Metamath Proof Explorer


Theorem sylow1lem1

Description: Lemma for sylow1 . The p-adic valuation of the size of S is equal to the number of excess powers of P in ( #X ) / ( P ^ N ) . (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses sylow1.x X=BaseG
sylow1.g φGGrp
sylow1.f φXFin
sylow1.p φP
sylow1.n φN0
sylow1.d φPNX
sylow1lem.a +˙=+G
sylow1lem.s S=s𝒫X|s=PN
Assertion sylow1lem1 φSPpCntS=PpCntXN

Proof

Step Hyp Ref Expression
1 sylow1.x X=BaseG
2 sylow1.g φGGrp
3 sylow1.f φXFin
4 sylow1.p φP
5 sylow1.n φN0
6 sylow1.d φPNX
7 sylow1lem.a +˙=+G
8 sylow1lem.s S=s𝒫X|s=PN
9 prmnn PP
10 4 9 syl φP
11 10 5 nnexpcld φPN
12 11 nnzd φPN
13 hashbc XFinPN(XPN)=s𝒫X|s=PN
14 3 12 13 syl2anc φ(XPN)=s𝒫X|s=PN
15 8 fveq2i S=s𝒫X|s=PN
16 14 15 eqtr4di φ(XPN)=S
17 1 grpbn0 GGrpX
18 2 17 syl φX
19 hasheq0 XFinX=0X=
20 3 19 syl φX=0X=
21 20 necon3bbid φ¬X=0X
22 18 21 mpbird φ¬X=0
23 hashcl XFinX0
24 3 23 syl φX0
25 elnn0 X0XX=0
26 24 25 sylib φXX=0
27 26 ord φ¬XX=0
28 22 27 mt3d φX
29 dvdsle PNXPNXPNX
30 12 28 29 syl2anc φPNXPNX
31 6 30 mpd φPNX
32 11 nnnn0d φPN0
33 nn0uz 0=0
34 32 33 eleqtrdi φPN0
35 24 nn0zd φX
36 elfz5 PN0XPN0XPNX
37 34 35 36 syl2anc φPN0XPNX
38 31 37 mpbird φPN0X
39 bccl2 PN0X(XPN)
40 38 39 syl φ(XPN)
41 16 40 eqeltrrd φS
42 nnuz =1
43 11 42 eleqtrdi φPN1
44 elfz5 PN1XPN1XPNX
45 43 35 44 syl2anc φPN1XPNX
46 31 45 mpbird φPN1X
47 1zzd φ1
48 fzsubel 1XPN1PN1XPN111X1
49 47 35 12 47 48 syl22anc φPN1XPN111X1
50 46 49 mpbid φPN111X1
51 1m1e0 11=0
52 51 oveq1i 11X1=0X1
53 50 52 eleqtrdi φPN10X1
54 bcp1nk PN10X1(X-1+1PN-1+1)=(X1PN1)X-1+1PN-1+1
55 53 54 syl φ(X-1+1PN-1+1)=(X1PN1)X-1+1PN-1+1
56 24 nn0cnd φX
57 ax-1cn 1
58 npcan X1X-1+1=X
59 56 57 58 sylancl φX-1+1=X
60 11 nncnd φPN
61 npcan PN1PN-1+1=PN
62 60 57 61 sylancl φPN-1+1=PN
63 59 62 oveq12d φ(X-1+1PN-1+1)=(XPN)
64 59 62 oveq12d φX-1+1PN-1+1=XPN
65 64 oveq2d φ(X1PN1)X-1+1PN-1+1=(X1PN1)XPN
66 55 63 65 3eqtr3d φ(XPN)=(X1PN1)XPN
