Metamath Proof Explorer


Theorem atantan

Description: The arctangent function is an inverse to tan . (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion atantan AAπ2π2arctantanA=A

Proof

Step Hyp Ref Expression
1 cosne0 AAπ2π2cosA0
2 atandmtan AcosA0tanAdomarctan
3 1 2 syldan AAπ2π2tanAdomarctan
4 atanval tanAdomarctanarctantanA=i2log1itanAlog1+itanA
5 3 4 syl AAπ2π2arctantanA=i2log1itanAlog1+itanA
6 ax-1cn 1
7 ax-icn i
8 tancl AcosA0tanA
9 1 8 syldan AAπ2π2tanA
10 mulcl itanAitanA
11 7 9 10 sylancr AAπ2π2itanA
12 addcl 1itanA1+itanA
13 6 11 12 sylancr AAπ2π21+itanA
14 atandm2 tanAdomarctantanA1itanA01+itanA0
15 3 14 sylib AAπ2π2tanA1itanA01+itanA0
16 15 simp3d AAπ2π21+itanA0
17 13 16 logcld AAπ2π2log1+itanA
18 subcl 1itanA1itanA
19 6 11 18 sylancr AAπ2π21itanA
20 15 simp2d AAπ2π21itanA0
21 19 20 logcld AAπ2π2log1itanA
22 17 21 negsubdi2d AAπ2π2log1+itanAlog1itanA=log1itanAlog1+itanA
23 efsub log1+itanAlog1itanAelog1+itanAlog1itanA=elog1+itanAelog1itanA
24 17 21 23 syl2anc AAπ2π2elog1+itanAlog1itanA=elog1+itanAelog1itanA
25 coscl AcosA
26 25 adantr AAπ2π2cosA
27 sincl AsinA
28 27 adantr AAπ2π2sinA
29 mulcl isinAisinA
30 7 28 29 sylancr AAπ2π2isinA
31 26 30 26 1 divdird AAπ2π2cosA+isinAcosA=cosAcosA+isinAcosA
32 26 1 dividd AAπ2π2cosAcosA=1
33 7 a1i AAπ2π2i
34 33 28 26 1 divassd AAπ2π2isinAcosA=isinAcosA
35 tanval AcosA0tanA=sinAcosA
36 1 35 syldan AAπ2π2tanA=sinAcosA
37 36 oveq2d AAπ2π2itanA=isinAcosA
38 34 37 eqtr4d AAπ2π2isinAcosA=itanA
39 32 38 oveq12d AAπ2π2cosAcosA+isinAcosA=1+itanA
40 31 39 eqtrd AAπ2π2cosA+isinAcosA=1+itanA
41 efival AeiA=cosA+isinA
42 41 adantr AAπ2π2eiA=cosA+isinA
43 42 oveq1d AAπ2π2eiAcosA=cosA+isinAcosA
44 eflog 1+itanA1+itanA0elog1+itanA=1+itanA
45 13 16 44 syl2anc AAπ2π2elog1+itanA=1+itanA
46 40 43 45 3eqtr4d AAπ2π2eiAcosA=elog1+itanA
47 26 30 26 1 divsubdird AAπ2π2cosAisinAcosA=cosAcosAisinAcosA
48 32 38 oveq12d AAπ2π2cosAcosAisinAcosA=1itanA
49 47 48 eqtrd AAπ2π2cosAisinAcosA=1itanA
50 negcl AA
51 50 adantr AAπ2π2A
52 efival AeiA=cosA+isinA
53 51 52 syl AAπ2π2eiA=cosA+isinA
54 cosneg AcosA=cosA
55 54 adantr AAπ2π2cosA=cosA
56 sinneg AsinA=sinA
57 56 adantr AAπ2π2sinA=sinA
58 57 oveq2d AAπ2π2isinA=isinA
