Metamath Proof Explorer


Theorem bposlem1

Description: An upper bound on the prime powers dividing a central binomial coefficient. (Contributed by Mario Carneiro, 9-Mar-2014)

Ref Expression
Assertion bposlem1 NPPPpCnt(2 NN)2 N

Proof

Step Hyp Ref Expression
1 fzfid NP12 NFin
2 2nn 2
3 nnmulcl 2N2 N
4 2 3 mpan N2 N
5 4 ad2antrr NPk12 N2 N
6 prmnn PP
7 6 ad2antlr NPk12 NP
8 elfznn k12 Nk
9 8 adantl NPk12 Nk
10 9 nnnn0d NPk12 Nk0
11 7 10 nnexpcld NPk12 NPk
12 nnrp 2 N2 N+
13 nnrp PkPk+
14 rpdivcl 2 N+Pk+2 NPk+
15 12 13 14 syl2an 2 NPk2 NPk+
16 5 11 15 syl2anc NPk12 N2 NPk+
17 16 rpred NPk12 N2 NPk
18 17 flcld NPk12 N2 NPk
19 2z 2
20 simpll NPk12 NN
21 nnrp NN+
22 rpdivcl N+Pk+NPk+
23 21 13 22 syl2an NPkNPk+
24 20 11 23 syl2anc NPk12 NNPk+
25 24 rpred NPk12 NNPk
26 25 flcld NPk12 NNPk
27 zmulcl 2NPk2NPk
28 19 26 27 sylancr NPk12 N2NPk
29 18 28 zsubcld NPk12 N2 NPk2NPk
30 29 zred NPk12 N2 NPk2NPk
31 1re 1
32 0re 0
33 31 32 ifcli ifk1log2 NlogP10
34 33 a1i NPk12 Nifk1log2 NlogP10
35 28 zred NPk12 N2NPk
36 17 35 resubcld NPk12 N2 NPk2NPk
37 2re 2
38 37 a1i NPk12 N2
39 18 zred NPk12 N2 NPk
40 flle 2 NPk2 NPk2 NPk
41 17 40 syl NPk12 N2 NPk2 NPk
42 39 17 35 41 lesub1dd NPk12 N2 NPk2NPk2 NPk2NPk
43 resubcl NPk1NPk1
44 25 31 43 sylancl NPk12 NNPk1
45 remulcl 2NPk12NPk1
46 37 44 45 sylancr NPk12 N2NPk1
47 flltp1 NPkNPk<NPk+1
48 25 47 syl NPk12 NNPk<NPk+1
49 1red NPk12 N1
50 26 zred NPk12 NNPk
51 25 49 50 ltsubaddd NPk12 NNPk1<NPkNPk<NPk+1
52 48 51 mpbird NPk12 NNPk1<NPk
53 2pos 0<2
54 37 53 pm3.2i 20<2
55 ltmul2 NPk1NPk20<2NPk1<NPk2NPk1<2NPk
56 54 55 mp3an3 NPk1NPkNPk1<NPk2NPk1<2NPk
57 44 50 56 syl2anc NPk12 NNPk1<NPk2NPk1<2NPk
58 52 57 mpbid NPk12 N2NPk1<2NPk
59 46 35 17 58 ltsub2dd NPk12 N2 NPk2NPk<2 NPk2NPk1
60 2cnd NPk12 N2
61 nncn NN
62 61 ad2antrr NPk12 NN
63 11 nncnd NPk12 NPk
64 11 nnne0d NPk12 NPk0
65 60 62 63 64 divassd NPk12 N2 NPk=2NPk
66 25 recnd NPk12 NNPk
67 60 66 muls1d NPk12 N2NPk1=2NPk2
68 65 67 oveq12d NPk12 N2 NPk2NPk1=2NPk2NPk2
69 remulcl 2NPk2NPk
70 37 25 69 sylancr NPk12 N2NPk
71 70 recnd NPk12 N2NPk
72 2cn 2
73 nncan 2NPk22NPk2NPk2=2
74 71 72 73 sylancl NPk12 N2NPk2NPk2=2
75 68 74 eqtrd NPk12 N2 NPk2NPk1=2
76 59 75 breqtrd NPk12 N2 NPk2NPk<2
77 30 36 38 42 76 lelttrd NPk12 N2 NPk2NPk<2
78 df-2 2=1+1
79 77 78 breqtrdi NPk12 N2 NPk2NPk<1+1
80 1z 1
81 zleltp1 2 NPk2NPk12 NPk2NPk12 NPk2NPk<1+1
82 29 80 81 sylancl NPk12 N2 NPk2NPk12 NPk2NPk<1+1
83 79 82 mpbird NPk12 N2 NPk2NPk1
84 iftrue k1log2 NlogPifk1log2 NlogP10=1
85 84 breq2d k1log2 NlogP2 NPk2NPkifk1log2 NlogP102 NPk2NPk1
86 83 85 syl5ibrcom NPk12 Nk1log2 NlogP2 NPk2NPkifk1log2 NlogP10
