Metamath Proof Explorer


Theorem chtub

Description: An upper bound on the Chebyshev function. (Contributed by Mario Carneiro, 13-Mar-2014) (Revised 22-Sep-2014.)

Ref Expression
Assertion chtub N2<NθN<log22 N3

Proof

Step Hyp Ref Expression
1 2re 2
2 1lt2 1<2
3 rplogcl 21<2log2+
4 1 2 3 mp2an log2+
5 elrp log2+log20<log2
6 4 5 mpbi log20<log2
7 6 simpli log2
8 7 recni log2
9 8 mulridi log21=log2
10 cht2 θ2=log2
11 9 10 eqtr4i log21=θ2
12 fveq2 N=2θN=θ2
13 11 12 eqtr4id N=2log21=θN
14 chtfl NθN=θN
15 14 adantr N2<NθN=θN
16 13 15 sylan9eqr N2<NN=2log21=θN
17 2t2e4 22=4
18 df-4 4=3+1
19 17 18 eqtri 22=3+1
20 simplr N2<NN=22<N
21 simpl N2<NN
22 2pos 0<2
23 1 22 pm3.2i 20<2
24 23 a1i N2<NN=220<2
25 ltmul2 2N20<22<N22<2 N
26 1 21 24 25 mp3an2ani N2<NN=22<N22<2 N
27 20 26 mpbid N2<NN=222<2 N
28 19 27 eqbrtrrid N2<NN=23+1<2 N
29 3re 3
30 29 a1i N2<NN=23
31 1red N2<NN=21
32 remulcl 2N2 N
33 1 21 32 sylancr N2<N2 N
34 33 adantr N2<NN=22 N
35 30 31 34 ltaddsub2d N2<NN=23+1<2 N1<2 N3
36 28 35 mpbid N2<NN=21<2 N3
37 resubcl 2 N32 N3
38 33 29 37 sylancl N2<N2 N3
39 38 adantr N2<NN=22 N3
40 6 a1i N2<NN=2log20<log2
41 ltmul2 12 N3log20<log21<2 N3log21<log22 N3
42 31 39 40 41 syl3anc N2<NN=21<2 N3log21<log22 N3
43 36 42 mpbid N2<NN=2log21<log22 N3
44 16 43 eqbrtrrd N2<NN=2θN<log22 N3
45 chtcl NθN
46 45 ad2antrr N2<NN2+1θN
47 reflcl NN
48 47 ad2antrr N2<NN2+1N
49 remulcl 2N2N
50 1 48 49 sylancr N2<NN2+12N
51 resubcl 2N32N3
52 50 29 51 sylancl N2<NN2+12N3
53 remulcl log22N3log22N3
54 7 52 53 sylancr N2<NN2+1log22N3
55 38 adantr N2<NN2+12 N3
56 remulcl log22 N3log22 N3
57 7 55 56 sylancr N2<NN2+1log22 N3
58 15 adantr N2<NN2+1θN=θN
59 simpr N2<NN2+1N2+1
60 df-3 3=2+1
61 60 fveq2i 3=2+1
62 59 61 eleqtrrdi N2<NN2+1N3
63 fveq2 k=Nθk=θN
64 oveq2 k=N2k=2N
65 64 oveq1d k=N2k3=2N3
66 65 oveq2d k=Nlog22k3=log22N3
67 63 66 breq12d k=Nθk<log22k3θN<log22N3
68 oveq2 x=33x=33
69 68 raleqdv x=3k3xθk<log22k3k33θk<log22k3
70 oveq2 x=n3x=3n
71 70 raleqdv x=nk3xθk<log22k3k3nθk<log22k3
72 oveq2 x=n+13x=3n+1
73 72 raleqdv x=n+1k3xθk<log22k3k3n+1θk<log22k3
74 oveq2 x=N3x=3N
75 74 raleqdv x=Nk3xθk<log22k3k3Nθk<log22k3
76 6lt8 6<8
77 6re 6
78 6pos 0<6
79 77 78 elrpii 6+
80 8re 8
81 8pos 0<8
82 80 81 elrpii 8+
83 logltb 6+8+6<8log6<log8
84 79 82 83 mp2an 6<8log6<log8
85 76 84 mpbi log6<log8
