Metamath Proof Explorer


Theorem rrncmslem

Description: Lemma for rrncms . (Contributed by Jeff Madsen, 6-Jun-2014) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses rrnval.1 X=I
rrndstprj1.1 M=abs2
rrncms.3 J=MetOpennI
rrncms.4 φIFin
rrncms.5 φFCaunI
rrncms.6 φF:X
rrncms.7 P=mItFtm
Assertion rrncmslem φFdomtJ

Proof

Step Hyp Ref Expression
1 rrnval.1 X=I
2 rrndstprj1.1 M=abs2
3 rrncms.3 J=MetOpennI
4 rrncms.4 φIFin
5 rrncms.5 φFCaunI
6 rrncms.6 φF:X
7 rrncms.7 P=mItFtm
8 lmrel ReltJ
9 fvex tFtmV
10 9 7 fnmpti PFnI
11 10 a1i φPFnI
12 nnuz =1
13 1zzd φnI1
14 fveq2 t=kFt=Fk
15 14 fveq1d t=kFtn=Fkn
16 eqid tFtn=tFtn
17 fvex FknV
18 15 16 17 fvmpt ktFtnk=Fkn
19 18 adantl φnIktFtnk=Fkn
20 6 ffvelcdmda φkFkX
21 20 1 eleqtrdi φkFkI
22 elmapi FkIFk:I
23 21 22 syl φkFk:I
24 23 ffvelcdmda φknIFkn
25 24 an32s φnIkFkn
26 19 25 eqeltrd φnIktFtnk
27 26 recnd φnIktFtnk
28 1 rrnmet IFinnIMetX
29 4 28 syl φnIMetX
30 metxmet nIMetXnI∞MetX
31 29 30 syl φnI∞MetX
32 1zzd φ1
33 eqidd φkFk=Fk
34 eqidd φjFj=Fj
35 12 31 32 33 34 6 iscauf φFCaunIx+jkjFjnIFk<x
36 5 35 mpbid φx+jkjFjnIFk<x
37 36 adantr φnIx+jkjFjnIFk<x
38 4 ad3antrrr φnIjkjIFin
39 simpllr φnIjkjnI
40 6 ad3antrrr φnIjkjF:X
41 eluznn jkjk
42 41 adantll φnIjkjk
43 40 42 ffvelcdmd φnIjkjFkX
44 simplr φnIjkjj
45 40 44 ffvelcdmd φnIjkjFjX
46 1 2 rrndstprj1 IFinnIFkXFjXFknMFjnFknIFj
47 38 39 43 45 46 syl22anc φnIjkjFknMFjnFknIFj
48 29 ad3antrrr φnIjkjnIMetX
49 metsym nIMetXFkXFjXFknIFj=FjnIFk
50 48 43 45 49 syl3anc φnIjkjFknIFj=FjnIFk
51 47 50 breqtrd φnIjkjFknMFjnFjnIFk
52 51 adantllr φnIx+jkjFknMFjnFjnIFk
53 2 remet MMet
54 53 a1i φnIjkjMMet
55 simpll φnIjkjφnI
56 55 42 25 syl2anc φnIjkjFkn
57 6 ffvelcdmda φjFjX
58 57 1 eleqtrdi φjFjI
59 elmapi FjIFj:I
60 58 59 syl φjFj:I
61 60 ffvelcdmda φjnIFjn
62 61 an32s φnIjFjn
63 62 adantr φnIjkjFjn
64 metcl MMetFknFjnFknMFjn
65 54 56 63 64 syl3anc φnIjkjFknMFjn
66 65 adantllr φnIx+jkjFknMFjn
67 metcl nIMetXFjXFkXFjnIFk
68 48 45 43 67 syl3anc φnIjkjFjnIFk
69 68 adantllr φnIx+jkjFjnIFk
70 rpre x+x
71 70 adantl φnIx+x
72 71 ad2antrr φnIx+jkjx
73 lelttr FknMFjnFjnIFkxFknMFjnFjnIFkFjnIFk<xFknMFjn<x