67 66 oveq2d φPpCnt(XPN)=PpCnt(X1PN1)XPN
68 16 oveq2d φPpCnt(XPN)=PpCntS
69 bccl2 PN10X1(X1PN1)
70 53 69 syl φ(X1PN1)
71 70 nnzd φ(X1PN1)
72 70 nnne0d φ(X1PN1)0
73 11 nnne0d φPN0
74 dvdsval2 PNPN0XPNXXPN
75 12 73 35 74 syl3anc φPNXXPN
76 6 75 mpbid φXPN
77 28 nnne0d φX0
78 56 60 77 73 divne0d φXPN0
79 pcmul P(X1PN1)(X1PN1)0XPNXPN0PpCnt(X1PN1)XPN=PpCnt(X1PN1)+PpCntXPN
80 4 71 72 76 78 79 syl122anc φPpCnt(X1PN1)XPN=PpCnt(X1PN1)+PpCntXPN
81 1cnd φ1
82 56 60 81 npncand φXPN+PN-1=X1
83 82 oveq1d φ(XPN+PN-1PN1)=(X1PN1)
84 83 oveq2d φPpCnt(XPN+PN-1PN1)=PpCnt(X1PN1)
85 11 nnred φPN
86 85 ltm1d φPN1<PN
87 nnm1nn0 PNPN10
88 11 87 syl φPN10
89 breq1 x=0x<PN0<PN
90 bcxmaslem1 x=0(X-PN+xx)=(X-PN+00)
91 90 oveq2d x=0PpCnt(X-PN+xx)=PpCnt(X-PN+00)
92 91 eqeq1d x=0PpCnt(X-PN+xx)=0PpCnt(X-PN+00)=0
93 89 92 imbi12d x=0x<PNPpCnt(X-PN+xx)=00<PNPpCnt(X-PN+00)=0
94 93 imbi2d x=0φx<PNPpCnt(X-PN+xx)=0φ0<PNPpCnt(X-PN+00)=0
95 breq1 x=nx<PNn<PN
96 bcxmaslem1 x=n(X-PN+xx)=(X-PN+nn)
97 96 oveq2d x=nPpCnt(X-PN+xx)=PpCnt(X-PN+nn)
98 97 eqeq1d x=nPpCnt(X-PN+xx)=0PpCnt(X-PN+nn)=0
99 95 98 imbi12d x=nx<PNPpCnt(X-PN+xx)=0n<PNPpCnt(X-PN+nn)=0
100 99 imbi2d x=nφx<PNPpCnt(X-PN+xx)=0φn<PNPpCnt(X-PN+nn)=0
101 breq1 x=n+1x<PNn+1<PN
102 bcxmaslem1 x=n+1(X-PN+xx)=(XPN+n+1n+1)
103 102 oveq2d x=n+1PpCnt(X-PN+xx)=PpCnt(XPN+n+1n+1)
104 103 eqeq1d x=n+1PpCnt(X-PN+xx)=0PpCnt(XPN+n+1n+1)=0
105 101 104 imbi12d x=n+1x<PNPpCnt(X-PN+xx)=0n+1<PNPpCnt(XPN+n+1n+1)=0
106 105 imbi2d x=n+1φx<PNPpCnt(X-PN+xx)=0φn+1<PNPpCnt(XPN+n+1n+1)=0
107 breq1 x=PN1x<PNPN1<PN
108 bcxmaslem1 x=PN1(X-PN+xx)=(XPN+PN-1PN1)
109 108 oveq2d x=PN1PpCnt(X-PN+xx)=PpCnt(XPN+PN-1PN1)
110 109 eqeq1d x=PN1PpCnt(X-PN+xx)=0PpCnt(XPN+PN-1PN1)=0
111 107 110 imbi12d x=PN1x<PNPpCnt(X-PN+xx)=0PN1<PNPpCnt(XPN+PN-1PN1)=0
112 111 imbi2d x=PN1φx<PNPpCnt(X-PN+xx)=0φPN1<PNPpCnt(XPN+PN-1PN1)=0
113 znn0sub PNXPNXXPN0
114 12 35 113 syl2anc φPNXXPN0
115 31 114 mpbid φXPN0
116 0nn0 00
117 nn0addcl XPN000X-PN+00
