Metamath Proof Explorer


Theorem tx1stc

Description: The topological product of two first-countable spaces is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion tx1stc R1st𝜔S1st𝜔R×tS1st𝜔

Proof

Step Hyp Ref Expression
1 1stctop R1st𝜔RTop
2 1stctop S1st𝜔STop
3 txtop RTopSTopR×tSTop
4 1 2 3 syl2an R1st𝜔S1st𝜔R×tSTop
5 eqid R=R
6 5 1stcclb R1st𝜔uRa𝒫RaωrRurpauppr
7 6 ad2ant2r R1st𝜔S1st𝜔uRvSa𝒫RaωrRurpauppr
8 eqid S=S
9 8 1stcclb S1st𝜔vSb𝒫SbωsSvsqbvqqs
10 9 ad2ant2l R1st𝜔S1st𝜔uRvSb𝒫SbωsSvsqbvqqs
11 reeanv a𝒫Rb𝒫SaωrRurpaupprbωsSvsqbvqqsa𝒫RaωrRurpaupprb𝒫SbωsSvsqbvqqs
12 an4 aωrRurpaupprbωsSvsqbvqqsaωbωrRurpaupprsSvsqbvqqs
13 txopn RTopSTopmRnSm×nR×tS
14 13 ralrimivva RTopSTopmRnSm×nR×tS
15 1 2 14 syl2an R1st𝜔S1st𝜔mRnSm×nR×tS
16 15 adantr R1st𝜔S1st𝜔uRvSmRnSm×nR×tS
17 elpwi a𝒫RaR
18 ssralv aRmRnSm×nR×tSmanSm×nR×tS
19 17 18 syl a𝒫RmRnSm×nR×tSmanSm×nR×tS
20 elpwi b𝒫SbS
21 ssralv bSnSm×nR×tSnbm×nR×tS
22 20 21 syl b𝒫SnSm×nR×tSnbm×nR×tS
23 22 ralimdv b𝒫SmanSm×nR×tSmanbm×nR×tS
24 19 23 sylan9 a𝒫Rb𝒫SmRnSm×nR×tSmanbm×nR×tS
25 16 24 mpan9 R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫Smanbm×nR×tS
26 eqid ma,nbm×n=ma,nbm×n
27 26 fmpo manbm×nR×tSma,nbm×n:a×bR×tS
28 25 27 sylib R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫Sma,nbm×n:a×bR×tS
29 28 frnd R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫Sranma,nbm×nR×tS
30 ovex R×tSV
31 30 elpw2 ranma,nbm×n𝒫R×tSranma,nbm×nR×tS
32 29 31 sylibr R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫Sranma,nbm×n𝒫R×tS
33 32 adantr R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqsranma,nbm×n𝒫R×tS
34 omelon ωOn
35 xpct aωbωa×bω
36 ondomen ωOna×bωa×bdomcard
37 34 35 36 sylancr aωbωa×bdomcard
38 vex mV
39 vex nV
40 38 39 xpex m×nV
41 26 40 fnmpoi ma,nbm×nFna×b
42 dffn4 ma,nbm×nFna×bma,nbm×n:a×bontoranma,nbm×n
43 41 42 mpbi ma,nbm×n:a×bontoranma,nbm×n
44 fodomnum a×bdomcardma,nbm×n:a×bontoranma,nbm×nranma,nbm×na×b
45 37 43 44 mpisyl aωbωranma,nbm×na×b
46 domtr ranma,nbm×na×ba×bωranma,nbm×nω
47 45 35 46 syl2anc aωbωranma,nbm×nω
48 47 ad2antrl R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqsranma,nbm×nω
49 1 2 anim12i R1st𝜔S1st𝜔RTopSTop
50 49 ad3antrrr R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqsRTopSTop
51 eltx RTopSTopzR×tSwzrRsSwr×sr×sz
52 50 51 syl R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqszR×tSwzrRsSwr×sr×sz
53 eleq1 w=uvwr×suvr×s
54 53 anbi1d w=uvwr×sr×szuvr×sr×sz
55 54 2rexbidv w=uvrRsSwr×sr×szrRsSuvr×sr×sz
56 55 rspccv wzrRsSwr×sr×szuvzrRsSuvr×sr×sz
57 r19.27v rRurpaupprsSvsqbvqqsrRurpaupprsSvsqbvqqs
58 r19.29 rRurpaupprsSvsqbvqqsrRsSuvr×sr×szrRurpaupprsSvsqbvqqssSuvr×sr×sz
59 r19.29 sSvsqbvqqssSuvr×sr×szsSvsqbvqqsuvr×sr×sz
