Metamath Proof Explorer


Theorem basellem8

Description: Lemma for basel . The function F of partial sums of the inverse squares is bounded below by J and above by K , obtained by summing the inequality cot ^ 2 x <_ 1 / x ^ 2 <_ csc ^ 2 x = cot ^ 2 x + 1 over the M roots of the polynomial P , and applying the identity basellem5 . (Contributed by Mario Carneiro, 29-Jul-2014)

Ref Expression
Hypotheses basel.g G=n12n+1
basel.f F=seq1+nn2
basel.h H=×π26×f×1fG
basel.j J=H×f×1+f×2×fG
basel.k K=H×f×1+fG
basellem8.n N=2 M+1
Assertion basellem8 MJMFMFMKM

Proof

Step Hyp Ref Expression
1 basel.g G=n12n+1
2 basel.f F=seq1+nn2
3 basel.h H=×π26×f×1fG
4 basel.j J=H×f×1+f×2×fG
5 basel.k K=H×f×1+fG
6 basellem8.n N=2 M+1
7 fzfid M1MFin
8 pire π
9 2nn 2
10 nnmulcl 2M2 M
11 9 10 mpan M2 M
12 11 peano2nnd M2 M+1
13 6 12 eqeltrid MN
14 nndivre πNπN
15 8 13 14 sylancr MπN
16 15 resqcld MπN2
17 16 adantr Mk1MπN2
18 6 basellem1 Mk1MkπN0π2
19 tanrpcl kπN0π2tankπN+
20 18 19 syl Mk1MtankπN+
21 20 rpred Mk1MtankπN
22 20 rpne0d Mk1MtankπN0
23 2z 2
24 znegcl 22
25 23 24 ax-mp 2
26 25 a1i Mk1M2
27 21 22 26 reexpclzd Mk1MtankπN2
28 17 27 remulcld Mk1MπN2tankπN2
29 elfznn k1Mk
30 29 adantl Mk1Mk
31 30 nnred Mk1Mk
32 30 nnne0d Mk1Mk0
33 31 32 26 reexpclzd Mk1Mk2
34 21 recnd Mk1MtankπN
35 2nn0 20
36 expneg tankπN20tankπN2=1tankπN2
37 34 35 36 sylancl Mk1MtankπN2=1tankπN2
38 37 oveq2d Mk1MπN2tankπN2=πN21tankπN2
39 15 recnd MπN
40 39 sqcld MπN2
41 40 adantr Mk1MπN2
42 rpexpcl tankπN+2tankπN2+
43 20 23 42 sylancl Mk1MtankπN2+
44 43 rpred Mk1MtankπN2
45 44 recnd Mk1MtankπN2
46 43 rpne0d Mk1MtankπN20
47 41 45 46 divrecd Mk1MπN2tankπN2=πN21tankπN2
48 38 47 eqtr4d Mk1MπN2tankπN2=πN2tankπN2
49 30 nnrpd Mk1Mk+
50 rpexpcl k+2k2+
51 49 25 50 sylancl Mk1Mk2+
52 30 nncnd Mk1Mk
53 52 32 26 expnegd Mk1Mk-2=1k2
54 2cn 2
55 54 negnegi -2=2
56 55 oveq2i k-2=k2
57 53 56 eqtr3di Mk1M1k2=k2
58 57 oveq1d Mk1M1k2πN2=k2πN2
59 nncn kk
60 nnne0 kk0
61 25 a1i k2
62 59 60 61 expclzd kk2
63 30 62 syl Mk1Mk2
64 52 32 26 expne0d Mk1Mk20
65 41 63 64 divrec2d Mk1MπN2k2=1k2πN2
66 8 recni π
67 66 a1i Mk1Mπ
68 13 nncnd MN
69 13 nnne0d MN0
70 68 69 jca MNN0
71 70 adantr Mk1MNN0
72 divass kπNN0kπN=kπN
73 52 67 71 72 syl3anc Mk1MkπN=kπN
74 73 oveq1d Mk1MkπN2=kπN2
75 39 adantr Mk1MπN
76 52 75 sqmuld Mk1MkπN2=k2πN2
77 74 76 eqtrd Mk1MkπN2=k2πN2
78 58 65 77 3eqtr4d Mk1MπN2k2=kπN2
