Metamath Proof Explorer


Theorem ubthlem2

Description: Lemma for ubth . Given that there is a closed ball B ( P , R ) in AK , for any x e. B ( 0 , 1 ) , we have P + R x. x e. B ( P , R ) and P e. B ( P , R ) , so both of these have norm ( t ( z ) ) <_ K and so norm ( t ( x ) ) <_ ( norm ( t ( P ) ) + norm ( t ( P + R x. x ) ) ) / R <_ ( K + K ) / R , which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ubth.1 X=BaseSetU
ubth.2 N=normCVW
ubthlem.3 D=IndMetU
ubthlem.4 J=MetOpenD
ubthlem.5 UCBan
ubthlem.6 WNrmCVec
ubthlem.7 φTUBLnOpW
ubthlem.8 φxXctTNtxc
ubthlem.9 A=kzX|tTNtzk
ubthlem.10 φK
ubthlem.11 φPX
ubthlem.12 φR+
ubthlem.13 φzX|PDzRAK
Assertion ubthlem2 φdtTUnormOpOLDWtd

Proof

Step Hyp Ref Expression
1 ubth.1 X=BaseSetU
2 ubth.2 N=normCVW
3 ubthlem.3 D=IndMetU
4 ubthlem.4 J=MetOpenD
5 ubthlem.5 UCBan
6 ubthlem.6 WNrmCVec
7 ubthlem.7 φTUBLnOpW
8 ubthlem.8 φxXctTNtxc
9 ubthlem.9 A=kzX|tTNtzk
10 ubthlem.10 φK
11 ubthlem.11 φPX
12 ubthlem.12 φR+
13 ubthlem.13 φzX|PDzRAK
14 10 nnrpd φK+
15 14 14 rpaddcld φK+K+
16 15 12 rpdivcld φK+KR+
17 16 rpred φK+KR
18 oveq2 z=P+vUR𝑠OLDUxPDz=PDP+vUR𝑠OLDUx
19 18 breq1d z=P+vUR𝑠OLDUxPDzRPDP+vUR𝑠OLDUxR
20 eleq1 z=P+vUR𝑠OLDUxzAKP+vUR𝑠OLDUxAK
21 19 20 imbi12d z=P+vUR𝑠OLDUxPDzRzAKPDP+vUR𝑠OLDUxRP+vUR𝑠OLDUxAK
22 rabss zX|PDzRAKzXPDzRzAK
23 13 22 sylib φzXPDzRzAK
24 23 ad2antrr φtTxXzXPDzRzAK
25 bnnv UCBanUNrmCVec
26 5 25 ax-mp UNrmCVec
27 26 a1i φtTxXUNrmCVec
28 11 ad2antrr φtTxXPX
29 12 ad2antrr φtTxXR+
30 29 rpcnd φtTxXR
31 simpr φtTxXxX
32 eqid 𝑠OLDU=𝑠OLDU
33 1 32 nvscl UNrmCVecRxXR𝑠OLDUxX
34 27 30 31 33 syl3anc φtTxXR𝑠OLDUxX
35 eqid +vU=+vU
36 1 35 nvgcl UNrmCVecPXR𝑠OLDUxXP+vUR𝑠OLDUxX
37 27 28 34 36 syl3anc φtTxXP+vUR𝑠OLDUxX
38 21 24 37 rspcdva φtTxXPDP+vUR𝑠OLDUxRP+vUR𝑠OLDUxAK
39 1 3 cbncms UCBanDCMetX
40 5 39 ax-mp DCMetX
41 cmetmet DCMetXDMetX
42 metxmet DMetXD∞MetX
43 40 41 42 mp2b D∞MetX
44 43 a1i φtTxXD∞MetX