60 opelxp uvr×survs
61 pm3.35 ururpaupprpauppr
62 pm3.35 vsvsqbvqqsqbvqqs
63 61 62 anim12i ururpaupprvsvsqbvqqspaupprqbvqqs
64 63 an4s urvsurpaupprvsqbvqqspaupprqbvqqs
65 60 64 sylanb uvr×surpaupprvsqbvqqspaupprqbvqqs
66 65 anim1i uvr×surpaupprvsqbvqqsr×szpaupprqbvqqsr×sz
67 66 anasss uvr×surpaupprvsqbvqqsr×szpaupprqbvqqsr×sz
68 67 an12s urpaupprvsqbvqqsuvr×sr×szpaupprqbvqqsr×sz
69 68 expl urpaupprvsqbvqqsuvr×sr×szpaupprqbvqqsr×sz
70 69 reximdv urpaupprsSvsqbvqqsuvr×sr×szsSpaupprqbvqqsr×sz
71 59 70 syl5 urpaupprsSvsqbvqqssSuvr×sr×szsSpaupprqbvqqsr×sz
72 71 impl urpaupprsSvsqbvqqssSuvr×sr×szsSpaupprqbvqqsr×sz
73 72 reximi rRurpaupprsSvsqbvqqssSuvr×sr×szrRsSpaupprqbvqqsr×sz
74 58 73 syl rRurpaupprsSvsqbvqqsrRsSuvr×sr×szrRsSpaupprqbvqqsr×sz
75 57 74 sylan rRurpaupprsSvsqbvqqsrRsSuvr×sr×szrRsSpaupprqbvqqsr×sz
76 reeanv paqbupprvqqspaupprqbvqqs
77 simpr1l R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szpa
78 simpr1r R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szqb
79 eqidd R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szp×q=p×q
80 xpeq1 m=pm×n=p×n
81 80 eqeq2d m=pp×q=m×np×q=p×n
82 xpeq2 n=qp×n=p×q
83 82 eqeq2d n=qp×q=p×np×q=p×q
84 81 83 rspc2ev paqbp×q=p×qmanbp×q=m×n
85 77 78 79 84 syl3anc R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szmanbp×q=m×n
86 vex pV
87 vex qV
88 86 87 xpex p×qV
89 eqeq1 x=p×qx=m×np×q=m×n
90 89 2rexbidv x=p×qmanbx=m×nmanbp×q=m×n
91 88 90 elab p×qx|manbx=m×nmanbp×q=m×n
92 85 91 sylibr R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szp×qx|manbx=m×n
93 26 rnmpo ranma,nbm×n=x|manbx=m×n
94 92 93 eleqtrrdi R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szp×qranma,nbm×n
95 simpr2 R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szupprvqqs
96 opelxpi upvquvp×q
97 96 ad2ant2r upprvqqsuvp×q
98 95 97 syl R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szuvp×q
99 xpss12 prqsp×qr×s
100 99 ad2ant2l upprvqqsp×qr×s
101 95 100 syl R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szp×qr×s
102 simpr3 R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szr×sz
103 101 102 sstrd R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szp×qz
104 eleq2 w=p×quvwuvp×q
105 sseq1 w=p×qwzp×qz
106 104 105 anbi12d w=p×quvwwzuvp×qp×qz
107 106 rspcev p×qranma,nbm×nuvp×qp×qzwranma,nbm×nuvwwz
108 94 98 103 107 syl12anc R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szwranma,nbm×nuvwwz
109 108 3exp2 R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szwranma,nbm×nuvwwz
110 109 rexlimdvv R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaqbupprvqqsr×szwranma,nbm×nuvwwz
111 76 110 biimtrrid R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaupprqbvqqsr×szwranma,nbm×nuvwwz
