Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Miscellaneous results for AKS formalisation
aks4d1p7
Next ⟩
aks4d1p8d1
Metamath Proof Explorer
Ascii
Unicode
Theorem
aks4d1p7
Description:
Technical step in AKS lemma 4.1
(Contributed by
metakunt
, 31-Oct-2024)
Ref
Expression
Hypotheses
aks4d1p7.1
⊢
φ
→
N
∈
ℤ
≥
3
aks4d1p7.2
⊢
A
=
N
log
2
B
∏
k
=
1
log
2
N
2
N
k
−
1
aks4d1p7.3
⊢
B
=
log
2
N
5
aks4d1p7.4
⊢
R
=
sup
r
∈
1
…
B
|
¬
r
∥
A
ℝ
<
Assertion
aks4d1p7
⊢
φ
→
∃
p
∈
ℙ
p
∥
R
∧
¬
p
∥
N
Proof
Step
Hyp
Ref
Expression
1
aks4d1p7.1
⊢
φ
→
N
∈
ℤ
≥
3
2
aks4d1p7.2
⊢
A
=
N
log
2
B
∏
k
=
1
log
2
N
2
N
k
−
1
3
aks4d1p7.3
⊢
B
=
log
2
N
5
4
aks4d1p7.4
⊢
R
=
sup
r
∈
1
…
B
|
¬
r
∥
A
ℝ
<
5
1
adantr
⊢
φ
∧
∀
p
∈
ℙ
p
∥
R
→
p
∥
N
→
N
∈
ℤ
≥
3
6
breq1
⊢
p
=
q
→
p
∥
R
↔
q
∥
R
7
breq1
⊢
p
=
q
→
p
∥
N
↔
q
∥
N
8
6
7
imbi12d
⊢
p
=
q
→
p
∥
R
→
p
∥
N
↔
q
∥
R
→
q
∥
N
9
8
cbvralvw
⊢
∀
p
∈
ℙ
p
∥
R
→
p
∥
N
↔
∀
q
∈
ℙ
q
∥
R
→
q
∥
N
10
9
biimpi
⊢
∀
p
∈
ℙ
p
∥
R
→
p
∥
N
→
∀
q
∈
ℙ
q
∥
R
→
q
∥
N
11
10
adantl
⊢
φ
∧
∀
p
∈
ℙ
p
∥
R
→
p
∥
N
→
∀
q
∈
ℙ
q
∥
R
→
q
∥
N
12
5
2
3
4
11
aks4d1p7d1
⊢
φ
∧
∀
p
∈
ℙ
p
∥
R
→
p
∥
N
→
R
∥
N
log
2
B
13
4
a1i
⊢
φ
→
R
=
sup
r
∈
1
…
B
|
¬
r
∥
A
ℝ
<
14
ltso
⊢
<
Or
ℝ
15
14
a1i
⊢
φ
→
<
Or
ℝ
16
fzfid
⊢
φ
→
1
…
B
∈
Fin
17
ssrab2
⊢
r
∈
1
…
B
|
¬
r
∥
A
⊆
1
…
B
18
17
a1i
⊢
φ
→
r
∈
1
…
B
|
¬
r
∥
A
⊆
1
…
B
19
16
18
ssfid
⊢
φ
→
r
∈
1
…
B
|
¬
r
∥
A
∈
Fin
20
1
2
3
aks4d1p3
⊢
φ
→
∃
r
∈
1
…
B
¬
r
∥
A
21
rabn0
⊢
r
∈
1
…
B
|
¬
r
∥
A
≠
∅
↔
∃
r
∈
1
…
B
¬
r
∥
A
22
20
21
sylibr
⊢
φ
→
r
∈
1
…
B
|
¬
r
∥
A
≠
∅
23
elfznn
⊢
o
∈
1
…
B
→
o
∈
ℕ
24
23
adantl
⊢
φ
∧
o
∈
1
…
B
→
o
∈
ℕ
25
24
nnred
⊢
φ
∧
o
∈
1
…
B
→
o
∈
ℝ
26
25
ex
⊢
φ
→
o
∈
