Metamath Proof Explorer


Theorem tx1stc

Description: The topological product of two first-countable spaces is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion tx1stc R 1 st 𝜔 S 1 st 𝜔 R × t S 1 st 𝜔

Proof

Step Hyp Ref Expression
1 1stctop R 1 st 𝜔 R Top
2 1stctop S 1 st 𝜔 S Top
3 txtop R Top S Top R × t S Top
4 1 2 3 syl2an R 1 st 𝜔 S 1 st 𝜔 R × t S Top
5 eqid R = R
6 5 1stcclb R 1 st 𝜔 u R a 𝒫 R a ω r R u r p a u p p r
7 6 ad2ant2r R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R a ω r R u r p a u p p r
8 eqid S = S
9 8 1stcclb S 1 st 𝜔 v S b 𝒫 S b ω s S v s q b v q q s
10 9 ad2ant2l R 1 st 𝜔 S 1 st 𝜔 u R v S b 𝒫 S b ω s S v s q b v q q s
11 reeanv a 𝒫 R b 𝒫 S a ω r R u r p a u p p r b ω s S v s q b v q q s a 𝒫 R a ω r R u r p a u p p r b 𝒫 S b ω s S v s q b v q q s
12 an4 a ω r R u r p a u p p r b ω s S v s q b v q q s a ω b ω r R u r p a u p p r s S v s q b v q q s
13 txopn R Top S Top m R n S m × n R × t S
14 13 ralrimivva R Top S Top m R n S m × n R × t S
15 1 2 14 syl2an R 1 st 𝜔 S 1 st 𝜔 m R n S m × n R × t S
16 15 adantr R 1 st 𝜔 S 1 st 𝜔 u R v S m R n S m × n R × t S
17 elpwi a 𝒫 R a R
18 ssralv a R m R n S m × n R × t S m a n S m × n R × t S
19 17 18 syl a 𝒫 R m R n S m × n R × t S m a n S m × n R × t S
20 elpwi b 𝒫 S b S
21 ssralv b S n S m × n R × t S n b m × n R × t S
22 20 21 syl b 𝒫 S n S m × n R × t S n b m × n R × t S
23 22 ralimdv b 𝒫 S m a n S m × n R × t S m a n b m × n R × t S
24 19 23 sylan9 a 𝒫 R b 𝒫 S m R n S m × n R × t S m a n b m × n R × t S
25 16 24 mpan9 R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S m a n b m × n R × t S
26 eqid m a , n b m × n = m a , n b m × n
27 26 fmpo m a n b m × n R × t S m a , n b m × n : a × b R × t S
28 25 27 sylib R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S m a , n b m × n : a × b R × t S
29 28 frnd R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S ran m a , n b m × n R × t S
30 ovex R × t S V
31 30 elpw2 ran m a , n b m × n 𝒫 R × t S ran m a , n b m × n R × t S
32 29 31 sylibr R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S ran m a , n b m × n 𝒫 R × t S
33 32 adantr R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s ran m a , n b m × n 𝒫 R × t S
34 omelon ω On
35 xpct a ω b ω a × b ω
36 ondomen ω On a × b ω a × b dom card
37 34 35 36 sylancr a ω b ω a × b dom card
38 vex m V
39 vex n V
40 38 39 xpex m × n V
41 26 40 fnmpoi m a , n b m × n Fn a × b
42 dffn4 m a , n b m × n Fn a × b m a , n b m × n : a × b onto ran m a , n b m × n
43 41 42 mpbi m a , n b m × n : a × b onto ran m a , n b m × n
44 fodomnum a × b dom card m a , n b m × n : a × b onto ran m a , n b m × n ran m a , n b m × n a × b
45 37 43 44 mpisyl a ω b ω ran m a , n b m × n a × b
46 domtr ran m a , n b m × n a × b a × b ω ran m a , n b m × n ω
47 45 35 46 syl2anc a ω b ω ran m a , n b m × n ω
48 47 ad2antrl R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s ran m a , n b m × n ω
49 1 2 anim12i R 1 st 𝜔 S 1 st 𝜔 R Top S Top
50 49 ad3antrrr R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s R Top S Top
51 eltx R Top S Top z R × t S w z r R s S w r × s r × s z
52 50 51 syl R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s z R × t S w z r R s S w r × s r × s z
53 eleq1 w = u v w r × s u v r × s
54 53 anbi1d w = u v w r × s r × s z u v r × s r × s z
55 54 2rexbidv w = u v r R s S w r × s r × s z r R s S u v r × s r × s z
56 55 rspccv w z r R s S w r × s r × s z u v z r R s S u v r × s r × s z
57 r19.27v r R u r p a u p p r s S v s q b v q q s r R u r p a u p p r s S v s q b v q q s
58 r19.29 r R u r p a u p p r s S v s q b v q q s r R s S u v r × s r × s z r R u r p a u p p r s S v s q b v q q s s S u v r × s r × s z
59 r19.29 s S v s q b v q q s s S u v r × s r × s z s S v s q b v q q s u v r × s r × s z