59 mulneg2 isinAisinA=isinA
60 7 28 59 sylancr AAπ2π2isinA=isinA
61 58 60 eqtrd AAπ2π2isinA=isinA
62 55 61 oveq12d AAπ2π2cosA+isinA=cosA+isinA
63 53 62 eqtrd AAπ2π2eiA=cosA+isinA
64 simpl AAπ2π2A
65 mulneg2 iAiA=iA
66 7 64 65 sylancr AAπ2π2iA=iA
67 66 fveq2d AAπ2π2eiA=eiA
68 26 30 negsubd AAπ2π2cosA+isinA=cosAisinA
69 63 67 68 3eqtr3d AAπ2π2eiA=cosAisinA
70 69 oveq1d AAπ2π2eiAcosA=cosAisinAcosA
71 eflog 1itanA1itanA0elog1itanA=1itanA
72 19 20 71 syl2anc AAπ2π2elog1itanA=1itanA
73 49 70 72 3eqtr4d AAπ2π2eiAcosA=elog1itanA
74 46 73 oveq12d AAπ2π2eiAcosAeiAcosA=elog1+itanAelog1itanA
75 mulcl iAiA
76 7 64 75 sylancr AAπ2π2iA
77 efcl iAeiA
78 76 77 syl AAπ2π2eiA
79 76 negcld AAπ2π2iA
80 efcl iAeiA
81 79 80 syl AAπ2π2eiA
82 efne0 iAeiA0
83 79 82 syl AAπ2π2eiA0
84 78 81 26 83 1 divcan7d AAπ2π2eiAcosAeiAcosA=eiAeiA
85 efsub iAiAeiAiA=eiAeiA
86 76 79 85 syl2anc AAπ2π2eiAiA=eiAeiA
87 76 76 subnegd AAπ2π2iAiA=iA+iA
88 76 2timesd AAπ2π22iA=iA+iA
89 87 88 eqtr4d AAπ2π2iAiA=2iA
90 89 fveq2d AAπ2π2eiAiA=e2iA
91 84 86 90 3eqtr2d AAπ2π2eiAcosAeiAcosA=e2iA
92 24 74 91 3eqtr2d AAπ2π2elog1+itanAlog1itanA=e2iA
93 92 fveq2d AAπ2π2logelog1+itanAlog1itanA=loge2iA
94 64 adantr AAπ2π2A<0A
95 94 renegd AAπ2π2A<0A=A
96 94 recld AAπ2π2A<0A
97 96 renegcld AAπ2π2A<0A
98 simpr AAπ2π2A<0A<0
99 96 lt0neg1d AAπ2π2A<0A<00<A
100 98 99 mpbid AAπ2π2A<00<A
101 eliooord Aπ2π2π2<AA<π2
102 101 adantl AAπ2π2π2<AA<π2
103 102 simpld AAπ2π2π2<A
104 103 adantr AAπ2π2A<0π2<A
105 halfpire π2
106 ltnegcon1 π2Aπ2<AA<π2
107 105 96 106 sylancr AAπ2π2A<0π2<AA<π2
108 104 107 mpbid AAπ2π2A<0A<π2
109 0xr 0*
110 105 rexri π2*
111 elioo2 0*π2*A0π2A0<AA<π2
112 109 110 111 mp2an A0π2A0<AA<π2
113 97 100 108 112 syl3anbrc AAπ2π2A<0A0π2
114 95 113 eqeltrd AAπ2π2A<0A0π2
115 tanregt0 AA0π20<tanA
116 51 114 115 syl2an2r AAπ2π2A<00<tanA
117 tanneg AcosA0tanA=tanA
118 1 117 syldan AAπ2π2tanA=tanA
119 118 adantr AAπ2π2A<0tanA=tanA
120 119 fveq2d AAπ2π2A<0tanA=tanA
121 9 adantr AAπ2π2A<0tanA
122 121 renegd AAπ2π2A<0tanA=tanA
123 120 122 eqtrd AAπ2π2A<0tanA=tanA
124 116 123 breqtrd AAπ2π2A<00<tanA
125 9 recld AAπ2π2tanA
126 125 adantr AAπ2π2A<0tanA
127 126 lt0neg1d AAπ2π2A<0tanA<00<tanA
128 124 127 mpbird AAπ2π2A<0tanA<0