79 elioore kπN0π2kπN
80 18 79 syl Mk1MkπN
81 80 resqcld Mk1MkπN2
82 tangtx kπN0π2kπN<tankπN
83 18 82 syl Mk1MkπN<tankπN
84 eliooord kπN0π20<kπNkπN<π2
85 18 84 syl Mk1M0<kπNkπN<π2
86 85 simpld Mk1M0<kπN
87 80 86 elrpd Mk1MkπN+
88 87 rpge0d Mk1M0kπN
89 20 rpge0d Mk1M0tankπN
90 80 21 88 89 lt2sqd Mk1MkπN<tankπNkπN2<tankπN2
91 83 90 mpbid Mk1MkπN2<tankπN2
92 81 44 91 ltled Mk1MkπN2tankπN2
93 78 92 eqbrtrd Mk1MπN2k2tankπN2
94 17 51 43 93 lediv23d Mk1MπN2tankπN2k2
95 48 94 eqbrtrd Mk1MπN2tankπN2k2
96 7 28 33 95 fsumle Mk=1MπN2tankπN2k=1Mk2
97 oveq2 n=M2n=2 M
98 97 oveq1d n=M2n+1=2 M+1
99 98 6 eqtr4di n=M2n+1=N
100 99 oveq2d n=M12n+1=1N
101 100 oveq2d n=M112n+1=11N
102 101 oveq2d n=Mπ26112n+1=π2611N
103 100 oveq2d n=M-212n+1=-21N
104 103 oveq2d n=M1+-212n+1=1+-21N
105 102 104 oveq12d n=Mπ26112n+11+-212n+1=π2611N1+-21N
106 nnex V
107 106 a1i V
108 ovexd nπ26112n+1V
109 ovexd n1+-212n+1V
110 8 resqcli π2
111 6re 6
112 6nn 6
113 112 nnne0i 60
114 110 111 113 redivcli π26
115 114 a1i nπ26
116 ovexd n112n+1V
117 fconstmpt ×π26=nπ26
118 117 a1i ×π26=nπ26
119 1zzd n1
120 ovexd n12n+1V
121 fconstmpt ×1=n1
122 121 a1i ×1=n1
123 1 a1i G=n12n+1
124 107 119 120 122 123 offval2 ×1fG=n112n+1
125 107 115 116 118 124 offval2 ×π26×f×1fG=nπ26112n+1
126 3 125 eqtrid H=nπ26112n+1
127 ovexd n-212n+1V
128 54 negcli 2
129 128 a1i n2
130 fconstmpt ×2=n2
131 130 a1i ×2=n2
132 107 129 120 131 123 offval2 ×2×fG=n-212n+1
133 107 119 127 122 132 offval2 ×1+f×2×fG=n1+-212n+1
134 107 108 109 126 133 offval2 H×f×1+f×2×fG=nπ26112n+11+-212n+1
135 134 mptru H×f×1+f×2×fG=nπ26112n+11+-212n+1
136 4 135 eqtri J=nπ26112n+11+-212n+1
137 ovex π2611N1+-21NV
138 105 136 137 fvmpt MJM=π2611N1+-21N
139 114 recni π26
140 139 a1i Mπ26
141 11 nncnd M2 M
142 141 68 69 divcld M2 MN
143 ax-1cn 1
144 subcl 2 M12 M1
145 141 143 144 sylancl M2 M1
146 145 68 69 divcld M2 M1N
147 140 142 146 mulassd Mπ262 MN2 M1N=π262 MN2 M1N
148 1cnd M1
149 68 148 68 69 divsubdird MN1N=NN1N
150 6 oveq1i N1=2 M+1-1
151 pncan 2 M12 M+1-1=2 M
152 141 143 151 sylancl M2 M+1-1=2 M
153 150 152 eqtrid MN1=2 M
154 153 oveq1d MN1N=2 MN
155 68 69 dividd MNN=1
156 155 oveq1d MNN1N=11N
157 149 154 156 3eqtr3rd M11N=2 MN
158 157 oveq2d Mπ2611N=π262 MN
159 128 a1i M2
160 68 159 68 69 divdird MN+-2N=NN+2N
161 negsub N2N+-2=N2
162 68 54 161 sylancl MN+-2=N2
163 df-2 2=1+1
164 6 163 oveq12i N2=2 M+1-1+1