60 opelxp u v r × s u r v s
61 pm3.35 u r u r p a u p p r p a u p p r
62 pm3.35 v s v s q b v q q s q b v q q s
63 61 62 anim12i u r u r p a u p p r v s v s q b v q q s p a u p p r q b v q q s
64 63 an4s u r v s u r p a u p p r v s q b v q q s p a u p p r q b v q q s
65 60 64 sylanb u v r × s u r p a u p p r v s q b v q q s p a u p p r q b v q q s
66 65 anim1i u v r × s u r p a u p p r v s q b v q q s r × s z p a u p p r q b v q q s r × s z
67 66 anasss u v r × s u r p a u p p r v s q b v q q s r × s z p a u p p r q b v q q s r × s z
68 67 an12s u r p a u p p r v s q b v q q s u v r × s r × s z p a u p p r q b v q q s r × s z
69 68 expl u r p a u p p r v s q b v q q s u v r × s r × s z p a u p p r q b v q q s r × s z
70 69 reximdv u r p a u p p r s S v s q b v q q s u v r × s r × s z s S p a u p p r q b v q q s r × s z
71 59 70 syl5 u r p a u p p r s S v s q b v q q s s S u v r × s r × s z s S p a u p p r q b v q q s r × s z
72 71 impl u r p a u p p r s S v s q b v q q s s S u v r × s r × s z s S p a u p p r q b v q q s r × s z
73 72 reximi r R u r p a u p p r s S v s q b v q q s s S u v r × s r × s z r R s S p a u p p r q b v q q s r × s z
74 58 73 syl r R u r p a u p p r s S v s q b v q q s r R s S u v r × s r × s z r R s S p a u p p r q b v q q s r × s z
75 57 74 sylan r R u r p a u p p r s S v s q b v q q s r R s S u v r × s r × s z r R s S p a u p p r q b v q q s r × s z
76 reeanv p a q b u p p r v q q s p a u p p r q b v q q s
77 simpr1l R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z p a
78 simpr1r R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z q b
79 eqidd R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z p × q = p × q
80 xpeq1 m = p m × n = p × n
81 80 eqeq2d m = p p × q = m × n p × q = p × n
82 xpeq2 n = q p × n = p × q
83 82 eqeq2d n = q p × q = p × n p × q = p × q
84 81 83 rspc2ev p a q b p × q = p × q m a n b p × q = m × n
85 77 78 79 84 syl3anc R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z m a n b p × q = m × n
86 vex p V
87 vex q V
88 86 87 xpex p × q V
89 eqeq1 x = p × q x = m × n p × q = m × n
90 89 2rexbidv x = p × q m a n b x = m × n m a n b p × q = m × n
91 88 90 elab p × q x | m a n b x = m × n m a n b p × q = m × n
92 85 91 sylibr R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z p × q x | m a n b x = m × n
93 26 rnmpo ran m a , n b m × n = x | m a n b x = m × n
94 92 93 eleqtrrdi R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z p × q ran m a , n b m × n
95 simpr2 R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z u p p r v q q s
96 opelxpi u p v q u v p × q
97 96 ad2ant2r u p p r v q q s u v p × q
98 95 97 syl R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z u v p × q
99 xpss12 p r q s p × q r × s
100 99 ad2ant2l u p p r v q q s p × q r × s
101 95 100 syl R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z p × q r × s
102 simpr3 R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z r × s z
103 101 102 sstrd R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z p × q z
104 eleq2 w = p × q u v w u v p × q
105 sseq1 w = p × q w z p × q z
106 104 105 anbi12d w = p × q u v w w z u v p × q p × q z
107 106 rspcev p × q ran m a , n b m × n u v p × q p × q z w ran m a , n b m × n u v w w z
108 94 98 103 107 syl12anc R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z w ran m a , n b m × n u v w w z
109 108 3exp2 R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z w ran m a , n b m × n u v w w z
110 109 rexlimdvv R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a q b u p p r v q q s r × s z w ran m a , n b m × n u v w w z
111 76 110 syl5bir R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a u p p r q b v q q s r × s z w ran m a , n b m × n u v w w z
112 111 impd R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a u p p r q b v q q s r × s z w ran m a , n b m × n u v w w z