129 128 lt0ne0d AAπ2π2A<0tanA0
130 atanlogsub tanAdomarctantanA0log1+itanAlog1itanAranlog
131 3 129 130 syl2an2r AAπ2π2A<0log1+itanAlog1itanAranlog
132 1re 1
133 ioossre 11
134 7 a1i AAπ2π2A=0i
135 11 adantr AAπ2π2A=0itanA
136 ine0 i0
137 136 a1i AAπ2π2A=0i0
138 ixi ii=1
139 138 oveq1i iitanA=-1tanA
140 9 adantr AAπ2π2A=0tanA
141 140 mulm1d AAπ2π2A=0-1tanA=tanA
142 118 adantr AAπ2π2A=0tanA=tanA
143 141 142 eqtr4d AAπ2π2A=0-1tanA=tanA
144 139 143 eqtrid AAπ2π2A=0iitanA=tanA
145 134 134 140 mulassd AAπ2π2A=0iitanA=iitanA
146 138 oveq1i iiA=-1A
147 64 adantr AAπ2π2A=0A
148 147 mulm1d AAπ2π2A=0-1A=A
149 146 148 eqtrid AAπ2π2A=0iiA=A
150 134 134 147 mulassd AAπ2π2A=0iiA=iiA
151 149 150 eqtr3d AAπ2π2A=0A=iiA
152 151 fveq2d AAπ2π2A=0tanA=taniiA
153 144 145 152 3eqtr3d AAπ2π2A=0iitanA=taniiA
154 134 135 137 153 mvllmuld AAπ2π2A=0itanA=taniiAi
155 76 adantr AAπ2π2A=0iA
156 reim AA=iA
157 156 adantr AAπ2π2A=iA
158 157 eqeq1d AAπ2π2A=0iA=0
159 158 biimpa AAπ2π2A=0iA=0
160 155 159 reim0bd AAπ2π2A=0iA
161 tanhbnd iAtaniiAi11
162 160 161 syl AAπ2π2A=0taniiAi11
163 154 162 eqeltrd AAπ2π2A=0itanA11
164 133 163 sselid AAπ2π2A=0itanA
165 readdcl 1itanA1+itanA
166 132 164 165 sylancr AAπ2π2A=01+itanA
167 df-neg 1=01
168 eliooord itanA111<itanAitanA<1
169 163 168 syl AAπ2π2A=01<itanAitanA<1
170 169 simpld AAπ2π2A=01<itanA
171 167 170 eqbrtrrid AAπ2π2A=001<itanA
172 0red AAπ2π2A=00
173 132 a1i AAπ2π2A=01
174 172 173 164 ltsubadd2d AAπ2π2A=001<itanA0<1+itanA
175 171 174 mpbid AAπ2π2A=00<1+itanA
176 166 175 elrpd AAπ2π2A=01+itanA+
177 176 relogcld AAπ2π2A=0log1+itanA
178 169 simprd AAπ2π2A=0itanA<1
179 difrp itanA1itanA<11itanA+
180 164 132 179 sylancl AAπ2π2A=0itanA<11itanA+
181 178 180 mpbid AAπ2π2A=01itanA+
182 181 relogcld AAπ2π2A=0log1itanA
183 177 182 resubcld AAπ2π2A=0log1+itanAlog1itanA
184 relogrn log1+itanAlog1itanAlog1+itanAlog1itanAranlog
185 183 184 syl AAπ2π2A=0log1+itanAlog1itanAranlog
186 64 adantr AAπ2π20<AA
187 186 recld AAπ2π20<AA
188 simpr AAπ2π20<A0<A
189 102 simprd AAπ2π2A<π2
190 189 adantr AAπ2π20<AA<π2
191 elioo2 0*π2*A0π2A0<AA<π2
192 109 110 191 mp2an A0π2A0<AA<π2
193 187 188 190 192 syl3anbrc AAπ2π20<AA0π2
194 tanregt0 AA0π20<tanA