86 85 a1i k33log6<log8
87 elfz1eq k33k=3
88 87 fveq2d k33θk=θ3
89 cht3 θ3=log6
90 88 89 eqtrdi k33θk=log6
91 87 oveq2d k332k=23
92 91 oveq1d k332k3=233
93 3cn 3
94 93 2timesi 23=3+3
95 93 93 94 mvrraddi 233=3
96 92 95 eqtrdi k332k3=3
97 96 oveq2d k33log22k3=log23
98 2rp 2+
99 relogcl 2+log2
100 98 99 ax-mp log2
101 100 recni log2
102 101 93 mulcomi log23=3log2
103 3z 3
104 relogexp 2+3log23=3log2
105 98 103 104 mp2an log23=3log2
106 102 105 eqtr4i log23=log23
107 cu2 23=8
108 107 fveq2i log23=log8
109 106 108 eqtri log23=log8
110 97 109 eqtrdi k33log22k3=log8
111 86 90 110 3brtr4d k33θk<log22k3
112 111 rgen k33θk<log22k3
113 df-2 2=1+1
114 2div2e1 22=1
115 eluzle n33n
116 60 115 eqbrtrrid n32+1n
117 2z 2
118 eluzelz n3n
119 zltp1le 2n2<n2+1n
120 117 118 119 sylancr n32<n2+1n
121 116 120 mpbird n32<n
122 eluzelre n3n
123 ltdiv1 2n20<22<n22<n2
124 1 23 123 mp3an13 n2<n22<n2
125 122 124 syl n32<n22<n2
126 121 125 mpbid n322<n2
127 114 126 eqbrtrrid n31<n2
128 122 rehalfcld n3n2
129 1re 1
130 ltadd1 1n211<n21+1<n2+1
131 129 129 130 mp3an13 n21<n21+1<n2+1
132 128 131 syl n31<n21+1<n2+1
133 127 132 mpbid n31+1<n2+1
134 113 133 eqbrtrid n32<n2+1
135 134 adantr n3n22<n2+1
136 peano2z n2n2+1
137 136 adantl n3n2n2+1
138 zltp1le 2n2+12<n2+12+1n2+1
139 117 137 138 sylancr n3n22<n2+12+1n2+1
140 135 139 mpbid n3n22+1n2+1
141 60 140 eqbrtrid n3n23n2+1
142 1red n31
143 ltle 1n21<n21n2
144 129 128 143 sylancr n31<n21n2
145 127 144 mpd n31n2
146 142 128 128 145 leadd2dd n3n2+1n2+n2
147 122 recnd n3n
148 147 2halvesd n3n2+n2=n
149 146 148 breqtrd n3n2+1n
150 149 adantr n3n2n2+1n
151 elfz n2+13nn2+13n3n2+1n2+1n
152 103 151 mp3an2 n2+1nn2+13n3n2+1n2+1n
153 136 118 152 syl2anr n3n2n2+13n3n2+1n2+1n
154 141 150 153 mpbir2and n3n2n2+13n
155 fveq2 k=n2+1θk=θn2+1
156 oveq2 k=n2+12k=2n2+1
157 156 oveq1d k=n2+12k3=2n2+13
158 157 oveq2d k=n2+1log22k3=log22n2+13
159 155 158 breq12d k=n2+1θk<log22k3θn2+1<log22n2+13
160 159 rspcv n2+13nk3nθk<log22k3θn2+1<log22n2+13
161 154 160 syl n3n2k3nθk<log22k3θn2+1<log22n2+13
162 128 recnd n3n2
163 162 adantr n3n2n2
164 2cn 2
165 ax-1cn 1
166 adddi 2n212n2+1=2n2+21
167 164 165 166 mp3an13 n22n2+1=2n2+21
168 163 167 syl n3n22n2+1=2n2+21
169 147 adantr n3n2n
170 2ne0 20
171 divcan2 n2202n2=n
172 164 170 171 mp3an23 n2n2=n
173 169 172 syl n3n22n2=n
174 164 mulridi 21=2