87 9 nnge1d NPk12 N1k
88 87 biantrurd NPk12 Nklog2 NlogP1kklog2 NlogP
89 6 adantl NPP
90 89 nnred NPP
91 prmuz2 PP2
92 91 adantl NPP2
93 eluz2gt1 P21<P
94 92 93 syl NP1<P
95 90 94 jca NPP1<P
96 95 adantr NPk12 NP1<P
97 elfzelz k12 Nk
98 97 adantl NPk12 Nk
99 4 adantr NP2 N
100 99 nnrpd NP2 N+
101 100 adantr NPk12 N2 N+
102 efexple P1<Pk2 N+Pk2 Nklog2 NlogP
103 96 98 101 102 syl3anc NPk12 NPk2 Nklog2 NlogP
104 9 nnzd NPk12 Nk
105 80 a1i NPk12 N1
106 99 nnred NP2 N
107 1red NP1
108 37 a1i NP2
109 1lt2 1<2
110 109 a1i NP1<2
111 2t1e2 21=2
112 nnre NN
113 112 adantr NPN
114 0le2 02
115 37 114 pm3.2i 202
116 115 a1i NP202
117 nnge1 N1N
118 117 adantr NP1N
119 lemul2a 1N2021N212 N
120 107 113 116 118 119 syl31anc NP212 N
121 111 120 eqbrtrrid NP22 N
122 107 108 106 110 121 ltletrd NP1<2 N
123 106 122 rplogcld NPlog2 N+
124 90 94 rplogcld NPlogP+
125 123 124 rpdivcld NPlog2 NlogP+
126 125 rpred NPlog2 NlogP
127 126 flcld NPlog2 NlogP
128 127 adantr NPk12 Nlog2 NlogP
129 elfz k1log2 NlogPk1log2 NlogP1kklog2 NlogP
130 104 105 128 129 syl3anc NPk12 Nk1log2 NlogP1kklog2 NlogP
131 88 103 130 3bitr4rd NPk12 Nk1log2 NlogPPk2 N
132 131 notbid NPk12 N¬k1log2 NlogP¬Pk2 N
133 106 adantr NPk12 N2 N
134 11 nnred NPk12 NPk
135 133 134 ltnled NPk12 N2 N<Pk¬Pk2 N
136 132 135 bitr4d NPk12 N¬k1log2 NlogP2 N<Pk
137 16 rpge0d NPk12 N02 NPk
138 137 adantrr NPk12 N2 N<Pk02 NPk
139 11 nngt0d NPk12 N0<Pk
140 ltdivmul 2 N1Pk0<Pk2 NPk<12 N<Pk1
141 133 49 134 139 140 syl112anc NPk12 N2 NPk<12 N<Pk1
142 63 mulridd NPk12 NPk1=Pk
143 142 breq2d NPk12 N2 N<Pk12 N<Pk
144 141 143 bitrd NPk12 N2 NPk<12 N<Pk
145 144 biimprd NPk12 N2 N<Pk2 NPk<1
146 145 impr NPk12 N2 N<Pk2 NPk<1
147 0p1e1 0+1=1
148 146 147 breqtrrdi NPk12 N2 N<Pk2 NPk<0+1
149 17 adantrr NPk12 N2 N<Pk2 NPk
150 0z 0
151 flbi 2 NPk02 NPk=002 NPk2 NPk<0+1
152 149 150 151 sylancl NPk12 N2 N<Pk2 NPk=002 NPk2 NPk<0+1
153 138 148 152 mpbir2and NPk12 N2 N<Pk2 NPk=0
154 24 rpge0d NPk12 N0NPk
155 154 adantrr NPk12 N2 N<Pk0NPk
156 112 21 ltaddrp2d NN<N+N
157 61 2timesd N2 N=N+N
158 156 157 breqtrrd NN<2 N
159 158 ad2antrr NPk12 NN<2 N
160 112 ad2antrr NPk12 NN
161 lttr N2 NPkN<2 N2 N<PkN<Pk
162 160 133 134 161 syl3anc NPk12 NN<2 N2 N<PkN<Pk
163 159 162 mpand NPk12 N2 N<PkN<Pk
164 ltdivmul N1Pk0<PkNPk<1N<Pk1
165 160 49 134 139 164 syl112anc NPk12 NNPk<1N<Pk1
166 142 breq2d NPk12 NN<Pk1N<Pk
167 165 166 bitrd NPk12 NNPk<1N<Pk
168 163 167 sylibrd NPk12 N2 N<PkNPk<1
169 168 impr NPk12 N2 N<PkNPk<1
170 169 147 breqtrrdi NPk12 N2 N<PkNPk<0+1
171 25 adantrr NPk12 N2 N<PkNPk
172 flbi NPk0NPk=00NPkNPk<0+1
173 171 150 172 sylancl NPk12 N2 N<PkNPk=00NPkNPk<0+1