113 112 rexlimdvva R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R s S p a u p p r q b v q q s r × s z w ran m a , n b m × n u v w w z
114 75 113 syl5 R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s r R s S u v r × s r × s z w ran m a , n b m × n u v w w z
115 114 expd R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s r R s S u v r × s r × s z w ran m a , n b m × n u v w w z
116 115 impr R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s r R s S u v r × s r × s z w ran m a , n b m × n u v w w z
117 56 116 syl9r R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s w z r R s S w r × s r × s z u v z w ran m a , n b m × n u v w w z
118 52 117 sylbid R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s z R × t S u v z w ran m a , n b m × n u v w w z
119 118 ralrimiv R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s z R × t S u v z w ran m a , n b m × n u v w w z
120 breq1 y = ran m a , n b m × n y ω ran m a , n b m × n ω
121 rexeq y = ran m a , n b m × n w y u v w w z w ran m a , n b m × n u v w w z
122 121 imbi2d y = ran m a , n b m × n u v z w y u v w w z u v z w ran m a , n b m × n u v w w z
123 122 ralbidv y = ran m a , n b m × n z R × t S u v z w y u v w w z z R × t S u v z w ran m a , n b m × n u v w w z
124 120 123 anbi12d y = ran m a , n b m × n y ω z R × t S u v z w y u v w w z ran m a , n b m × n ω z R × t S u v z w ran m a , n b m × n u v w w z
125 124 rspcev ran m a , n b m × n 𝒫 R × t S ran m a , n b m × n ω z R × t S u v z w ran m a , n b m × n u v w w z y 𝒫 R × t S y ω z R × t S u v z w y u v w w z
126 33 48 119 125 syl12anc R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s y 𝒫 R × t S y ω z R × t S u v z w y u v w w z
127 126 ex R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω b ω r R u r p a u p p r s S v s q b v q q s y 𝒫 R × t S y ω z R × t S u v z w y u v w w z
128 12 127 syl5bi R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω r R u r p a u p p r b ω s S v s q b v q q s y 𝒫 R × t S y ω z R × t S u v z w y u v w w z
129 128 rexlimdvva R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R b 𝒫 S a ω r R u r p a u p p r b ω s S v s q b v q q s y 𝒫 R × t S y ω z R × t S u v z w y u v w w z
130 11 129 syl5bir R 1 st 𝜔 S 1 st 𝜔 u R v S a 𝒫 R a ω r R u r p a u p p r b 𝒫 S b ω s S v s q b v q q s y 𝒫 R × t S y ω z R × t S u v z w y u v w w z
131 7 10 130 mp2and R 1 st 𝜔 S 1 st 𝜔 u R v S y 𝒫 R × t S y ω z R × t S u v z w y u v w w z
132 131 ralrimivva R 1 st 𝜔 S 1 st 𝜔 u R v S y 𝒫 R × t S y ω z R × t S u v z w y u v w w z
133 eleq1 x = u v x z u v z
134 eleq1 x = u v x w u v w
135 134 anbi1d x = u v x w w z u v w w z
136 135 rexbidv x = u v w y x w w z w y u v w w z
137 133 136 imbi12d x = u v x z w y x w w z u v z w y u v w w z
138 137 ralbidv x = u v z R × t S x z w y x w w z z R × t S u v z w y u v w w z
139 138 anbi2d x = u v y ω z R × t S x z w y x w w z y ω z R × t S u v z w y u v w w z
140 139 rexbidv x = u v y 𝒫 R × t S y ω z R × t S x z w y x w w z y 𝒫 R × t S y ω z R × t S u v z w y u v w w z
141 140 ralxp x R × S y 𝒫 R × t S y ω z R × t S x z w y x w w z u R v S y 𝒫 R × t S y ω z R × t S u v z w y u v w w z
142 132 141 sylibr R 1 st 𝜔 S 1 st 𝜔 x R × S y 𝒫 R × t S y ω z R × t S x z w y x w w z
143 5 8 txuni R Top S Top R × S = R × t S
144 1 2 143 syl2an R 1 st 𝜔 S 1 st 𝜔 R × S = R × t S
145 144 raleqdv R 1 st 𝜔 S 1 st 𝜔 x R × S y 𝒫 R × t S y ω z R × t S x z w y x w w z x R × t S y 𝒫 R × t S y ω z R × t S x z w y x w w z
146 142 145 mpbid R 1 st 𝜔 S 1 st 𝜔 x R × t S y 𝒫 R × t S y ω z R × t S x z w y x w w z
147 eqid R × t S = R × t S
148 147 is1stc2 R × t S 1 st 𝜔 R × t S Top x R × t S y 𝒫 R × t S y ω z R × t S x z w y x w w z
149 4 146 148 sylanbrc R 1 st 𝜔 S 1 st 𝜔 R × t S 1 st 𝜔