Metamath Proof Explorer


Theorem chpchtsum

Description: The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion chpchtsum AψA=k=1AθA1k

Proof

Step Hyp Ref Expression
1 fzfid Ap0A1logAlogpFin
2 simpr Ap0Ap0A
3 2 elin2d Ap0Ap
4 prmnn pp
5 3 4 syl Ap0Ap
6 5 nnrpd Ap0Ap+
7 6 relogcld Ap0Alogp
8 7 recnd Ap0Alogp
9 fsumconst 1logAlogpFinlogpk=1logAlogplogp=1logAlogplogp
10 1 8 9 syl2anc Ap0Ak=1logAlogplogp=1logAlogplogp
11 simpl Ap0AA
12 1red Ap0A1
13 5 nnred Ap0Ap
14 prmuz2 pp2
15 3 14 syl Ap0Ap2
16 eluz2gt1 p21<p
17 15 16 syl Ap0A1<p
18 2 elin1d Ap0Ap0A
19 0re 0
20 elicc2 0Ap0Ap0ppA
21 19 11 20 sylancr Ap0Ap0Ap0ppA
22 18 21 mpbid Ap0Ap0ppA
23 22 simp3d Ap0ApA
24 12 13 11 17 23 ltletrd Ap0A1<A
25 11 24 rplogcld Ap0AlogA+
26 13 17 rplogcld Ap0Alogp+
27 25 26 rpdivcld Ap0AlogAlogp+
28 27 rpred Ap0AlogAlogp
29 27 rpge0d Ap0A0logAlogp
30 flge0nn0 logAlogp0logAlogplogAlogp0
31 28 29 30 syl2anc Ap0AlogAlogp0
32 hashfz1 logAlogp01logAlogp=logAlogp
33 31 32 syl Ap0A1logAlogp=logAlogp
34 33 oveq1d Ap0A1logAlogplogp=logAlogplogp
35 28 flcld Ap0AlogAlogp
36 35 zcnd Ap0AlogAlogp
37 36 8 mulcomd Ap0AlogAlogplogp=logplogAlogp
38 10 34 37 3eqtrrd Ap0AlogplogAlogp=k=1logAlogplogp
39 38 sumeq2dv Ap0AlogplogAlogp=p0Ak=1logAlogplogp
40 chpval2 AψA=p0AlogplogAlogp
41 simpl Ak1AA
42 0red Ak1A0
43 1red Ak1A1
44 0lt1 0<1
45 44 a1i Ak1A0<1
46 elfzuz2 k1AA1
47 eluzle A11A
48 47 adantl AA11A
49 simpl AA1A
50 1z 1
51 flge A11A1A
52 49 50 51 sylancl AA11A1A
53 48 52 mpbird AA11A
54 46 53 sylan2 Ak1A1A
55 42 43 41 45 54 ltletrd Ak1A0<A
56 42 41 55 ltled Ak1A0A
57 elfznn k1Ak
58 57 adantl Ak1Ak
59 58 nnrecred Ak1A1k
60 41 56 59 recxpcld Ak1AA1k
61 chtval A1kθA1k=p0A1klogp
62 60 61 syl Ak1AθA1k=p0A1klogp
63 62 sumeq2dv Ak=1AθA1k=k=1Ap0A1klogp
64 ppifi A0AFin
65 fzfid A1AFin
66 elinel2 p0Ap
67 elfznn k1logAlogpk
68 66 67 anim12i p0Ak1logAlogppk
69 68 a1i Ap0Ak1logAlogppk
70 0red Ap0A0
71 inss2 0A
72 71 a1i A0A
73 72 sselda Ap0Ap
74 73 4 syl Ap0Ap
75 74 nnred Ap0Ap
76 74 nngt0d Ap0A0<p
77 70 75 11 76 23 ltletrd Ap0A0<A
78 77 ex Ap0A0<A
79 78 adantrd Ap0Ak1logAlogp0<A
80 69 79 jcad Ap0Ak1logAlogppk0<A
81 elinel2 p0A1kp
82 57 81 anim12ci k1Ap0A1kpk
83 82 a1i Ak1Ap0A1kpk
84 55 ex Ak1A0<A
85 84 adantrd Ak1Ap0A1k0<A
86 83 85 jcad Ak1Ap0A1kpk0<A
87 elin p0Ap0Ap
88 simprll Apk0<Ap
89 88 biantrud Apk0<Ap0Ap0Ap
90 0red Apk0<A0
91 simpl Apk0<AA
92 88 4 syl Apk0<Ap
93 92 nnred Apk0<Ap
94 92 nnnn0d Apk0<Ap0
95 94 nn0ge0d Apk0<A0p
96 df-3an p0ppAp0ppA
97 20 96 bitrdi 0Ap0Ap0ppA
98 97 baibd 0Ap0pp0ApA
99 90 91 93 95 98 syl22anc Apk0<Ap0ApA
100 89 99 bitr3d Apk0<Ap0AppA
101 87 100 bitrid Apk0<Ap0ApA
102 simprr Apk0<A0<A
103 91 102 elrpd Apk0<AA+
104 103 relogcld Apk0<AlogA
105 88 14 syl Apk0<Ap2
106 105 16 syl Apk0<A1<p