195 64 193 194 syl2an2r AAπ2π20<A0<tanA
196 195 gt0ne0d AAπ2π20<AtanA0
197 3 196 130 syl2an2r AAπ2π20<Alog1+itanAlog1itanAranlog
198 recl AA
199 198 adantr AAπ2π2A
200 0re 0
201 lttri4 A0A<0A=00<A
202 199 200 201 sylancl AAπ2π2A<0A=00<A
203 131 185 197 202 mpjao3dan AAπ2π2log1+itanAlog1itanAranlog
204 logef log1+itanAlog1itanAranloglogelog1+itanAlog1itanA=log1+itanAlog1itanA
205 203 204 syl AAπ2π2logelog1+itanAlog1itanA=log1+itanAlog1itanA
206 2cn 2
207 mulcl 2iA2iA
208 206 76 207 sylancr AAπ2π22iA
209 picn π
210 2ne0 20
211 divneg π220π2=π2
212 209 206 210 211 mp3an π2=π2
213 212 103 eqbrtrrid AAπ2π2π2<A
214 pire π
215 214 renegcli π
216 215 a1i AAπ2π2π
217 2re 2
218 217 a1i AAπ2π22
219 2pos 0<2
220 219 a1i AAπ2π20<2
221 ltdivmul πA20<2π2<Aπ<2A
222 216 199 218 220 221 syl112anc AAπ2π2π2<Aπ<2A
223 213 222 mpbid AAπ2π2π<2A
224 immul2 2iA2iA=2iA
225 217 76 224 sylancr AAπ2π22iA=2iA
226 157 oveq2d AAπ2π22A=2iA
227 225 226 eqtr4d AAπ2π22iA=2A
228 223 227 breqtrrd AAπ2π2π<2iA
229 remulcl 2A2A
230 217 199 229 sylancr AAπ2π22A
231 214 a1i AAπ2π2π
232 ltmuldiv2 Aπ20<22A<πA<π2
233 199 231 218 220 232 syl112anc AAπ2π22A<πA<π2
234 189 233 mpbird AAπ2π22A<π
235 230 231 234 ltled AAπ2π22Aπ
236 227 235 eqbrtrd AAπ2π22iAπ
237 ellogrn 2iAranlog2iAπ<2iA2iAπ
238 208 228 236 237 syl3anbrc AAπ2π22iAranlog
239 logef 2iAranlogloge2iA=2iA
240 238 239 syl AAπ2π2loge2iA=2iA
241 93 205 240 3eqtr3d AAπ2π2log1+itanAlog1itanA=2iA
242 241 negeqd AAπ2π2log1+itanAlog1itanA=2iA
243 22 242 eqtr3d AAπ2π2log1itanAlog1+itanA=2iA
244 243 oveq2d AAπ2π2i2log1itanAlog1+itanA=i22iA
245 halfcl ii2
246 7 245 mp1i AAπ2π2i2
247 206 a1i AAπ2π22
248 246 247 79 mulassd AAπ2π2i22iA=i22iA
249 7 206 210 divcan1i i22=i
250 249 oveq1i i22iA=iiA
251 33 33 51 mulassd AAπ2π2iiA=iiA
252 138 oveq1i iiA=-1A
253 mul2neg 1A-1A=1A
254 6 64 253 sylancr AAπ2π2-1A=1A
255 mullid A1A=A
256 255 adantr AAπ2π21A=A
257 254 256 eqtrd AAπ2π2-1A=A
258 252 257 eqtrid AAπ2π2iiA=A
259 66 oveq2d AAπ2π2iiA=iiA
260 251 258 259 3eqtr3rd AAπ2π2iiA=A
261 250 260 eqtrid AAπ2π2i22iA=A
262 mulneg2 2iA2iA=2iA
263 206 76 262 sylancr AAπ2π22iA=2iA
264 263 oveq2d AAπ2π2i22iA=i22iA
265 248 261 264 3eqtr3rd AAπ2π2i22iA=A
266 5 244 265 3eqtrd AAπ2π2arctantanA=A