45 xmetsym D∞MetXPXP+vUR𝑠OLDUxXPDP+vUR𝑠OLDUx=P+vUR𝑠OLDUxDP
46 44 28 37 45 syl3anc φtTxXPDP+vUR𝑠OLDUx=P+vUR𝑠OLDUxDP
47 eqid -vU=-vU
48 eqid normCVU=normCVU
49 1 47 48 3 imsdval UNrmCVecP+vUR𝑠OLDUxXPXP+vUR𝑠OLDUxDP=normCVUP+vUR𝑠OLDUx-vUP
50 27 37 28 49 syl3anc φtTxXP+vUR𝑠OLDUxDP=normCVUP+vUR𝑠OLDUx-vUP
51 1 35 47 nvpncan2 UNrmCVecPXR𝑠OLDUxXP+vUR𝑠OLDUx-vUP=R𝑠OLDUx
52 27 28 34 51 syl3anc φtTxXP+vUR𝑠OLDUx-vUP=R𝑠OLDUx
53 52 fveq2d φtTxXnormCVUP+vUR𝑠OLDUx-vUP=normCVUR𝑠OLDUx
54 46 50 53 3eqtrd φtTxXPDP+vUR𝑠OLDUx=normCVUR𝑠OLDUx
55 29 rprege0d φtTxXR0R
56 1 32 48 nvsge0 UNrmCVecR0RxXnormCVUR𝑠OLDUx=RnormCVUx
57 27 55 31 56 syl3anc φtTxXnormCVUR𝑠OLDUx=RnormCVUx
58 54 57 eqtrd φtTxXPDP+vUR𝑠OLDUx=RnormCVUx
59 30 mulridd φtTxXR1=R
60 59 eqcomd φtTxXR=R1
61 58 60 breq12d φtTxXPDP+vUR𝑠OLDUxRRnormCVUxR1
62 1 48 nvcl UNrmCVecxXnormCVUx
63 26 62 mpan xXnormCVUx
64 63 adantl φtTxXnormCVUx
65 1red φtTxX1
66 64 65 29 lemul2d φtTxXnormCVUx1RnormCVUxR1
67 61 66 bitr4d φtTxXPDP+vUR𝑠OLDUxRnormCVUx1
68 breq2 k=KNtzkNtzK
69 68 ralbidv k=KtTNtzktTNtzK
70 69 rabbidv k=KzX|tTNtzk=zX|tTNtzK
71 1 fvexi XV
72 71 rabex zX|tTNtzKV
73 70 9 72 fvmpt KAK=zX|tTNtzK
74 10 73 syl φAK=zX|tTNtzK
75 74 eleq2d φP+vUR𝑠OLDUxAKP+vUR𝑠OLDUxzX|tTNtzK
76 2fveq3 z=P+vUR𝑠OLDUxNtz=NtP+vUR𝑠OLDUx
77 76 breq1d z=P+vUR𝑠OLDUxNtzKNtP+vUR𝑠OLDUxK
78 77 ralbidv z=P+vUR𝑠OLDUxtTNtzKtTNtP+vUR𝑠OLDUxK
79 78 elrab P+vUR𝑠OLDUxzX|tTNtzKP+vUR𝑠OLDUxXtTNtP+vUR𝑠OLDUxK
80 75 79 bitrdi φP+vUR𝑠OLDUxAKP+vUR𝑠OLDUxXtTNtP+vUR𝑠OLDUxK
81 80 ad2antrr φtTxXP+vUR𝑠OLDUxAKP+vUR𝑠OLDUxXtTNtP+vUR𝑠OLDUxK
82 38 67 81 3imtr3d φtTxXnormCVUx1P+vUR𝑠OLDUxXtTNtP+vUR𝑠OLDUxK
83 rsp tTNtP+vUR𝑠OLDUxKtTNtP+vUR𝑠OLDUxK
84 83 com12 tTtTNtP+vUR𝑠OLDUxKNtP+vUR𝑠OLDUxK
85 84 ad2antlr φtTxXtTNtP+vUR𝑠OLDUxKNtP+vUR𝑠OLDUxK
86 xmet0 D∞MetXPXPDP=0
87 43 11 86 sylancr φPDP=0
88 12 rpge0d φ0R
89 87 88 eqbrtrd φPDPR
90 oveq2 z=PPDz=PDP
91 90 breq1d z=PPDzRPDPR
92 91 elrab PzX|PDzRPXPDPR
