Metamath Proof Explorer


Theorem reconnlem2

Description: Lemma for reconn . (Contributed by Jeff Hankins, 17-Aug-2009) (Proof shortened by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses reconnlem2.1 φA
reconnlem2.2 φUtopGenran.
reconnlem2.3 φVtopGenran.
reconnlem2.4 φxAyAxyA
reconnlem2.5 φBUA
reconnlem2.6 φCVA
reconnlem2.7 φUVA
reconnlem2.8 φBC
reconnlem2.9 S=supUBC<
Assertion reconnlem2 φ¬AUV

Proof

Step Hyp Ref Expression
1 reconnlem2.1 φA
2 reconnlem2.2 φUtopGenran.
3 reconnlem2.3 φVtopGenran.
4 reconnlem2.4 φxAyAxyA
5 reconnlem2.5 φBUA
6 reconnlem2.6 φCVA
7 reconnlem2.7 φUVA
8 reconnlem2.8 φBC
9 reconnlem2.9 S=supUBC<
10 inss2 UBCBC
11 5 elin2d φBA
12 6 elin2d φCA
13 oveq1 x=Bxy=By
14 13 sseq1d x=BxyAByA
15 oveq2 y=CBy=BC
16 15 sseq1d y=CByABCA
17 14 16 rspc2va BACAxAyAxyABCA
18 11 12 4 17 syl21anc φBCA
19 18 1 sstrd φBC
20 10 19 sstrid φUBC
21 5 elin1d φBU
22 1 11 sseldd φB
23 22 rexrd φB*
24 1 12 sseldd φC
25 24 rexrd φC*
26 lbicc2 B*C*BCBBC
27 23 25 8 26 syl3anc φBBC
28 21 27 elind φBUBC
29 28 ne0d φUBC
30 elinel2 wUBCwBC
31 elicc2 BCwBCwBwwC
32 22 24 31 syl2anc φwBCwBwwC
33 simp3 wBwwCwC
34 32 33 syl6bi φwBCwC
35 30 34 syl5 φwUBCwC
36 35 ralrimiv φwUBCwC
37 brralrspcev CwUBCwCzwUBCwz
38 24 36 37 syl2anc φzwUBCwz
39 20 29 38 suprcld φsupUBC<
40 9 39 eqeltrid φS
41 rphalfcl r+r2+
42 ltaddrp Sr2+S<S+r2
43 40 41 42 syl2an φr+S<S+r2
44 40 adantr φr+S
45 41 rpred r+r2
46 readdcl Sr2S+r2
47 40 45 46 syl2an φr+S+r2
48 44 47 ltnled φr+S<S+r2¬S+r2S
49 43 48 mpbid φr+¬S+r2S
50 20 ad2antrr φr+S+r2U−∞CUBC
51 29 ad2antrr φr+S+r2U−∞CUBC
52 38 ad2antrr φr+S+r2U−∞CzwUBCwz
53 simpr φr+S+r2U−∞CS+r2U−∞C
54 53 elin1d φr+S+r2U−∞CS+r2U
55 47 adantr φr+S+r2U−∞CS+r2
56 22 ad2antrr φr+S+r2U−∞CB
57 40 ad2antrr φr+S+r2U−∞CS
58 20 29 38 28 suprubd φBsupUBC<
59 58 9 breqtrrdi φBS
60 59 ad2antrr φr+S+r2U−∞CBS
61 43 adantr φr+S+r2U−∞CS<S+r2
62 57 55 61 ltled φr+S+r2U−∞CSS+r2
63 56 57 55 60 62 letrd φr+S+r2U−∞CBS+r2
64 24 ad2antrr φr+S+r2U−∞CC
65 53 elin2d φr+S+r2U−∞CS+r2−∞C
66 eliooord S+r2−∞C−∞<S+r2S+r2<C
67 66 simprd S+r2−∞CS+r2<C