1
…
B
→
o
∈
ℝ
27
26
ssrdv
⊢
φ
→
1
…
B
⊆
ℝ
28
18
27
sstrd
⊢
φ
→
r
∈
1
…
B
|
¬
r
∥
A
⊆
ℝ
29
19
22
28
3jca
⊢
φ
→
r
∈
1
…
B
|
¬
r
∥
A
∈
Fin
∧
r
∈
1
…
B
|
¬
r
∥
A
≠
∅
∧
r
∈
1
…
B
|
¬
r
∥
A
⊆
ℝ
30
fiinfcl
⊢
<
Or
ℝ
∧
r
∈
1
…
B
|
¬
r
∥
A
∈
Fin
∧
r
∈
1
…
B
|
¬
r
∥
A
≠
∅
∧
r
∈
1
…
B
|
¬
r
∥
A
⊆
ℝ
→
sup
r
∈
1
…
B
|
¬
r
∥
A
ℝ
<
∈
r
∈
1
…
B
|
¬
r
∥
A
31
15
29
30
syl2anc
⊢
φ
→
sup
r
∈
1
…
B
|
¬
r
∥
A
ℝ
<
∈
r
∈
1
…
B
|
¬
r
∥
A
32
13
31
eqeltrd
⊢
φ
→
R
∈
r
∈
1
…
B
|
¬
r
∥
A
33
breq1
⊢
r
=
R
→
r
∥
A
↔
R
∥
A
34
33
notbid
⊢
r
=
R
→
¬
r
∥
A
↔
¬
R
∥
A
35
34
elrab
⊢
R
∈
r
∈
1
…
B
|
¬
r
∥
A
↔
R
∈
1
…
B
∧
¬
R
∥
A
36
32
35
sylib
⊢
φ
→
R
∈
1
…
B
∧
¬
R
∥
A
37
36
simprd
⊢
φ
→
¬
R
∥
A
38
1
2
3
4
aks4d1p4
⊢
φ
→
R
∈
1
…
B
∧
¬
R
∥
A
39
38
simpld
⊢
φ
→
R
∈
1
…
B
40
39
elfzelzd
⊢
φ
→
R
∈
ℤ
41
eluzelz
⊢
N
∈
ℤ
≥
3
→
N
∈
ℤ
42
1
41
syl
⊢
φ
→
N
∈
ℤ
43
2re
⊢
2
∈
ℝ
44
43
a1i
⊢
φ
→
2
∈
ℝ
45
2pos
⊢
0
<
2
46
45
a1i
⊢
φ
→
0
<
2
47
3
a1i
⊢
φ
→
B
=
log
2
N
5
48
42
zred
⊢
φ
→
N
∈
ℝ
49
0red
⊢
φ
→
0
∈
ℝ
50
3re
⊢
3
∈
ℝ
51
50
a1i
⊢
φ
→
3
∈
ℝ
52
3pos
⊢
0
<
3
53
52
a1i
⊢
φ
→
0
<
3
54
eluzle
⊢
N
∈
ℤ
≥
3
→
3
≤
N
55
1
54
syl
⊢
φ
→
3
≤
N
56
49
51
48
53
55
ltletrd
⊢
φ
→
0
<
N
57
1red
⊢
φ
→
1
∈
ℝ
58
1lt2
⊢
1
<
2
59
58
a1i
⊢
φ
→
1
<
2
60
57
59
ltned
⊢
φ
→
1
≠
2
61
60
necomd
⊢
φ
→
2
≠
1
62
44
46
48
56
61
relogbcld
⊢
φ
→
log
2
N
∈
ℝ
63
5nn0
⊢
5
∈
ℕ
0
64
63
a1i
⊢
φ
→
5
∈
ℕ
0
65
62
64
reexpcld
⊢
φ
→
log
2
N
5
∈
ℝ
66
65
ceilcld
⊢
φ
→
log
2
N
5
∈
ℤ
67
66
zred
⊢
φ
→
log
2
N
5
∈
ℝ
68
47
67
eqeltrd
⊢
φ
→
B
∈
ℝ
69
9re
⊢
9
∈
ℝ
70
69
a1i
⊢
φ
→
9
∈
ℝ
71
9pos
⊢
0
<
9
72
71
a1i
⊢
φ
→
0
<
9
73
48
55
3lexlogpow5ineq4
⊢
φ
→
9
<
log
2
N
5
74
65
ceilged
⊢
φ
→
log
2
N
5