112 111 impd R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaupprqbvqqsr×szwranma,nbm×nuvwwz
113 112 rexlimdvva R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRsSpaupprqbvqqsr×szwranma,nbm×nuvwwz
114 75 113 syl5 R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqsrRsSuvr×sr×szwranma,nbm×nuvwwz
115 114 expd R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqsrRsSuvr×sr×szwranma,nbm×nuvwwz
116 115 impr R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqsrRsSuvr×sr×szwranma,nbm×nuvwwz
117 56 116 syl9r R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqswzrRsSwr×sr×szuvzwranma,nbm×nuvwwz
118 52 117 sylbid R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqszR×tSuvzwranma,nbm×nuvwwz
119 118 ralrimiv R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqszR×tSuvzwranma,nbm×nuvwwz
120 breq1 y=ranma,nbm×nyωranma,nbm×nω
121 rexeq y=ranma,nbm×nwyuvwwzwranma,nbm×nuvwwz
122 121 imbi2d y=ranma,nbm×nuvzwyuvwwzuvzwranma,nbm×nuvwwz
123 122 ralbidv y=ranma,nbm×nzR×tSuvzwyuvwwzzR×tSuvzwranma,nbm×nuvwwz
124 120 123 anbi12d y=ranma,nbm×nyωzR×tSuvzwyuvwwzranma,nbm×nωzR×tSuvzwranma,nbm×nuvwwz
125 124 rspcev ranma,nbm×n𝒫R×tSranma,nbm×nωzR×tSuvzwranma,nbm×nuvwwzy𝒫R×tSyωzR×tSuvzwyuvwwz
126 33 48 119 125 syl12anc R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqsy𝒫R×tSyωzR×tSuvzwyuvwwz
127 126 ex R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωbωrRurpaupprsSvsqbvqqsy𝒫R×tSyωzR×tSuvzwyuvwwz
128 12 127 biimtrid R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωrRurpaupprbωsSvsqbvqqsy𝒫R×tSyωzR×tSuvzwyuvwwz
129 128 rexlimdvva R1st𝜔S1st𝜔uRvSa𝒫Rb𝒫SaωrRurpaupprbωsSvsqbvqqsy𝒫R×tSyωzR×tSuvzwyuvwwz
130 11 129 biimtrrid R1st𝜔S1st𝜔uRvSa𝒫RaωrRurpaupprb𝒫SbωsSvsqbvqqsy𝒫R×tSyωzR×tSuvzwyuvwwz
131 7 10 130 mp2and R1st𝜔S1st𝜔uRvSy𝒫R×tSyωzR×tSuvzwyuvwwz
132 131 ralrimivva R1st𝜔S1st𝜔uRvSy𝒫R×tSyωzR×tSuvzwyuvwwz
133 eleq1 x=uvxzuvz
134 eleq1 x=uvxwuvw
135 134 anbi1d x=uvxwwzuvwwz
136 135 rexbidv x=uvwyxwwzwyuvwwz
137 133 136 imbi12d x=uvxzwyxwwzuvzwyuvwwz
138 137 ralbidv x=uvzR×tSxzwyxwwzzR×tSuvzwyuvwwz
139 138 anbi2d x=uvyωzR×tSxzwyxwwzyωzR×tSuvzwyuvwwz
140 139 rexbidv x=uvy𝒫R×tSyωzR×tSxzwyxwwzy𝒫R×tSyωzR×tSuvzwyuvwwz
141 140 ralxp xR×Sy𝒫R×tSyωzR×tSxzwyxwwzuRvSy𝒫R×tSyωzR×tSuvzwyuvwwz
142 132 141 sylibr R1st𝜔S1st𝜔xR×Sy𝒫R×tSyωzR×tSxzwyxwwz
143 5 8 txuni RTopSTopR×S=R×tS
144 1 2 143 syl2an R1st𝜔S1st𝜔R×S=R×tS
145 144 raleqdv R1st𝜔S1st𝜔xR×Sy𝒫R×tSyωzR×tSxzwyxwwzxR×tSy𝒫R×tSyωzR×tSxzwyxwwz
146 142 145 mpbid R1st𝜔S1st𝜔xR×tSy𝒫R×tSyωzR×tSxzwyxwwz
147 eqid R×tS=R×tS
148 147 is1stc2 R×tS1st𝜔R×tSTopxR×tSy𝒫R×tSyωzR×tSxzwyxwwz
149 4 146 148 sylanbrc R1st𝜔S1st𝜔R×tS1st𝜔