174 155 170 173 mpbir2and NPk12 N2 N<PkNPk=0
175 174 oveq2d NPk12 N2 N<Pk2NPk=20
176 2t0e0 20=0
177 175 176 eqtrdi NPk12 N2 N<Pk2NPk=0
178 153 177 oveq12d NPk12 N2 N<Pk2 NPk2NPk=00
179 0m0e0 00=0
180 178 179 eqtrdi NPk12 N2 N<Pk2 NPk2NPk=0
181 0le0 00
182 180 181 eqbrtrdi NPk12 N2 N<Pk2 NPk2NPk0
183 182 expr NPk12 N2 N<Pk2 NPk2NPk0
184 136 183 sylbid NPk12 N¬k1log2 NlogP2 NPk2NPk0
185 iffalse ¬k1log2 NlogPifk1log2 NlogP10=0
186 185 eqcomd ¬k1log2 NlogP0=ifk1log2 NlogP10
187 186 breq2d ¬k1log2 NlogP2 NPk2NPk02 NPk2NPkifk1log2 NlogP10
188 184 187 mpbidi NPk12 N¬k1log2 NlogP2 NPk2NPkifk1log2 NlogP10
189 86 188 pm2.61d NPk12 N2 NPk2NPkifk1log2 NlogP10
190 1 30 34 189 fsumle NPk=12 N2 NPk2NPkk=12 Nifk1log2 NlogP10
191 pcbcctr NPPpCnt(2 NN)=k=12 N2 NPk2NPk
192 127 zred NPlog2 NlogP
193 flle log2 NlogPlog2 NlogPlog2 NlogP
194 126 193 syl NPlog2 NlogPlog2 NlogP
195 99 nnnn0d NP2 N0
196 89 195 nnexpcld NPP2 N
197 196 nnred NPP2 N
198 bernneq3 P22 N02 N<P2 N
199 92 195 198 syl2anc NP2 N<P2 N
200 106 197 199 ltled NP2 NP2 N
201 100 reeflogd NPelog2 N=2 N
202 89 nnrpd NPP+
203 99 nnzd NP2 N
204 reexplog P+2 NP2 N=e2 NlogP
205 202 203 204 syl2anc NPP2 N=e2 NlogP
206 205 eqcomd NPe2 NlogP=P2 N
207 200 201 206 3brtr4d NPelog2 Ne2 NlogP
208 100 relogcld NPlog2 N
209 124 rpred NPlogP
210 106 209 remulcld NP2 NlogP
211 efle log2 N2 NlogPlog2 N2 NlogPelog2 Ne2 NlogP
212 208 210 211 syl2anc NPlog2 N2 NlogPelog2 Ne2 NlogP
213 207 212 mpbird NPlog2 N2 NlogP
214 208 106 124 ledivmul2d NPlog2 NlogP2 Nlog2 N2 NlogP
215 213 214 mpbird NPlog2 NlogP2 N
216 192 126 106 194 215 letrd NPlog2 NlogP2 N
217 eluz log2 NlogP2 N2 Nlog2 NlogPlog2 NlogP2 N
218 127 203 217 syl2anc NP2 Nlog2 NlogPlog2 NlogP2 N
219 216 218 mpbird NP2 Nlog2 NlogP
220 fzss2 2 Nlog2 NlogP1log2 NlogP12 N
221 219 220 syl NP1log2 NlogP12 N
222 sumhash 12 NFin1log2 NlogP12 Nk=12 Nifk1log2 NlogP10=1log2 NlogP
223 1 221 222 syl2anc NPk=12 Nifk1log2 NlogP10=1log2 NlogP
224 125 rprege0d NPlog2 NlogP0log2 NlogP
225 flge0nn0 log2 NlogP0log2 NlogPlog2 NlogP0
226 hashfz1 log2 NlogP01log2 NlogP=log2 NlogP
227 224 225 226 3syl NP1log2 NlogP=log2 NlogP
228 223 227 eqtr2d NPlog2 NlogP=k=12 Nifk1log2 NlogP10
229 190 191 228 3brtr4d NPPpCnt(2 NN)log2 NlogP
230 simpr NPP
231 nnnn0 NN0
232 fzctr N0N02 N
233 bccl2 N02 N(2 NN)
234 231 232 233 3syl N(2 NN)
235 234 adantr NP(2 NN)
236 230 235 pccld NPPpCnt(2 NN)0
237 236 nn0zd NPPpCnt(2 NN)
238 efexple P1<PPpCnt(2 NN)2 N+PPpCnt(2 NN)2 NPpCnt(2 NN)log2 NlogP
239 90 94 237 100 238 syl211anc NPPPpCnt(2 NN)2 NPpCnt(2 NN)log2 NlogP
240 229 239 mpbird NPPPpCnt(2 NN)2 N