165 141 148 148 pnpcan2d M2 M+1-1+1=2 M1
166 164 165 eqtrid MN2=2 M1
167 162 166 eqtrd MN+-2=2 M1
168 167 oveq1d MN+-2N=2 M1N
169 159 68 69 divrecd M2N=-21N
170 155 169 oveq12d MNN+2N=1+-21N
171 160 168 170 3eqtr3rd M1+-21N=2 M1N
172 158 171 oveq12d Mπ2611N1+-21N=π262 MN2 M1N
173 13 nnsqcld MN2
174 173 nncnd MN2
175 6cn 6
176 mulcom N26N26=6N2
177 174 175 176 sylancl MN26=6N2
178 177 oveq2d Mπ22 M2 M1N26=π22 M2 M16N2
179 110 recni π2
180 179 a1i Mπ2
181 141 145 mulcld M2 M2 M1
182 173 nnne0d MN20
183 174 182 jca MN2N20
184 175 113 pm3.2i 660
185 184 a1i M660
186 divmuldiv π22 M2 M1N2N20660π2N22 M2 M16=π22 M2 M1N26
187 180 181 183 185 186 syl22anc Mπ2N22 M2 M16=π22 M2 M1N26
188 divmuldiv π22 M2 M1660N2N20π262 M2 M1N2=π22 M2 M16N2
189 180 181 185 183 188 syl22anc Mπ262 M2 M1N2=π22 M2 M16N2
190 178 187 189 3eqtr4d Mπ2N22 M2 M16=π262 M2 M1N2
191 66 a1i Mπ
192 191 68 69 sqdivd MπN2=π2N2
193 192 oveq1d MπN22 M2 M16=π2N22 M2 M16
194 141 68 145 68 69 69 divmuldivd M2 MN2 M1N=2 M2 M1 N N
195 68 sqvald MN2= N N
196 195 oveq2d M2 M2 M1N2=2 M2 M1 N N
197 194 196 eqtr4d M2 MN2 M1N=2 M2 M1N2
198 197 oveq2d Mπ262 MN2 M1N=π262 M2 M1N2
199 190 193 198 3eqtr4d MπN22 M2 M16=π262 MN2 M1N
200 147 172 199 3eqtr4d Mπ2611N1+-21N=πN22 M2 M16
201 eqid xj=0M(N2j)1Mjxj=xj=0M(N2j)1Mjxj
202 eqid n1MtannπN2=n1MtannπN2
203 6 201 202 basellem5 Mk=1MtankπN2=2 M2 M16
204 203 oveq2d MπN2k=1MtankπN2=πN22 M2 M16
205 200 204 eqtr4d Mπ2611N1+-21N=πN2k=1MtankπN2
206 27 recnd Mk1MtankπN2
207 7 40 206 fsummulc2 MπN2k=1MtankπN2=k=1MπN2tankπN2
208 138 205 207 3eqtrd MJM=k=1MπN2tankπN2
209 2 fveq1i FM=seq1+nn2M
210 oveq1 n=kn2=k2
211 eqid nn2=nn2
212 ovex k2V
213 210 211 212 fvmpt knn2k=k2
214 30 213 syl Mk1Mnn2k=k2
215 id MM
216 nnuz =1
217 215 216 eleqtrdi MM1
218 214 217 63 fsumser Mk=1Mk2=seq1+nn2M
219 209 218 eqtr4id MFM=k=1Mk2
220 96 208 219 3brtr4d MJMFM
221 80 resincld Mk1MsinkπN
222 sincosq1sgn kπN0π20<sinkπN0<coskπN
223 18 222 syl Mk1M0<sinkπN0<coskπN
224 223 simpld Mk1M0<sinkπN
225 224 gt0ne0d Mk1MsinkπN0
226 221 225 26 reexpclzd Mk1MsinkπN2
227 17 226 remulcld Mk1MπN2sinkπN2
228 sinltx kπN+sinkπN<kπN
229 87 228 syl Mk1MsinkπN<kπN
230 221 80 229 ltled Mk1MsinkπNkπN
231 0re 0
232 ltle 0sinkπN0<sinkπN0sinkπN
233 231 221 232 sylancr Mk1M0<sinkπN0sinkπN
234 224 233 mpd Mk1M0sinkπN
235 221 80 234 88 le2sqd Mk1MsinkπNkπNsinkπN2kπN2
236 230 235 mpbid Mk1MsinkπN2kπN2