175 174 a1i n3n221=2
176 173 175 oveq12d n3n22n2+21=n+2
177 168 176 eqtrd n3n22n2+1=n+2
178 177 oveq1d n3n22n2+13=n+2-3
179 subsub3 n32n32=n+2-3
180 93 164 179 mp3an23 nn32=n+2-3
181 169 180 syl n3n2n32=n+2-3
182 2p1e3 2+1=3
183 93 164 165 182 subaddrii 32=1
184 183 oveq2i n32=n1
185 181 184 eqtr3di n3n2n+2-3=n1
186 178 185 eqtrd n3n22n2+13=n1
187 186 oveq2d n3n2log22n2+13=log2n1
188 187 breq2d n3n2θn2+1<log22n2+13θn2+1<log2n1
189 137 zred n3n2n2+1
190 chtcl n2+1θn2+1
191 189 190 syl n3n2θn2+1
192 122 adantr n3n2n
193 peano2rem nn1
194 192 193 syl n3n2n1
195 remulcl log2n1log2n1
196 100 194 195 sylancr n3n2log2n1
197 remulcl log2nlog2n
198 100 192 197 sylancr n3n2log2n
199 191 196 198 ltadd1d n3n2θn2+1<log2n1θn2+1+log2n<log2n1+log2n
200 101 a1i n3n2log2
201 194 recnd n3n2n1
202 200 201 169 adddid n3n2log2n-1+n=log2n1+log2n
203 adddi 2n12n+1=2n+21
204 164 165 203 mp3an13 n2n+1=2n+21
205 169 204 syl n3n22n+1=2n+21
206 174 oveq2i 2n+21=2n+2
207 205 206 eqtrdi n3n22n+1=2n+2
208 207 oveq1d n3n22n+13=2n+2-3
209 zmulcl 2n2n
210 117 118 209 sylancr n32n
211 210 zcnd n32n
212 211 adantr n3n22n
213 subsub3 2n322n32=2n+2-3
214 93 164 213 mp3an23 2n2n32=2n+2-3
215 212 214 syl n3n22n32=2n+2-3
216 183 oveq2i 2n32=2n1
217 169 2timesd n3n22n=n+n
218 217 oveq1d n3n22n1=n+n-1
219 165 a1i n3n21
220 169 169 219 addsubd n3n2n+n-1=n-1+n
221 218 220 eqtrd n3n22n1=n-1+n
222 216 221 eqtrid n3n22n32=n-1+n
223 208 215 222 3eqtr2rd n3n2n-1+n=2n+13
224 223 oveq2d n3n2log2n-1+n=log22n+13
225 202 224 eqtr3d n3n2log2n1+log2n=log22n+13
226 225 breq2d n3n2θn2+1+log2n<log2n1+log2nθn2+1+log2n<log22n+13
227 188 199 226 3bitrd n3n2θn2+1<log22n2+13θn2+1+log2n<log22n+13
228 3nn 3
229 elfzuz n2+13nn2+13
230 154 229 syl n3n2n2+13
231 eluznn 3n2+13n2+1
232 228 230 231 sylancr n3n2n2+1
233 chtublem n2+1θ2n2+11θn2+1+log4n2+1-1
234 232 233 syl n3n2θ2n2+11θn2+1+log4n2+1-1
235 177 oveq1d n3n22n2+11=n+2-1
236 addsubass n21n+2-1=n+2-1
237 164 165 236 mp3an23 nn+2-1=n+2-1
238 169 237 syl n3n2n+2-1=n+2-1
239 2m1e1 21=1
240 239 oveq2i n+2-1=n+1
241 238 240 eqtrdi n3n2n+2-1=n+1
242 235 241 eqtrd n3n22n2+11=n+1
243 242 fveq2d n3n2θ2n2+11=θn+1
244 pncan n21n2+1-1=n2
245 163 165 244 sylancl n3n2n2+1-1=n2
246 245 oveq2d n3n2log4n2+1-1=log4n2
247 relogexp 2+2log22=2log2
248 98 117 247 mp2an log22=2log2
249 sq2 22=4