118 115 116 117 sylancl φX-PN+00
119 bcn0 X-PN+00(X-PN+00)=1
120 118 119 syl φ(X-PN+00)=1
121 120 oveq2d φPpCnt(X-PN+00)=PpCnt1
122 pc1 PPpCnt1=0
123 4 122 syl φPpCnt1=0
124 121 123 eqtrd φPpCnt(X-PN+00)=0
125 124 a1d φ0<PNPpCnt(X-PN+00)=0
126 nn0re n0n
127 126 ad2antrl φn0n+1<PNn
128 nn0p1nn n0n+1
129 128 ad2antrl φn0n+1<PNn+1
130 129 nnred φn0n+1<PNn+1
131 11 adantr φn0n+1<PNPN
132 131 nnred φn0n+1<PNPN
133 127 ltp1d φn0n+1<PNn<n+1
134 simprr φn0n+1<PNn+1<PN
135 127 130 132 133 134 lttrd φn0n+1<PNn<PN
136 135 expr φn0n+1<PNn<PN
137 136 imim1d φn0n<PNPpCnt(X-PN+nn)=0n+1<PNPpCnt(X-PN+nn)=0
138 oveq1 PpCnt(X-PN+nn)=0PpCnt(X-PN+nn)+PpCntXPN+n+1n+1=0+PpCntXPN+n+1n+1
139 115 adantr φn0n+1<PNXPN0
140 139 nn0cnd φn0n+1<PNXPN
141 nn0cn n0n
142 141 ad2antrl φn0n+1<PNn
143 1cnd φn0n+1<PN1
144 140 142 143 addassd φn0n+1<PNXPN+n+1=XPN+n+1
145 144 oveq1d φn0n+1<PN(XPN+n+1n+1)=(XPN+n+1n+1)
146 nn0addge2 nXPN0nX-PN+n
147 127 139 146 syl2anc φn0n+1<PNnX-PN+n
148 simprl φn0n+1<PNn0
149 148 33 eleqtrdi φn0n+1<PNn0
150 139 148 nn0addcld φn0n+1<PNX-PN+n0
151 150 nn0zd φn0n+1<PNX-PN+n
152 elfz5 n0X-PN+nn0X-PN+nnX-PN+n
153 149 151 152 syl2anc φn0n+1<PNn0X-PN+nnX-PN+n
154 147 153 mpbird φn0n+1<PNn0X-PN+n
155 bcp1nk n0X-PN+n(XPN+n+1n+1)=(X-PN+nn)XPN+n+1n+1
156 154 155 syl φn0n+1<PN(XPN+n+1n+1)=(X-PN+nn)XPN+n+1n+1
157 145 156 eqtr3d φn0n+1<PN(XPN+n+1n+1)=(X-PN+nn)XPN+n+1n+1
158 157 oveq2d φn0n+1<PNPpCnt(XPN+n+1n+1)=PpCnt(X-PN+nn)XPN+n+1n+1
159 4 adantr φn0n+1<PNP
160 bccl2 n0X-PN+n(X-PN+nn)
161 154 160 syl φn0n+1<PN(X-PN+nn)
162 nnq (X-PN+nn)(X-PN+nn)
163 161 162 syl φn0n+1<PN(X-PN+nn)
164 161 nnne0d φn0n+1<PN(X-PN+nn)0
165 151 peano2zd φn0n+1<PNXPN+n+1
166 znq XPN+n+1n+1XPN+n+1n+1
167 165 129 166 syl2anc φn0n+1<PNXPN+n+1n+1
168 nn0p1nn X-PN+n0XPN+n+1
169 150 168 syl φn0n+1<PNXPN+n+1
170 nnrp XPN+n+1XPN+n+1+
171 nnrp n+1n+1+
172 rpdivcl XPN+n+1+n+1+XPN+n+1n+1+
173 170 171 172 syl2an XPN+n+1n+1XPN+n+1n+1+