107 93 106 rplogcld Apk0<Alogp+
108 104 107 rerpdivcld Apk0<AlogAlogp
109 simprlr Apk0<Ak
110 109 nnzd Apk0<Ak
111 flge logAlogpkklogAlogpklogAlogp
112 108 110 111 syl2anc Apk0<AklogAlogpklogAlogp
113 109 nnnn0d Apk0<Ak0
114 92 113 nnexpcld Apk0<Apk
115 114 nnrpd Apk0<Apk+
116 115 103 logled Apk0<ApkAlogpklogA
117 92 nnrpd Apk0<Ap+
118 relogexp p+klogpk=klogp
119 117 110 118 syl2anc Apk0<Alogpk=klogp
120 119 breq1d Apk0<AlogpklogAklogplogA
121 109 nnred Apk0<Ak
122 121 104 107 lemuldivd Apk0<AklogplogAklogAlogp
123 116 120 122 3bitrd Apk0<ApkAklogAlogp
124 nnuz =1
125 109 124 eleqtrdi Apk0<Ak1
126 108 flcld Apk0<AlogAlogp
127 elfz5 k1logAlogpk1logAlogpklogAlogp
128 125 126 127 syl2anc Apk0<Ak1logAlogpklogAlogp
129 112 123 128 3bitr4rd Apk0<Ak1logAlogppkA
130 101 129 anbi12d Apk0<Ap0Ak1logAlogppApkA
131 91 flcld Apk0<AA
132 elfz5 k1Ak1AkA
133 125 131 132 syl2anc Apk0<Ak1AkA
134 flge AkkAkA
135 91 110 134 syl2anc Apk0<AkAkA
136 133 135 bitr4d Apk0<Ak1AkA
137 elin p0A1kp0A1kp
138 88 biantrud Apk0<Ap0A1kp0A1kp
139 103 rpge0d Apk0<A0A
140 109 nnrecred Apk0<A1k
141 91 139 140 recxpcld Apk0<AA1k
142 elicc2 0A1kp0A1kp0ppA1k
143 df-3an p0ppA1kp0ppA1k
144 142 143 bitrdi 0A1kp0A1kp0ppA1k
145 144 baibd 0A1kp0pp0A1kpA1k
146 90 141 93 95 145 syl22anc Apk0<Ap0A1kpA1k
147 138 146 bitr3d Apk0<Ap0A1kppA1k
148 91 139 140 cxpge0d Apk0<A0A1k
149 109 nnrpd Apk0<Ak+
150 93 95 141 148 149 cxple2d Apk0<ApA1kpkA1kk
151 92 nncnd Apk0<Ap
152 cxpexp pk0pk=pk
153 151 113 152 syl2anc Apk0<Apk=pk
154 109 nncnd Apk0<Ak
155 109 nnne0d Apk0<Ak0
156 154 155 recid2d Apk0<A1kk=1
157 156 oveq2d Apk0<AA1kk=A1
158 103 140 154 cxpmuld Apk0<AA1kk=A1kk
159 91 recnd Apk0<AA
160 159 cxp1d Apk0<AA1=A
161 157 158 160 3eqtr3d Apk0<AA1kk=A
162 153 161 breq12d Apk0<ApkA1kkpkA
163 147 150 162 3bitrd Apk0<Ap0A1kppkA
164 137 163 bitrid Apk0<Ap0A1kpkA
165 136 164 anbi12d Apk0<Ak1Ap0A1kkApkA
166 114 nnred Apk0<Apk
167 bernneq3 p2k0k<pk
168 105 113 167 syl2anc Apk0<Ak<pk
169 121 166 168 ltled Apk0<Akpk
170 letr kpkAkpkpkAkA
171 121 166 91 170 syl3anc Apk0<AkpkpkAkA
172 169 171 mpand Apk0<ApkAkA
173 172 pm4.71rd Apk0<ApkAkApkA
174 151 exp1d Apk0<Ap1=p
175 92 nnge1d Apk0<A1p
176 93 175 125 leexp2ad Apk0<Ap1pk
177 174 176 eqbrtrrd Apk0<Appk
178 letr ppkAppkpkApA
179 93 166 91 178 syl3anc Apk0<AppkpkApA
180 177 179 mpand Apk0<ApkApA
181 180 pm4.71rd Apk0<ApkApApkA
182 165 173 181 3bitr2rd Apk0<ApApkAk1Ap0A1k
183 130 182 bitrd Apk0<Ap0Ak1logAlogpk1Ap0A1k
184 183 ex Apk0<Ap0Ak1logAlogpk1Ap0A1k
185 80 86 184 pm5.21ndd Ap0Ak1logAlogpk1Ap0A1k
186 8 adantrr Ap0Ak1logAlogplogp
187 64 65 1 185 186 fsumcom2 Ap0Ak=1logAlogplogp=k=1Ap0A1klogp
188 63 187 eqtr4d Ak=1AθA1k=p0Ak=1logAlogplogp
189 39 40 188 3eqtr4d AψA=k=1AθA1k