93 11 89 92 sylanbrc φPzX|PDzR
94 13 93 sseldd φPAK
95 94 74 eleqtrd φPzX|tTNtzK
96 2fveq3 z=PNtz=NtP
97 96 breq1d z=PNtzKNtPK
98 97 ralbidv z=PtTNtzKtTNtPK
99 98 elrab PzX|tTNtzKPXtTNtPK
100 95 99 sylib φPXtTNtPK
101 100 simprd φtTNtPK
102 101 r19.21bi φtTNtPK
103 102 adantr φtTxXNtPK
104 7 sselda φtTtUBLnOpW
105 eqid IndMetW=IndMetW
106 eqid MetOpenIndMetW=MetOpenIndMetW
107 eqid UBLnOpW=UBLnOpW
108 3 105 4 106 107 26 6 blocn2 tUBLnOpWtJCnMetOpenIndMetW
109 4 mopntopon D∞MetXJTopOnX
110 43 109 ax-mp JTopOnX
111 eqid BaseSetW=BaseSetW
112 111 105 imsxmet WNrmCVecIndMetW∞MetBaseSetW
113 106 mopntopon IndMetW∞MetBaseSetWMetOpenIndMetWTopOnBaseSetW
114 6 112 113 mp2b MetOpenIndMetWTopOnBaseSetW
115 iscncl JTopOnXMetOpenIndMetWTopOnBaseSetWtJCnMetOpenIndMetWt:XBaseSetWxClsdMetOpenIndMetWt-1xClsdJ
116 110 114 115 mp2an tJCnMetOpenIndMetWt:XBaseSetWxClsdMetOpenIndMetWt-1xClsdJ
117 108 116 sylib tUBLnOpWt:XBaseSetWxClsdMetOpenIndMetWt-1xClsdJ
118 104 117 syl φtTt:XBaseSetWxClsdMetOpenIndMetWt-1xClsdJ
119 118 simpld φtTt:XBaseSetW
120 119 adantr φtTxXt:XBaseSetW
121 120 37 ffvelcdmd φtTxXtP+vUR𝑠OLDUxBaseSetW
122 111 2 nvcl WNrmCVectP+vUR𝑠OLDUxBaseSetWNtP+vUR𝑠OLDUx
123 6 121 122 sylancr φtTxXNtP+vUR𝑠OLDUx
124 120 28 ffvelcdmd φtTxXtPBaseSetW
125 111 2 nvcl WNrmCVectPBaseSetWNtP
126 6 124 125 sylancr φtTxXNtP
127 10 nnred φK
128 127 ad2antrr φtTxXK
129 le2add NtP+vUR𝑠OLDUxNtPKKNtP+vUR𝑠OLDUxKNtPKNtP+vUR𝑠OLDUx+NtPK+K
130 123 126 128 128 129 syl22anc φtTxXNtP+vUR𝑠OLDUxKNtPKNtP+vUR𝑠OLDUx+NtPK+K
131 103 130 mpan2d φtTxXNtP+vUR𝑠OLDUxKNtP+vUR𝑠OLDUx+NtPK+K
132 52 fveq2d φtTxXtP+vUR𝑠OLDUx-vUP=tR𝑠OLDUx
133 6 a1i φtTxXWNrmCVec
134 eqid ULnOpW=ULnOpW
135 134 107 bloln UNrmCVecWNrmCVectUBLnOpWtULnOpW
136 26 6 135 mp3an12 tUBLnOpWtULnOpW
137 104 136 syl φtTtULnOpW
138 137 adantr φtTxXtULnOpW
139 eqid -vW=-vW
140 1 47 139 134 lnosub UNrmCVecWNrmCVectULnOpWP+vUR𝑠OLDUxXPXtP+vUR𝑠OLDUx-vUP=tP+vUR𝑠OLDUx-vWtP