174 169 129 173 syl2anc φn0n+1<PNXPN+n+1n+1+
175 174 rpne0d φn0n+1<PNXPN+n+1n+10
176 pcqmul P(X-PN+nn)(X-PN+nn)0XPN+n+1n+1XPN+n+1n+10PpCnt(X-PN+nn)XPN+n+1n+1=PpCnt(X-PN+nn)+PpCntXPN+n+1n+1
177 159 163 164 167 175 176 syl122anc φn0n+1<PNPpCnt(X-PN+nn)XPN+n+1n+1=PpCnt(X-PN+nn)+PpCntXPN+n+1n+1
178 158 177 eqtrd φn0n+1<PNPpCnt(XPN+n+1n+1)=PpCnt(X-PN+nn)+PpCntXPN+n+1n+1
179 169 nnne0d φn0n+1<PNXPN+n+10
180 pcdiv PXPN+n+1XPN+n+10n+1PpCntXPN+n+1n+1=PpCntXPN+n+1PpCntn+1
181 159 165 179 129 180 syl121anc φn0n+1<PNPpCntXPN+n+1n+1=PpCntXPN+n+1PpCntn+1
182 129 nncnd φn0n+1<PNn+1
183 140 182 144 comraddd φn0n+1<PNXPN+n+1=n+1+XPN
184 183 oveq2d φn0n+1<PNPpCntXPN+n+1=PpCntn+1+XPN
185 simpr φn0n+1<PNXPN=0XPN=0
186 185 oveq2d φn0n+1<PNXPN=0n+1+XPN=n+1+0
187 182 addridd φn0n+1<PNn+1+0=n+1
188 187 adantr φn0n+1<PNXPN=0n+1+0=n+1
189 186 188 eqtr2d φn0n+1<PNXPN=0n+1=n+1+XPN
190 189 oveq2d φn0n+1<PNXPN=0PpCntn+1=PpCntn+1+XPN
191 4 ad2antrr φn0n+1<PNXPN0P
192 nnq n+1n+1
193 129 192 syl φn0n+1<PNn+1
194 193 adantr φn0n+1<PNXPN0n+1
195 139 nn0zd φn0n+1<PNXPN
196 zq XPNXPN
197 195 196 syl φn0n+1<PNXPN
198 197 adantr φn0n+1<PNXPN0XPN
199 159 129 pccld φn0n+1<PNPpCntn+10
200 199 nn0red φn0n+1<PNPpCntn+1
201 200 adantr φn0n+1<PNXPN0PpCntn+1
202 5 adantr φn0n+1<PNN0
203 202 nn0red φn0n+1<PNN
204 203 adantr φn0n+1<PNXPN0N
205 simpr φn0n+1<PNXPN0XPN0
206 205 neneqd φn0n+1<PNXPN0¬XPN=0
207 115 ad2antrr φn0n+1<PNXPN0XPN0
208 elnn0 XPN0XPNXPN=0
209 207 208 sylib φn0n+1<PNXPN0XPNXPN=0
210 209 ord φn0n+1<PNXPN0¬XPNXPN=0
211 206 210 mt3d φn0n+1<PNXPN0XPN
212 191 211 pccld φn0n+1<PNXPN0PpCntXPN0
213 212 nn0red φn0n+1<PNXPN0PpCntXPN
214 129 nnzd φn0n+1<PNn+1
215 pcdvdsb Pn+1N0NPpCntn+1PNn+1
216 159 214 202 215 syl3anc φn0n+1<PNNPpCntn+1PNn+1
217 12 adantr φn0n+1<PNPN
218 dvdsle PNn+1PNn+1PNn+1
219 217 129 218 syl2anc φn0n+1<PNPNn+1PNn+1
220 216 219 sylbid φn0n+1<PNNPpCntn+1PNn+1
221 203 200 lenltd φn0n+1<PNNPpCntn+1¬PpCntn+1<N
222 132 130 lenltd φn0n+1<PNPNn+1¬n+1<PN