250 249 fveq2i log22=log4
251 164 101 mulcomi 2log2=log22
252 248 250 251 3eqtr3i log4=log22
253 252 oveq1i log4n2=log22n2
254 164 a1i n3n22
255 200 254 163 mulassd n3n2log22n2=log22n2
256 253 255 eqtrid n3n2log4n2=log22n2
257 173 oveq2d n3n2log22n2=log2n
258 246 256 257 3eqtrd n3n2log4n2+1-1=log2n
259 258 oveq2d n3n2θn2+1+log4n2+1-1=θn2+1+log2n
260 234 243 259 3brtr3d n3n2θn+1θn2+1+log2n
261 peano2uz n3n+13
262 eluzelz n+13n+1
263 261 262 syl n3n+1
264 263 zred n3n+1
265 264 adantr n3n2n+1
266 chtcl n+1θn+1
267 265 266 syl n3n2θn+1
268 191 198 readdcld n3n2θn2+1+log2n
269 zmulcl 2n+12n+1
270 117 263 269 sylancr n32n+1
271 270 zred n32n+1
272 resubcl 2n+132n+13
273 271 29 272 sylancl n32n+13
274 273 adantr n3n22n+13
275 remulcl log22n+13log22n+13
276 100 274 275 sylancr n3n2log22n+13
277 lelttr θn+1θn2+1+log2nlog22n+13θn+1θn2+1+log2nθn2+1+log2n<log22n+13θn+1<log22n+13
278 267 268 276 277 syl3anc n3n2θn+1θn2+1+log2nθn2+1+log2n<log22n+13θn+1<log22n+13
279 260 278 mpand n3n2θn2+1+log2n<log22n+13θn+1<log22n+13
280 227 279 sylbid n3n2θn2+1<log22n2+13θn+1<log22n+13
281 161 280 syld n3n2k3nθk<log22k3θn+1<log22n+13
282 eluzfz2 n3n3n
283 fveq2 k=nθk=θn
284 oveq2 k=n2k=2n
285 284 oveq1d k=n2k3=2n3
286 285 oveq2d k=nlog22k3=log22n3
287 283 286 breq12d k=nθk<log22k3θn<log22n3
288 287 rspcv n3nk3nθk<log22k3θn<log22n3
289 282 288 syl n3k3nθk<log22k3θn<log22n3
290 289 adantr n3n+12k3nθk<log22k3θn<log22n3
291 210 zred n32n
292 29 a1i n33
293 122 ltp1d n3n<n+1
294 23 a1i n320<2
295 ltmul2 nn+120<2n<n+12n<2n+1
296 122 264 294 295 syl3anc n3n<n+12n<2n+1
297 293 296 mpbid n32n<2n+1
298 291 271 292 297 ltsub1dd n32n3<2n+13
299 resubcl 2n32n3
300 291 29 299 sylancl n32n3
301 6 a1i n3log20<log2
302 ltmul2 2n32n+13log20<log22n3<2n+13log22n3<log22n+13
303 300 273 301 302 syl3anc n32n3<2n+13log22n3<log22n+13
304 298 303 mpbid n3log22n3<log22n+13
305 chtcl nθn
306 122 305 syl n3θn
307 remulcl log22n3log22n3
308 100 300 307 sylancr n3log22n3
309 100 273 275 sylancr n3log22n+13
310 lttr θnlog22n3log22n+13θn<log22n3log22n3<log22n+13θn<log22n+13
311 306 308 309 310 syl3anc n3θn<log22n3log22n3<log22n+13θn<log22n+13
312 304 311 mpan2d n3θn<log22n3θn<log22n+13
313 312 adantr n3n+12θn<log22n3θn<log22n+13
314 evend2 n+12n+1n+12
315 263 314 syl n32n+1n+12
316 2lt3 2<3
317 1 29 ltnlei 2<3¬32