237 236 78 breqtrrd Mk1MsinkπN2πN2k2
238 221 resqcld Mk1MsinkπN2
239 238 17 51 lemuldiv2d Mk1Mk2sinkπN2πN2sinkπN2πN2k2
240 221 224 elrpd Mk1MsinkπN+
241 rpexpcl sinkπN+2sinkπN2+
242 240 23 241 sylancl Mk1MsinkπN2+
243 33 17 242 lemuldivd Mk1Mk2sinkπN2πN2k2πN2sinkπN2
244 239 243 bitr3d Mk1MsinkπN2πN2k2k2πN2sinkπN2
245 237 244 mpbid Mk1Mk2πN2sinkπN2
246 221 recnd Mk1MsinkπN
247 expneg sinkπN20sinkπN2=1sinkπN2
248 246 35 247 sylancl Mk1MsinkπN2=1sinkπN2
249 248 oveq2d Mk1MπN2sinkπN2=πN21sinkπN2
250 238 recnd Mk1MsinkπN2
251 242 rpne0d Mk1MsinkπN20
252 41 250 251 divrecd Mk1MπN2sinkπN2=πN21sinkπN2
253 249 252 eqtr4d Mk1MπN2sinkπN2=πN2sinkπN2
254 245 253 breqtrrd Mk1Mk2πN2sinkπN2
255 7 33 227 254 fsumle Mk=1Mk2k=1MπN2sinkπN2
256 100 oveq2d n=M1+12n+1=1+1N
257 102 256 oveq12d n=Mπ26112n+11+12n+1=π2611N1+1N
258 ovexd n1+12n+1V
259 107 119 120 122 123 offval2 ×1+fG=n1+12n+1
260 107 108 258 126 259 offval2 H×f×1+fG=nπ26112n+11+12n+1
261 260 mptru H×f×1+fG=nπ26112n+11+12n+1
262 5 261 eqtri K=nπ26112n+11+12n+1
263 ovex π2611N1+1NV
264 257 262 263 fvmpt MKM=π2611N1+1N
265 peano2cn NN+1
266 68 265 syl MN+1
267 266 68 69 divcld MN+1N
268 140 142 267 mulassd Mπ262 MNN+1N=π262 MNN+1N
269 68 148 68 69 divdird MN+1N=NN+1N
270 155 oveq1d MNN+1N=1+1N
271 269 270 eqtr2d M1+1N=N+1N
272 158 271 oveq12d Mπ2611N1+1N=π262 MNN+1N
273 177 oveq2d Mπ22 MN+1N26=π22 MN+16N2
274 141 266 mulcld M2 MN+1
275 divmuldiv π22 MN+1N2N20660π2N22 MN+16=π22 MN+1N26
276 180 274 183 185 275 syl22anc Mπ2N22 MN+16=π22 MN+1N26
277 divmuldiv π22 MN+1660N2N20π262 MN+1N2=π22 MN+16N2
278 180 274 185 183 277 syl22anc Mπ262 MN+1N2=π22 MN+16N2
279 273 276 278 3eqtr4d Mπ2N22 MN+16=π262 MN+1N2
280 80 recoscld Mk1McoskπN
281 280 recnd Mk1McoskπN
282 281 sqcld Mk1McoskπN2
283 250 282 250 251 divdird Mk1MsinkπN2+coskπN2sinkπN2=sinkπN2sinkπN2+coskπN2sinkπN2
284 80 recnd Mk1MkπN
285 sincossq kπNsinkπN2+coskπN2=1
286 284 285 syl Mk1MsinkπN2+coskπN2=1
287 286 oveq1d Mk1MsinkπN2+coskπN2sinkπN2=1sinkπN2
288 250 251 dividd Mk1MsinkπN2sinkπN2=1
289 223 simprd Mk1M0<coskπN
290 289 gt0ne0d Mk1McoskπN0
291 tanval kπNcoskπN0tankπN=sinkπNcoskπN
292 284 290 291 syl2anc Mk1MtankπN=sinkπNcoskπN
293 292 oveq1d Mk1MtankπN2=sinkπNcoskπN2
294 246 281 290 sqdivd Mk1MsinkπNcoskπN2=sinkπN2coskπN2
295 293 294 eqtrd Mk1MtankπN2=sinkπN2coskπN2
296 295 oveq2d Mk1M1tankπN2=1sinkπN2coskπN2