223 220 221 222 3imtr3d φn0n+1<PN¬PpCntn+1<N¬n+1<PN
224 134 223 mt4d φn0n+1<PNPpCntn+1<N
225 224 adantr φn0n+1<PNXPN0PpCntn+1<N
226 dvdssubr PNXPNXPNXPN
227 12 35 226 syl2anc φPNXPNXPN
228 6 227 mpbid φPNXPN
229 228 ad2antrr φn0n+1<PNXPN0PNXPN
230 207 nn0zd φn0n+1<PNXPN0XPN
231 5 ad2antrr φn0n+1<PNXPN0N0
232 pcdvdsb PXPNN0NPpCntXPNPNXPN
233 191 230 231 232 syl3anc φn0n+1<PNXPN0NPpCntXPNPNXPN
234 229 233 mpbird φn0n+1<PNXPN0NPpCntXPN
235 201 204 213 225 234 ltletrd φn0n+1<PNXPN0PpCntn+1<PpCntXPN
236 191 194 198 235 pcadd2 φn0n+1<PNXPN0PpCntn+1=PpCntn+1+XPN
237 190 236 pm2.61dane φn0n+1<PNPpCntn+1=PpCntn+1+XPN
238 184 237 eqtr4d φn0n+1<PNPpCntXPN+n+1=PpCntn+1
239 199 nn0cnd φn0n+1<PNPpCntn+1
240 238 239 eqeltrd φn0n+1<PNPpCntXPN+n+1
241 240 238 subeq0bd φn0n+1<PNPpCntXPN+n+1PpCntn+1=0
242 181 241 eqtrd φn0n+1<PNPpCntXPN+n+1n+1=0
243 242 oveq2d φn0n+1<PN0+PpCntXPN+n+1n+1=0+0
244 00id 0+0=0
245 243 244 eqtr2di φn0n+1<PN0=0+PpCntXPN+n+1n+1
246 178 245 eqeq12d φn0n+1<PNPpCnt(XPN+n+1n+1)=0PpCnt(X-PN+nn)+PpCntXPN+n+1n+1=0+PpCntXPN+n+1n+1
247 138 246 imbitrrid φn0n+1<PNPpCnt(X-PN+nn)=0PpCnt(XPN+n+1n+1)=0
248 137 247 animpimp2impd n0φn<PNPpCnt(X-PN+nn)=0φn+1<PNPpCnt(XPN+n+1n+1)=0
249 94 100 106 112 125 248 nn0ind PN10φPN1<PNPpCnt(XPN+PN-1PN1)=0
250 88 249 mpcom φPN1<PNPpCnt(XPN+PN-1PN1)=0
251 86 250 mpd φPpCnt(XPN+PN-1PN1)=0
252 84 251 eqtr3d φPpCnt(X1PN1)=0
253 pcdiv PXX0PNPpCntXPN=PpCntXPpCntPN
254 4 35 77 11 253 syl121anc φPpCntXPN=PpCntXPpCntPN
255 5 nn0zd φN
256 pcid PNPpCntPN=N
257 4 255 256 syl2anc φPpCntPN=N
258 257 oveq2d φPpCntXPpCntPN=PpCntXN
259 254 258 eqtrd φPpCntXPN=PpCntXN
260 252 259 oveq12d φPpCnt(X1PN1)+PpCntXPN=0+PpCntX-N
261 4 28 pccld φPpCntX0
262 261 nn0zd φPpCntX
263 262 255 zsubcld φPpCntXN
264 263 zcnd φPpCntXN
265 264 addlidd φ0+PpCntX-N=PpCntXN
266 80 260 265 3eqtrd φPpCnt(X1PN1)XPN=PpCntXN
267 67 68 266 3eqtr3d φPpCntS=PpCntXN
268 41 267 jca φSPpCntS=PpCntXN