74 66 69 72 73 syl3anc φnIx+jkjFknMFjnFjnIFkFjnIFk<xFknMFjn<x
75 52 74 mpand φnIx+jkjFjnIFk<xFknMFjn<x
76 75 ralimdva φnIx+jkjFjnIFk<xkjFknMFjn<x
77 76 reximdva φnIx+jkjFjnIFk<xjkjFknMFjn<x
78 77 ralimdva φnIx+jkjFjnIFk<xx+jkjFknMFjn<x
79 2 remetdval FknFjnFknMFjn=FknFjn
80 56 63 79 syl2anc φnIjkjFknMFjn=FknFjn
81 42 18 syl φnIjkjtFtnk=Fkn
82 fveq2 t=jFt=Fj
83 82 fveq1d t=jFtn=Fjn
84 fvex FjnV
85 83 16 84 fvmpt jtFtnj=Fjn
86 85 ad2antlr φnIjkjtFtnj=Fjn
87 81 86 oveq12d φnIjkjtFtnktFtnj=FknFjn
88 87 fveq2d φnIjkjtFtnktFtnj=FknFjn
89 80 88 eqtr4d φnIjkjFknMFjn=tFtnktFtnj
90 89 breq1d φnIjkjFknMFjn<xtFtnktFtnj<x
91 90 ralbidva φnIjkjFknMFjn<xkjtFtnktFtnj<x
92 91 rexbidva φnIjkjFknMFjn<xjkjtFtnktFtnj<x
93 92 ralbidv φnIx+jkjFknMFjn<xx+jkjtFtnktFtnj<x
94 78 93 sylibd φnIx+jkjFjnIFk<xx+jkjtFtnktFtnj<x
95 37 94 mpd φnIx+jkjtFtnktFtnj<x
96 nnex V
97 96 mptex tFtnV
98 97 a1i φnItFtnV
99 12 27 95 98 caucvg φnItFtndom
100 climdm tFtndomtFtntFtn
101 99 100 sylib φnItFtntFtn
102 fveq2 m=nFtm=Ftn
103 102 mpteq2dv m=ntFtm=tFtn
104 103 fveq2d m=ntFtm=tFtn
105 fvex tFtnV
106 104 7 105 fvmpt nIPn=tFtn
107 106 adantl φnIPn=tFtn
108 101 107 breqtrrd φnItFtnPn
109 12 13 108 26 climrecl φnIPn
110 109 ralrimiva φnIPn
111 ffnfv P:IPFnInIPn
112 11 110 111 sylanbrc φP:I
113 reex V
114 elmapg VIFinPIP:I
115 113 4 114 sylancr φPIP:I
116 112 115 mpbird φPI
117 116 1 eleqtrrdi φPX
118 1nn 1
119 4 ad2antrr φx+I=kIFin
120 20 adantlr φx+I=kFkX
121 117 ad2antrr φx+I=kPX
122 1 rrnmval IFinFkXPXFknIP=yIFkyPy2
123 119 120 121 122 syl3anc φx+I=kFknIP=yIFkyPy2
124 simplrr φx+I=kI=
125 124 sumeq1d φx+I=kyIFkyPy2=yFkyPy2
126 sum0 yFkyPy2=0
127 125 126 eqtrdi φx+I=kyIFkyPy2=0
128 127 fveq2d φx+I=kyIFkyPy2=0
129 123 128 eqtrd φx+I=kFknIP=0
130 sqrt0 0=0
131 129 130 eqtrdi φx+I=kFknIP=0
132 simplrl φx+I=kx+
133 132 rpgt0d φx+I=k0<x
134 131 133 eqbrtrd φx+I=kFknIP<x
135 134 ralrimiva φx+I=kFknIP<x
136 fveq2 j=1j=1
137 136 12 eqtr4di j=1j=
138 137 raleqdv j=1kjFknIP<xkFknIP<x
139 138 rspcev 1kFknIP<xjkjFknIP<x
140 118 135 139 sylancr φx+I=jkjFknIP<x
141 140 expr φx+I=jkjFknIP<x
142 1zzd φx+InI1
143 simprl φx+Ix+
144 simprr φx+II
145 4 adantr φx+IIFin
146 hashnncl IFinII