≤
log
2
N
5
75
70
65
67
73
74
ltletrd
⊢
φ
→
9
<
log
2
N
5
76
75
47
breqtrrd
⊢
φ
→
9
<
B
77
49
70
68
72
76
lttrd
⊢
φ
→
0
<
B
78
44
46
68
77
61
relogbcld
⊢
φ
→
log
2
B
∈
ℝ
79
78
flcld
⊢
φ
→
log
2
B
∈
ℤ
80
44
recnd
⊢
φ
→
2
∈
ℂ
81
49
46
gtned
⊢
φ
→
2
≠
0
82
logb1
⊢
2
∈
ℂ
∧
2
≠
0
∧
2
≠
1
→
log
2
1
=
0
83
80
81
61
82
syl3anc
⊢
φ
→
log
2
1
=
0
84
83
eqcomd
⊢
φ
→
0
=
log
2
1
85
2z
⊢
2
∈
ℤ
86
85
a1i
⊢
φ
→
2
∈
ℤ
87
44
leidd
⊢
φ
→
2
≤
2
88
0lt1
⊢
0
<
1
89
88
a1i
⊢
φ
→
0
<
1
90
1lt9
⊢
1
<
9
91
90
a1i
⊢
φ
→
1
<
9
92
57
70
91
ltled
⊢
φ
→
1
≤
9
93
70
68
76
ltled
⊢
φ
→
9
≤
B
94
57
70
68
92
93
letrd
⊢
φ
→
1
≤
B
95
86
87
57
89
68
77
94
logblebd
⊢
φ
→
log
2
1
≤
log
2
B
96
84
95
eqbrtrd
⊢
φ
→
0
≤
log
2
B
97
0zd
⊢
φ
→
0
∈
ℤ
98
flge
⊢
log
2
B
∈
ℝ
∧
0
∈
ℤ
→
0
≤
log
2
B
↔
0
≤
log
2
B
99
78
97
98
syl2anc
⊢
φ
→
0
≤
log
2
B
↔
0
≤
log
2
B
100
96
99
mpbid
⊢
φ
→
0
≤
log
2
B
101
79
100
jca
⊢
φ
→
log
2
B
∈
ℤ
∧
0
≤
log
2
B
102
elnn0z
⊢
log
2
B
∈
ℕ
0
↔
log
2
B
∈
ℤ
∧
0
≤
log
2
B
103
101
102
sylibr
⊢
φ
→
log
2
B
∈
ℕ
0
104
42
103
zexpcld
⊢
φ
→
N
log
2
B
∈
ℤ
105
fzfid
⊢
φ
→
1
…
log
2
N
2
∈
Fin
106
42
adantr
⊢
φ
∧
k
∈
1
…
log
2
N
2
→
N
∈
ℤ
107
elfznn
⊢
k
∈
1
…
log
2
N
2
→
k
∈
ℕ
108
107
adantl
⊢
φ
∧
k
∈
1
…
log
2
N
2
→
k
∈
ℕ
109
108
nnnn0d
⊢
φ
∧
k
∈
1
…
log
2
N
2
→
k
∈
ℕ
0
110
106
109
zexpcld
⊢
φ
∧
k
∈
1
…
log
2
N
2
→
N
k
∈
ℤ
111
1zzd
⊢
φ
∧
k
∈
1
…
log
2
N
2
→
1
∈
ℤ
112
110
111
zsubcld
⊢
φ
∧
k
∈
1
…
log
2
N
2
→
N
k
−
1
∈
ℤ
113
105
112
fprodzcl
⊢
φ
→
∏
k
=
1
log
2
N
2
N
k
−
1
∈
ℤ
114
dvdsmultr1
⊢
R
∈
ℤ
∧
N
log
2
B
∈
ℤ
∧
∏
k
=
1
log
2
N
2
N
k
−
1
∈
ℤ
→
R
∥
N
log
2
B
→
R
∥
N
log
2
B
∏
k
=
1
log
2
N
2
N
k
−
1
115
40
104
113
114
syl3anc