318 316 317 mpbi ¬32
319 breq2 2=n+1323n+1
320 318 319 mtbii 2=n+1¬3n+1
321 eluzle n+133n+1
322 261 321 syl n33n+1
323 320 322 nsyl3 n3¬2=n+1
324 323 adantr n3n+1¬2=n+1
325 uzid 222
326 117 325 ax-mp 22
327 simpr n3n+1n+1
328 dvdsprm 22n+12n+12=n+1
329 326 327 328 sylancr n3n+12n+12=n+1
330 324 329 mtbird n3n+1¬2n+1
331 330 ex n3n+1¬2n+1
332 331 con2d n32n+1¬n+1
333 315 332 sylbird n3n+12¬n+1
334 333 imp n3n+12¬n+1
335 chtnprm n¬n+1θn+1=θn
336 118 334 335 syl2an2r n3n+12θn+1=θn
337 336 breq1d n3n+12θn+1<log22n+13θn<log22n+13
338 313 337 sylibrd n3n+12θn<log22n3θn+1<log22n+13
339 290 338 syld n3n+12k3nθk<log22k3θn+1<log22n+13
340 zeo nn2n+12
341 118 340 syl n3n2n+12
342 281 339 341 mpjaodan n3k3nθk<log22k3θn+1<log22n+13
343 ovex n+1V
344 fveq2 k=n+1θk=θn+1
345 oveq2 k=n+12k=2n+1
346 345 oveq1d k=n+12k3=2n+13
347 346 oveq2d k=n+1log22k3=log22n+13
348 344 347 breq12d k=n+1θk<log22k3θn+1<log22n+13
349 343 348 ralsn kn+1θk<log22k3θn+1<log22n+13
350 342 349 syl6ibr n3k3nθk<log22k3kn+1θk<log22k3
351 350 ancld n3k3nθk<log22k3k3nθk<log22k3kn+1θk<log22k3
352 ralun k3nθk<log22k3kn+1θk<log22k3k3nn+1θk<log22k3
353 fzsuc n33n+1=3nn+1
354 353 raleqdv n3k3n+1θk<log22k3k3nn+1θk<log22k3
355 352 354 imbitrrid n3k3nθk<log22k3kn+1θk<log22k3k3n+1θk<log22k3
356 351 355 syld n3k3nθk<log22k3k3n+1θk<log22k3
357 69 71 73 75 112 356 uzind4i N3k3Nθk<log22k3
358 eluzfz2 N3N3N
359 67 357 358 rspcdva N3θN<log22N3
360 62 359 syl N2<NN2+1θN<log22N3
361 58 360 eqbrtrrd N2<NN2+1θN<log22N3
362 33 adantr N2<NN2+12 N
363 29 a1i N2<NN2+13
364 flle NNN
365 364 ad2antrr N2<NN2+1NN
366 21 adantr N2<NN2+1N
367 23 a1i N2<NN2+120<2
368 lemul2 NN20<2NN2N2 N
369 48 366 367 368 syl3anc N2<NN2+1NN2N2 N
370 365 369 mpbid N2<NN2+12N2 N
371 50 362 363 370 lesub1dd N2<NN2+12N32 N3
372 6 a1i N2<NN2+1log20<log2
373 lemul2 2N32 N3log20<log22N32 N3log22N3log22 N3
374 52 55 372 373 syl3anc N2<NN2+12N32 N3log22N3log22 N3
375 371 374 mpbid N2<NN2+1log22N3log22 N3
376 46 54 57 361 375 ltletrd N2<NN2+1θN<log22 N3
377 117 a1i N2<N2
378 flcl NN
379 378 adantr N2<NN
380 ltle 2N2<N2N
381 1 380 mpan N2<N2N
382 flge N22N2N
383 117 382 mpan2 N2N2N
384 381 383 sylibd N2<N2N
385 384 imp N2<N2N
386 eluz2 N22N2N
387 377 379 385 386 syl3anbrc N2<NN2
388 uzp1 N2N=2N2+1
389 387 388 syl N2<NN=2N2+1
390 44 376 389 mpjaodan N2<NθN<log22 N3