147 145 146 syl φx+III
148 144 147 mpbird φx+II
149 148 nnrpd φx+II+
150 149 rpsqrtcld φx+II+
151 143 150 rpdivcld φx+IxI+
152 151 adantr φx+InIxI+
153 18 adantl φx+InIktFtnk=Fkn
154 108 adantlr φx+InItFtnPn
155 12 142 152 153 154 climi2 φx+InIjkjFknPn<xI
156 1z 1
157 12 rexuz3 1jkjFknMPn<xIjkjFknMPn<xI
158 156 157 ax-mp jkjFknMPn<xIjkjFknMPn<xI
159 25 adantllr φx+InIkFkn
160 109 adantlr φx+InIPn
161 160 adantr φx+InIkPn
162 2 remetdval FknPnFknMPn=FknPn
163 159 161 162 syl2anc φx+InIkFknMPn=FknPn
164 163 breq1d φx+InIkFknMPn<xIFknPn<xI
165 41 164 sylan2 φx+InIjkjFknMPn<xIFknPn<xI
166 165 anassrs φx+InIjkjFknMPn<xIFknPn<xI
167 166 ralbidva φx+InIjkjFknMPn<xIkjFknPn<xI
168 167 rexbidva φx+InIjkjFknMPn<xIjkjFknPn<xI
169 158 168 bitr3id φx+InIjkjFknMPn<xIjkjFknPn<xI
170 155 169 mpbird φx+InIjkjFknMPn<xI
171 170 ralrimiva φx+InIjkjFknMPn<xI
172 12 rexuz3 1jkjnIFknMPn<xIjkjnIFknMPn<xI
173 156 172 ax-mp jkjnIFknMPn<xIjkjnIFknMPn<xI
174 rexfiuz IFinjkjnIFknMPn<xInIjkjFknMPn<xI
175 145 174 syl φx+IjkjnIFknMPn<xInIjkjFknMPn<xI
176 173 175 bitrid φx+IjkjnIFknMPn<xInIjkjFknMPn<xI
177 171 176 mpbird φx+IjkjnIFknMPn<xI
178 4 ad2antrr φx+IkIFin
179 simplrr φx+IkI
180 eldifsn IFinIFinI
181 178 179 180 sylanbrc φx+IkIFin
182 6 adantr φx+IF:X
183 182 ffvelcdmda φx+IkFkX
184 117 ad2antrr φx+IkPX
185 151 adantr φx+IkxI+
186 1 2 rrndstprj2 IFinFkXPXxI+nIFknMPn<xIFknIP<xII
187 186 expr IFinFkXPXxI+nIFknMPn<xIFknIP<xII
188 181 183 184 185 187 syl31anc φx+IknIFknMPn<xIFknIP<xII
189 simplrl φx+Ikx+
190 189 rpcnd φx+Ikx
191 150 adantr φx+IkI+
192 191 rpcnd φx+IkI
193 191 rpne0d φx+IkI0
194 190 192 193 divcan1d φx+IkxII=x
195 194 breq2d φx+IkFknIP<xIIFknIP<x
196 188 195 sylibd φx+IknIFknMPn<xIFknIP<x
197 41 196 sylan2 φx+IjkjnIFknMPn<xIFknIP<x
198 197 anassrs φx+IjkjnIFknMPn<xIFknIP<x
199 198 ralimdva φx+IjkjnIFknMPn<xIkjFknIP<x
200 199 reximdva φx+IjkjnIFknMPn<xIjkjFknIP<x
201 177 200 mpd φx+IjkjFknIP<x
202 201 expr φx+IjkjFknIP<x
203 141 202 pm2.61dne φx+jkjFknIP<x
204 203 ralrimiva φx+jkjFknIP<x
205 3 31 12 32 33 6 lmmbrf φFtJPPXx+jkjFknIP<x
206 117 204 205 mpbir2and φFtJP
207 releldm ReltJFtJPFdomtJ
208 8 206 207 sylancr φFdomtJ