0rFzn
195 193 194 bitri vR𝑡Icvzv¬0Fznzv¬Fzn0¬vR𝑡Icvr-1zv0rFzn
196 172 195 imbitrdi φcIn1NFcn0¬vR𝑡Icvr-1zv0rFzn
197 196 necon4ad φcIn1NvR𝑡Icvr-1zv0rFznFcn=0
198 197 ralimdva φcIn1NvR𝑡Icvr-1zv0rFznn1NFcn=0
199 25 ffnd φcIFcFn1N
200 198 199 jctild φcIn1NvR𝑡Icvr-1zv0rFznFcFn1Nn1NFcn=0
201 fconstfv Fc:1N0FcFn1Nn1NFcn=0
202 182 fconst2 Fc:1N0Fc=1N×0
203 201 202 bitr3i FcFn1Nn1NFcn=0Fc=1N×0
204 200 203 imbitrdi φcIn1NvR𝑡Icvr-1zv0rFznFc=1N×0
205 204 reximdva φcIn1NvR𝑡Icvr-1zv0rFzncIFc=1N×0
206 7 205 mpd φcIFc=1N×0