68 65 67 syl φr+S+r2U−∞CS+r2<C
69 55 64 68 ltled φr+S+r2U−∞CS+r2C
70 elicc2 BCS+r2BCS+r2BS+r2S+r2C
71 56 64 70 syl2anc φr+S+r2U−∞CS+r2BCS+r2BS+r2S+r2C
72 55 63 69 71 mpbir3and φr+S+r2U−∞CS+r2BC
73 54 72 elind φr+S+r2U−∞CS+r2UBC
74 50 51 52 73 suprubd φr+S+r2U−∞CS+r2supUBC<
75 74 9 breqtrrdi φr+S+r2U−∞CS+r2S
76 49 75 mtand φr+¬S+r2U−∞C
77 eqid abs2=abs2
78 77 remetdval S+r2SS+r2abs2S=S+r2-S
79 47 44 78 syl2anc φr+S+r2abs2S=S+r2-S
80 44 recnd φr+S
81 45 adantl φr+r2
82 81 recnd φr+r2
83 80 82 pncan2d φr+S+r2-S=r2
84 83 fveq2d φr+S+r2-S=r2
85 41 adantl φr+r2+
86 rpre r2+r2
87 rpge0 r2+0r2
88 86 87 absidd r2+r2=r2
89 85 88 syl φr+r2=r2
90 79 84 89 3eqtrd φr+S+r2abs2S=r2
91 rphalflt r+r2<r
92 91 adantl φr+r2<r
93 90 92 eqbrtrd φr+S+r2abs2S<r
94 77 rexmet abs2∞Met
95 94 a1i φr+abs2∞Met
96 rpxr r+r*
97 96 adantl φr+r*
98 elbl3 abs2∞Metr*SS+r2S+r2Sballabs2rS+r2abs2S<r
99 95 97 44 47 98 syl22anc φr+S+r2Sballabs2rS+r2abs2S<r
100 93 99 mpbird φr+S+r2Sballabs2r
101 ssel Sballabs2rU−∞CS+r2Sballabs2rS+r2U−∞C
102 100 101 syl5com φr+Sballabs2rU−∞CS+r2U−∞C
103 76 102 mtod φr+¬Sballabs2rU−∞C
104 103 nrexdv φ¬r+Sballabs2rU−∞C
105 40 adantr φSUS
106 105 mnfltd φSU−∞<S
107 suprleub UBCUBCzwUBCwzCsupUBC<CwUBCwC
108 20 29 38 24 107 syl31anc φsupUBC<CwUBCwC
109 36 108 mpbird φsupUBC<C
110 9 109 eqbrtrid φSC
111 40 24 leloed φSCS<CS=C
112 110 111 mpbid φS<CS=C
113 112 ord φ¬S<CS=C
114 elndif CA¬CA
115 12 114 syl φ¬CA
116 6 elin1d φCV
117 elin CUVCUCV
118 7 sseld φCUVCA
119 117 118 biimtrrid φCUCVCA
120 116 119 mpan2d φCUCA
121 115 120 mtod φ¬CU
122 eleq1 S=CSUCU
123 122 notbid S=C¬SU¬CU
124 121 123 syl5ibrcom φS=C¬SU
125 113 124 syld φ¬S<C¬SU
126 125 con4d φSUS<C
127 126 imp φSUS<C
128 mnfxr −∞*
129 elioo2 −∞*C*S−∞CS−∞<SS<C
130 128 25 129 sylancr φS−∞CS−∞<SS<C
131 130 adantr φSUS−∞CS−∞<SS<C
132 105 106 127 131 mpbir3and φSUS−∞C
133 132 ex φSUS−∞C
134 133 ancld φSUSUS−∞C
135 elin SU−∞CSUS−∞C
136 retop topGenran.Top
137 iooretop −∞CtopGenran.
138 inopn topGenran.TopUtopGenran.−∞CtopGenran.U−∞CtopGenran.
139 136 137 138 mp3an13 UtopGenran.U−∞CtopGenran.