297 sqne0 coskπNcoskπN20coskπN0
298 281 297 syl Mk1McoskπN20coskπN0
299 290 298 mpbird Mk1McoskπN20
300 250 282 251 299 recdivd Mk1M1sinkπN2coskπN2=coskπN2sinkπN2
301 37 296 300 3eqtrrd Mk1McoskπN2sinkπN2=tankπN2
302 288 301 oveq12d Mk1MsinkπN2sinkπN2+coskπN2sinkπN2=1+tankπN2
303 283 287 302 3eqtr3d Mk1M1sinkπN2=1+tankπN2
304 addcom 1tankπN21+tankπN2=tankπN2+1
305 143 206 304 sylancr Mk1M1+tankπN2=tankπN2+1
306 248 303 305 3eqtrd Mk1MsinkπN2=tankπN2+1
307 306 sumeq2dv Mk=1MsinkπN2=k=1MtankπN2+1
308 1cnd Mk1M1
309 7 206 308 fsumadd Mk=1MtankπN2+1=k=1MtankπN2+k=1M1
310 fsumconst 1MFin1k=1M1=1M1
311 7 143 310 sylancl Mk=1M1=1M1
312 nnnn0 MM0
313 hashfz1 M01M=M
314 312 313 syl M1M=M
315 314 oveq1d M1M1= M1
316 nncn MM
317 316 mulridd M M1=M
318 311 315 317 3eqtrd Mk=1M1=M
319 203 318 oveq12d Mk=1MtankπN2+k=1M1=2 M2 M16+M
320 307 309 319 3eqtrd Mk=1MsinkπN2=2 M2 M16+M
321 3cn 3
322 321 a1i M3
323 141 145 322 adddid M2 M2 M-1+3=2 M2 M1+2 M3
324 df-3 3=2+1
325 324 oveq1i 31=2+1-1
326 54 143 pncan3oi 2+1-1=2
327 325 326 163 3eqtri 31=1+1
328 327 oveq2i 2 M+3-1=2 M+1+1
329 141 148 322 subadd23d M2 M-1+3=2 M+3-1
330 141 148 148 addassd M2 M+1+1=2 M+1+1
331 328 329 330 3eqtr4a M2 M-1+3=2 M+1+1
332 6 oveq1i N+1=2 M+1+1
333 331 332 eqtr4di M2 M-1+3=N+1
334 333 oveq2d M2 M2 M-1+3=2 MN+1
335 2cnd M2
336 335 316 322 mul32d M2 M3=23 M
337 3t2e6 32=6
338 321 54 mulcomi 32=23
339 337 338 eqtr3i 6=23
340 339 oveq1i 6 M=23 M
341 336 340 eqtr4di M2 M3=6 M
342 341 oveq2d M2 M2 M1+2 M3=2 M2 M1+6 M
343 323 334 342 3eqtr3d M2 MN+1=2 M2 M1+6 M
344 343 oveq1d M2 MN+16=2 M2 M1+6 M6
345 mulcl 6M6 M
346 175 316 345 sylancr M6 M
347 175 a1i M6
348 113 a1i M60
349 181 346 347 348 divdird M2 M2 M1+6 M6=2 M2 M16+6 M6
350 316 347 348 divcan3d M6 M6=M
351 350 oveq2d M2 M2 M16+6 M6=2 M2 M16+M
352 344 349 351 3eqtrd M2 MN+16=2 M2 M16+M
353 320 352 eqtr4d Mk=1MsinkπN2=2 MN+16
354 192 353 oveq12d MπN2k=1MsinkπN2=π2N22 MN+16
355 141 68 266 68 69 69 divmuldivd M2 MNN+1N=2 MN+1 N N
356 195 oveq2d M2 MN+1N2=2 MN+1 N N
357 355 356 eqtr4d M2 MNN+1N=2 MN+1N2
358 357 oveq2d Mπ262 MNN+1N=π262 MN+1N2
359 279 354 358 3eqtr4d MπN2k=1MsinkπN2=π262 MNN+1N
360 268 272 359 3eqtr4d Mπ2611N1+1N=πN2k=1MsinkπN2
361 226 recnd Mk1MsinkπN2
362 7 40 361 fsummulc2 MπN2k=1MsinkπN2=k=1MπN2sinkπN2
363 264 360 362 3eqtrd MKM=k=1MπN2sinkπN2
364 255 219 363 3brtr4d MFMKM
365 220 364 jca MJMFMFMKM