⊢
φ
→
R
∥
N
log
2
B
→
R
∥
N
log
2
B
∏
k
=
1
log
2
N
2
N
k
−
1
116
115
imp
⊢
φ
∧
R
∥
N
log
2
B
→
R
∥
N
log
2
B
∏
k
=
1
log
2
N
2
N
k
−
1
117
2
a1i
⊢
φ
→
A
=
N
log
2
B
∏
k
=
1
log
2
N
2
N
k
−
1
118
117
breq2d
⊢
φ
→
R
∥
A
↔
R
∥
N
log
2
B
∏
k
=
1
log
2
N
2
N
k
−
1
119
118
adantr
⊢
φ
∧
R
∥
N
log
2
B
→
R
∥
A
↔
R
∥
N
log
2
B
∏
k
=
1
log
2
N
2
N
k
−
1
120
116
119
mpbird
⊢
φ
∧
R
∥
N
log
2
B
→
R
∥
A
121
120
ex
⊢
φ
→
R
∥
N
log
2
B
→
R
∥
A
122
121
con3d
⊢
φ
→
¬
R
∥
A
→
¬
R
∥
N
log
2
B
123
37
122
mpd
⊢
φ
→
¬
R
∥
N
log
2
B
124
123
adantr
⊢
φ
∧
∀
p
∈
ℙ
p
∥
R
→
p
∥
N
→
¬
R
∥
N
log
2
B
125
12
124
pm2.65da
⊢
φ
→
¬
∀
p
∈
ℙ
p
∥
R
→
p
∥
N
126
ianor
⊢
¬
p
∥
R
∧
¬
p
∥
N
↔
¬
p
∥
R
∨
¬
¬
p
∥
N
127
notnotb
⊢
p
∥
N
↔
¬
¬
p
∥
N
128
127
orbi2i
⊢
¬
p
∥
R
∨
p
∥
N
↔
¬
p
∥
R
∨
¬
¬
p
∥
N
129
128
bicomi
⊢
¬
p
∥
R
∨
¬
¬
p
∥
N
↔
¬
p
∥
R
∨
p
∥
N
130
126
129
bitri
⊢
¬
p
∥
R
∧
¬
p
∥
N
↔
¬
p
∥
R
∨
p
∥
N
131
df-or
⊢
¬
p
∥
R
∨
p
∥
N
↔
¬
¬
p
∥
R
→
p
∥
N
132
130
131
bitri
⊢
¬
p
∥
R
∧
¬
p
∥
N
↔
¬
¬
p
∥
R
→
p
∥
N
133
notnotb
⊢
p
∥
R
↔
¬
¬
p
∥
R
134
133
imbi1i
⊢
p
∥
R
→
p
∥
N
↔
¬
¬
p
∥
R
→
p
∥
N
135
134
bicomi
⊢
¬
¬
p
∥
R
→
p
∥
N
↔
p
∥
R
→
p
∥
N
136
132
135
bitri
⊢
¬
p
∥
R
∧
¬
p
∥
N
↔
p
∥
R
→
p
∥
N
137
136
ralbii
⊢
∀
p
∈
ℙ
¬
p
∥
R
∧
¬
p
∥
N
↔
∀
p
∈
ℙ
p
∥
R
→
p
∥
N
138
137
notbii
⊢
¬
∀
p
∈
ℙ
¬
p
∥
R
∧
¬
p
∥
N
↔
¬
∀
p
∈
ℙ
p
∥
R
→
p
∥
N
139
125
138
sylibr
⊢
φ
→
¬
∀
p
∈
ℙ
¬
p
∥
R
∧
¬
p
∥
N
140
ralnex
⊢
∀
p
∈
ℙ
¬
p
∥
R
∧
¬
p
∥
N
↔
¬
∃
p
∈
ℙ
p
∥
R
∧
¬
p
∥
N
141
140
con2bii
⊢
∃
p
∈
ℙ
p
∥
R
∧
¬
p
∥
N
↔
¬
∀
p
∈
ℙ
¬
p
∥
R
∧
¬
p
∥
N
142
141
bicomi
⊢
¬
∀
p
∈
ℙ
¬
p
∥
R
∧
¬
p
∥
N
↔
∃
p
∈
ℙ
p
∥
R
∧
¬
p
∥
N
143
139
142
sylib
⊢
φ
→
∃
p
∈
ℙ
p
∥
R
∧
¬
p
∥
N