140 eqid MetOpenabs2=MetOpenabs2
141 77 140 tgioo topGenran.=MetOpenabs2
142 141 mopni2 abs2∞MetU−∞CtopGenran.SU−∞Cr+Sballabs2rU−∞C
143 94 142 mp3an1 U−∞CtopGenran.SU−∞Cr+Sballabs2rU−∞C
144 143 ex U−∞CtopGenran.SU−∞Cr+Sballabs2rU−∞C
145 2 139 144 3syl φSU−∞Cr+Sballabs2rU−∞C
146 135 145 biimtrrid φSUS−∞Cr+Sballabs2rU−∞C
147 134 146 syld φSUr+Sballabs2rU−∞C
148 104 147 mtod φ¬SU
149 ltsubrp Sr+Sr<S
150 40 149 sylan φr+Sr<S
151 rpre r+r
152 resubcl SrSr
153 40 151 152 syl2an φr+Sr
154 153 44 ltnled φr+Sr<S¬SSr
155 150 154 mpbid φr+¬SSr
156 77 bl2ioo SrSballabs2r=SrS+r
157 40 151 156 syl2an φr+Sballabs2r=SrS+r
158 157 sseq1d φr+Sballabs2rVSrS+rV
159 20 ad3antrrr φr+SrS+rVwUBCUBC
160 simpr φr+SrS+rVwUBCwUBC
161 159 160 sseldd φr+SrS+rVwUBCw
162 153 ad2antrr φr+SrS+rVwUBCSr
163 18 ad2antrr φr+SrS+rVBCA
164 10 163 sstrid φr+SrS+rVUBCA
165 164 sselda φr+SrS+rVwUBCwA
166 elndif wA¬wA
167 165 166 syl φr+SrS+rVwUBC¬wA
168 7 ad3antrrr φr+SrS+rVwUBCSr<wUVA
169 simprl φr+SrS+rVwUBCSr<wwUBC
170 169 elin1d φr+SrS+rVwUBCSr<wwU
171 simplr φr+SrS+rVwUBCSr<wSrS+rV
172 161 adantrr φr+SrS+rVwUBCSr<ww
173 simprr φr+SrS+rVwUBCSr<wSr<w
174 44 ad2antrr φr+SrS+rVwUBCSr<wS
175 simpllr φr+SrS+rVwUBCSr<wr+
176 175 rpred φr+SrS+rVwUBCSr<wr
177 174 176 readdcld φr+SrS+rVwUBCSr<wS+r
178 159 adantrr φr+SrS+rVwUBCSr<wUBC
179 29 ad3antrrr φr+SrS+rVwUBCSr<wUBC
180 38 ad3antrrr φr+SrS+rVwUBCSr<wzwUBCwz
181 178 179 180 169 suprubd φr+SrS+rVwUBCSr<wwsupUBC<
182 181 9 breqtrrdi φr+SrS+rVwUBCSr<wwS
183 174 175 ltaddrpd φr+SrS+rVwUBCSr<wS<S+r
184 172 174 177 182 183 lelttrd φr+SrS+rVwUBCSr<ww<S+r
185 153 ad2antrr φr+SrS+rVwUBCSr<wSr
186 rexr SrSr*
187 rexr S+rS+r*
188 elioo2 Sr*S+r*wSrS+rwSr<ww<S+r
189 186 187 188 syl2an SrS+rwSrS+rwSr<ww<S+r
190 185 177 189 syl2anc φr+SrS+rVwUBCSr<wwSrS+rwSr<ww<S+r
191 172 173 184 190 mpbir3and φr+SrS+rVwUBCSr<wwSrS+r
192 171 191 sseldd φr+SrS+rVwUBCSr<wwV
193 170 192 elind φr+SrS+rVwUBCSr<wwUV
194 168 193 sseldd φr+SrS+rVwUBCSr<wwA
195 194 expr φr+SrS+rVwUBCSr<wwA
196 167 195 mtod φr+SrS+rVwUBC¬Sr<w
197 161 162 196 nltled φr+SrS+rVwUBCwSr
198 197 ralrimiva φr+SrS+rVwUBCwSr
199 20 ad2antrr φr+SrS+rVUBC
200 29 ad2antrr φr+SrS+rVUBC
201 38 ad2antrr φr+SrS+rVzwUBCwz
202 153 adantr φr+SrS+rVSr
203 suprleub UBCUBCzwUBCwzSrsupUBC<SrwUBCwSr
204 199 200 201 202 203 syl31anc φr+SrS+rVsupUBC<SrwUBCwSr
205 198 204 mpbird φr+SrS+rVsupUBC<Sr
206 9 205 eqbrtrid φr+SrS+rVSSr
207 206 ex φr+SrS+rVSSr
208 158 207 sylbid φr+Sballabs2rVSSr
209 155 208 mtod φr+¬Sballabs2rV
210 209 nrexdv φ¬r+Sballabs2rV
211 141 mopni2 abs2∞MetVtopGenran.SVr+Sballabs2rV
212 94 211 mp3an1 VtopGenran.SVr+Sballabs2rV
213 212 ex VtopGenran.SVr+Sballabs2rV
214 3 213 syl φSVr+Sballabs2rV
215 210 214 mtod φ¬SV
216 ioran ¬SUSV¬SU¬SV
217 148 215 216 sylanbrc φ¬SUSV
218 elun SUVSUSV
219 217 218 sylnibr φ¬SUV
220 elicc2 BCSBCSBSSC
221 22 24 220 syl2anc φSBCSBSSC
222 40 59 110 221 mpbir3and φSBC
223 18 222 sseldd φSA
224 ssel AUVSASUV
225 223 224 syl5com φAUVSUV
226 219 225 mtod φ¬AUV