Metamath Proof Explorer


Theorem aks4d1p7

Description: Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024)

Ref Expression
Hypotheses aks4d1p7.1 φN3
aks4d1p7.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p7.3 B=log2N5
aks4d1p7.4 R=supr1B|¬rA<
Assertion aks4d1p7 φppR¬pN

Proof

Step Hyp Ref Expression
1 aks4d1p7.1 φN3
2 aks4d1p7.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p7.3 B=log2N5
4 aks4d1p7.4 R=supr1B|¬rA<
5 1 adantr φppRpNN3
6 breq1 p=qpRqR
7 breq1 p=qpNqN
8 6 7 imbi12d p=qpRpNqRqN
9 8 cbvralvw ppRpNqqRqN
10 9 biimpi ppRpNqqRqN
11 10 adantl φppRpNqqRqN
12 5 2 3 4 11 aks4d1p7d1 φppRpNRNlog2B
13 4 a1i φR=supr1B|¬rA<
14 ltso <Or
15 14 a1i φ<Or
16 fzfid φ1BFin
17 ssrab2 r1B|¬rA1B
18 17 a1i φr1B|¬rA1B
19 16 18 ssfid φr1B|¬rAFin
20 1 2 3 aks4d1p3 φr1B¬rA
21 rabn0 r1B|¬rAr1B¬rA
22 20 21 sylibr φr1B|¬rA
23 elfznn o1Bo
24 23 adantl φo1Bo
25 24 nnred φo1Bo
26 25 ex φo1Bo
27 26 ssrdv φ1B
28 18 27 sstrd φr1B|¬rA
29 19 22 28 3jca φr1B|¬rAFinr1B|¬rAr1B|¬rA
30 fiinfcl <Orr1B|¬rAFinr1B|¬rAr1B|¬rAsupr1B|¬rA<r1B|¬rA
31 15 29 30 syl2anc φsupr1B|¬rA<r1B|¬rA
32 13 31 eqeltrd φRr1B|¬rA
33 breq1 r=RrARA
34 33 notbid r=R¬rA¬RA
35 34 elrab Rr1B|¬rAR1B¬RA
36 32 35 sylib φR1B¬RA
37 36 simprd φ¬RA
38 1 2 3 4 aks4d1p4 φR1B¬RA
39 38 simpld φR1B
40 39 elfzelzd φR
41 eluzelz N3N
42 1 41 syl φN
43 2re 2
44 43 a1i φ2
45 2pos 0<2
46 45 a1i φ0<2
47 3 a1i φB=log2N5
48 42 zred φN
49 0red φ0
50 3re 3
51 50 a1i φ3
52 3pos 0<3
53 52 a1i φ0<3
54 eluzle N33N
55 1 54 syl φ3N
56 49 51 48 53 55 ltletrd φ0<N
57 1red φ1
58 1lt2 1<2
59 58 a1i φ1<2
60 57 59 ltned φ12
61 60 necomd φ21
62 44 46 48 56 61 relogbcld φlog2N
63 5nn0 50
64 63 a1i φ50
65 62 64 reexpcld φlog2N5
66 65 ceilcld φlog2N5
67 66 zred φlog2N5
68 47 67 eqeltrd φB
69 9re 9
70 69 a1i φ9
71 9pos 0<9
72 71 a1i φ0<9
73 48 55 3lexlogpow5ineq4 φ9<log2N5
74 65 ceilged φlog2N5log2N5
75 70 65 67 73 74 ltletrd φ9<log2N5
76 75 47 breqtrrd φ9<B
77 49 70 68 72 76 lttrd φ0<B
78 44 46 68 77 61 relogbcld φlog2B
79 78 flcld φlog2B
80 44 recnd φ2
81 49 46 gtned φ20
82 logb1 22021log21=0
83 80 81 61 82 syl3anc φlog21=0
84 83 eqcomd φ0=log21
85 2z 2
86 85 a1i φ2
87 44 leidd φ22
88 0lt1 0<1
89 88 a1i φ0<1
90 1lt9 1<9
91 90 a1i φ1<9
92 57 70 91 ltled φ19
93 70 68 76 ltled φ9B
94 57 70 68 92 93 letrd φ1B
95 86 87 57 89 68 77 94 logblebd φlog21log2B
96 84 95 eqbrtrd φ0log2B
97 0zd φ0
98 flge log2B00log2B0log2B
99 78 97 98 syl2anc φ0log2B0log2B
100 96 99 mpbid φ0log2B
101 79 100 jca φlog2B0log2B
102 elnn0z log2B0log2B0log2B
103 101 102 sylibr φlog2B0
104 42 103 zexpcld φNlog2B
105 fzfid φ1log2N2Fin
106 42 adantr φk1log2N2N
107 elfznn k1log2N2k
108 107 adantl φk1log2N2k
109 108 nnnn0d φk1log2N2k0
110 106 109 zexpcld φk1log2N2Nk
111 1zzd φk1log2N21
112 110 111 zsubcld φk1log2N2Nk1
113 105 112 fprodzcl φk=1log2N2Nk1
114 dvdsmultr1 RNlog2Bk=1log2N2Nk1RNlog2BRNlog2Bk=1log2N2Nk1
115 40 104 113 114 syl3anc φRNlog2BRNlog2Bk=1log2N2Nk1
116 115 imp φRNlog2BRNlog2Bk=1log2N2Nk1
117 2 a1i φA=Nlog2Bk=1log2N2Nk1
118 117 breq2d φRARNlog2Bk=1log2N2Nk1
119 118 adantr φRNlog2BRARNlog2Bk=1log2N2Nk1
120 116 119 mpbird φRNlog2BRA
121 120 ex φRNlog2BRA
122 121 con3d φ¬RA¬RNlog2B
123 37 122 mpd φ¬RNlog2B
124 123 adantr φppRpN¬RNlog2B
125 12 124 pm2.65da φ¬ppRpN
126 ianor ¬pR¬pN¬pR¬¬pN
127 notnotb pN¬¬pN
128 127 orbi2i ¬pRpN¬pR¬¬pN
129 128 bicomi ¬pR¬¬pN¬pRpN
130 126 129 bitri ¬pR¬pN¬pRpN
131 df-or ¬pRpN¬¬pRpN
132 130 131 bitri ¬pR¬pN¬¬pRpN
133 notnotb pR¬¬pR
134 133 imbi1i pRpN¬¬pRpN
135 134 bicomi ¬¬pRpNpRpN
136 132 135 bitri ¬pR¬pNpRpN
137 136 ralbii p¬pR¬pNppRpN
138 137 notbii ¬p¬pR¬pN¬ppRpN
139 125 138 sylibr φ¬p¬pR¬pN
140 ralnex p¬pR¬pN¬ppR¬pN
141 140 con2bii ppR¬pN¬p¬pR¬pN
142 141 bicomi ¬p¬pR¬pNppR¬pN
143 139 142 sylib φppR¬pN