141 27 133 138 37 28 140 syl32anc φtTxXtP+vUR𝑠OLDUx-vUP=tP+vUR𝑠OLDUx-vWtP
142 eqid 𝑠OLDW=𝑠OLDW
143 1 32 142 134 lnomul UNrmCVecWNrmCVectULnOpWRxXtR𝑠OLDUx=R𝑠OLDWtx
144 27 133 138 30 31 143 syl32anc φtTxXtR𝑠OLDUx=R𝑠OLDWtx
145 132 141 144 3eqtr3d φtTxXtP+vUR𝑠OLDUx-vWtP=R𝑠OLDWtx
146 145 fveq2d φtTxXNtP+vUR𝑠OLDUx-vWtP=NR𝑠OLDWtx
147 119 ffvelcdmda φtTxXtxBaseSetW
148 111 142 2 nvsge0 WNrmCVecR0RtxBaseSetWNR𝑠OLDWtx=RNtx
149 133 55 147 148 syl3anc φtTxXNR𝑠OLDWtx=RNtx
150 146 149 eqtrd φtTxXNtP+vUR𝑠OLDUx-vWtP=RNtx
151 111 139 2 nvmtri WNrmCVectP+vUR𝑠OLDUxBaseSetWtPBaseSetWNtP+vUR𝑠OLDUx-vWtPNtP+vUR𝑠OLDUx+NtP
152 133 121 124 151 syl3anc φtTxXNtP+vUR𝑠OLDUx-vWtPNtP+vUR𝑠OLDUx+NtP
153 150 152 eqbrtrrd φtTxXRNtxNtP+vUR𝑠OLDUx+NtP
154 29 rpred φtTxXR
155 111 2 nvcl WNrmCVectxBaseSetWNtx
156 6 147 155 sylancr φtTxXNtx
157 154 156 remulcld φtTxXRNtx
158 123 126 readdcld φtTxXNtP+vUR𝑠OLDUx+NtP
159 15 rpred φK+K
160 159 ad2antrr φtTxXK+K
161 letr RNtxNtP+vUR𝑠OLDUx+NtPK+KRNtxNtP+vUR𝑠OLDUx+NtPNtP+vUR𝑠OLDUx+NtPK+KRNtxK+K
162 157 158 160 161 syl3anc φtTxXRNtxNtP+vUR𝑠OLDUx+NtPNtP+vUR𝑠OLDUx+NtPK+KRNtxK+K
163 153 162 mpand φtTxXNtP+vUR𝑠OLDUx+NtPK+KRNtxK+K
164 131 163 syld φtTxXNtP+vUR𝑠OLDUxKRNtxK+K
165 156 160 29 lemuldiv2d φtTxXRNtxK+KNtxK+KR
166 164 165 sylibd φtTxXNtP+vUR𝑠OLDUxKNtxK+KR
167 85 166 syld φtTxXtTNtP+vUR𝑠OLDUxKNtxK+KR
168 167 adantld φtTxXP+vUR𝑠OLDUxXtTNtP+vUR𝑠OLDUxKNtxK+KR
169 82 168 syld φtTxXnormCVUx1NtxK+KR
170 169 ralrimiva φtTxXnormCVUx1NtxK+KR
171 16 rpxrd φK+KR*
172 171 adantr φtTK+KR*
173 eqid UnormOpOLDW=UnormOpOLDW
174 1 111 48 2 173 26 6 nmoubi t:XBaseSetWK+KR*UnormOpOLDWtK+KRxXnormCVUx1NtxK+KR
175 119 172 174 syl2anc φtTUnormOpOLDWtK+KRxXnormCVUx1NtxK+KR
176 170 175 mpbird φtTUnormOpOLDWtK+KR
177 176 ralrimiva φtTUnormOpOLDWtK+KR
178 brralrspcev K+KRtTUnormOpOLDWtK+KRdtTUnormOpOLDWtd
179 17 177 178 syl2anc φdtTUnormOpOLDWtd