Metamath Proof Explorer


Theorem climcndslem1

Description: Lemma for climcnds : bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014)

Ref Expression
Hypotheses climcnds.1 φkFk
climcnds.2 φk0Fk
climcnds.3 φkFk+1Fk
climcnds.4 φn0Gn=2nF2n
Assertion climcndslem1 φN0seq1+F2N+11seq0+GN

Proof

Step Hyp Ref Expression
1 climcnds.1 φkFk
2 climcnds.2 φk0Fk
3 climcnds.3 φkFk+1Fk
4 climcnds.4 φn0Gn=2nF2n
5 oveq1 x=0x+1=0+1
6 0p1e1 0+1=1
7 5 6 eqtrdi x=0x+1=1
8 7 oveq2d x=02x+1=21
9 2cn 2
10 exp1 221=2
11 9 10 ax-mp 21=2
12 df-2 2=1+1
13 11 12 eqtri 21=1+1
14 8 13 eqtrdi x=02x+1=1+1
15 14 oveq1d x=02x+11=1+1-1
16 ax-1cn 1
17 16 16 pncan3oi 1+1-1=1
18 15 17 eqtrdi x=02x+11=1
19 18 fveq2d x=0seq1+F2x+11=seq1+F1
20 fveq2 x=0seq0+Gx=seq0+G0
21 19 20 breq12d x=0seq1+F2x+11seq0+Gxseq1+F1seq0+G0
22 21 imbi2d x=0φseq1+F2x+11seq0+Gxφseq1+F1seq0+G0
23 oveq1 x=jx+1=j+1
24 23 oveq2d x=j2x+1=2j+1
25 24 fvoveq1d x=jseq1+F2x+11=seq1+F2j+11
26 fveq2 x=jseq0+Gx=seq0+Gj
27 25 26 breq12d x=jseq1+F2x+11seq0+Gxseq1+F2j+11seq0+Gj
28 27 imbi2d x=jφseq1+F2x+11seq0+Gxφseq1+F2j+11seq0+Gj
29 oveq1 x=j+1x+1=j+1+1
30 29 oveq2d x=j+12x+1=2j+1+1
31 30 fvoveq1d x=j+1seq1+F2x+11=seq1+F2j+1+11
32 fveq2 x=j+1seq0+Gx=seq0+Gj+1
33 31 32 breq12d x=j+1seq1+F2x+11seq0+Gxseq1+F2j+1+11seq0+Gj+1
34 33 imbi2d x=j+1φseq1+F2x+11seq0+Gxφseq1+F2j+1+11seq0+Gj+1
35 oveq1 x=Nx+1=N+1
36 35 oveq2d x=N2x+1=2N+1
37 36 fvoveq1d x=Nseq1+F2x+11=seq1+F2N+11
38 fveq2 x=Nseq0+Gx=seq0+GN
39 37 38 breq12d x=Nseq1+F2x+11seq0+Gxseq1+F2N+11seq0+GN
40 39 imbi2d x=Nφseq1+F2x+11seq0+Gxφseq1+F2N+11seq0+GN
41 fveq2 k=1Fk=F1
42 41 eleq1d k=1FkF1
43 1 ralrimiva φkFk
44 1nn 1
45 44 a1i φ1
46 42 43 45 rspcdva φF1
47 46 leidd φF1F1
48 46 recnd φF1
49 48 mullidd φ1F1=F1
50 47 49 breqtrrd φF11F1
51 1z 1
52 eqidd φF1=F1
53 51 52 seq1i φseq1+F1=F1
54 0z 0
55 fveq2 n=0Gn=G0
56 oveq2 n=02n=20
57 exp0 220=1
58 9 57 ax-mp 20=1
59 56 58 eqtrdi n=02n=1
60 59 fveq2d n=0F2n=F1
61 59 60 oveq12d n=02nF2n=1F1
62 55 61 eqeq12d n=0Gn=2nF2nG0=1F1
63 4 ralrimiva φn0Gn=2nF2n
64 0nn0 00
65 64 a1i φ00
66 62 63 65 rspcdva φG0=1F1
67 54 66 seq1i φseq0+G0=1F1
68 50 53 67 3brtr4d φseq1+F1seq0+G0
69 fzfid φj02j+12j+1+11Fin
70 simpl φj0φ
71 2nn 2
72 peano2nn0 j0j+10
73 72 adantl φj0j+10
74 nnexpcl 2j+102j+1
75 71 73 74 sylancr φj02j+1
76 elfzuz k2j+12j+1+11k2j+1
77 eluznn 2j+1k2j+1k
78 75 76 77 syl2an φj0k2j+12j+1+11k
79 70 78 1 syl2an2r φj0k2j+12j+1+11Fk
80 fveq2 k=2j+1Fk=F2j+1
81 80 eleq1d k=2j+1FkF2j+1
82 43 adantr φj0kFk
83 81 82 75 rspcdva φj0F2j+1
84 83 adantr φj0k2j+12j+1+11F2j+1
85 simpr φj0n2j+1n2j+1
86 simplll φj0n2j+1k2j+1nφ
87 75 adantr φj0n2j+12j+1
88 elfzuz k2j+1nk2j+1
89 87 88 77 syl2an φj0n2j+1k2j+1nk
90 86 89 1 syl2anc φj0n2j+1k2j+1nFk
91 simplll φj0n2j+1k2j+1n1φ
92 elfzuz k2j+1n1k2j+1
93 87 92 77 syl2an φj0n2j+1k2j+1n1k
94 91 93 3 syl2anc φj0n2j+1k2j+1n1Fk+1Fk
95 85 90 94 monoord2 φj0n2j+1FnF2j+1
96 95 ralrimiva φj0n2j+1FnF2j+1
97 fveq2 n=kFn=Fk
98 97 breq1d n=kFnF2j+1FkF2j+1
99 98 rspccva n2j+1FnF2j+1k2j+1FkF2j+1
100 96 76 99 syl2an φj0k2j+12j+1+11FkF2j+1
101 69 79 84 100 fsumle φj0k=2j+12j+1+11Fkk=2j+12j+1+11F2j+1
102 fzfid φj012j+11Fin
103 hashcl 12j+11Fin12j+110
104 102 103 syl φj012j+110
105 104 nn0cnd φj012j+11
106 75 nnred φj02j+1
107 106 recnd φj02j+1
108 hashcl 2j+12j+1+11Fin2j+12j+1+110
109 69 108 syl φj02j+12j+1+110
110 109 nn0cnd φj02j+12j+1+11
111 2z 2
112 zexpcl 2j+102j+1
113 111 73 112 sylancr φj02j+1
114 2re 2
115 1le2 12
116 nn0p1nn j0j+1
117 116 adantl φj0j+1
118 nnuz =1
119 117 118 eleqtrdi φj0j+11
120 leexp2a 212j+11212j+1
121 114 115 119 120 mp3an12i φj0212j+1
122 11 121 eqbrtrrid φj022j+1
123 111 eluz1i 2j+122j+122j+1
124 113 122 123 sylanbrc φj02j+12
125 uz2m1nn 2j+122j+11
126 124 125 syl φj02j+11
127 126 118 eleqtrdi φj02j+111
128 peano2zm 2j+12j+11
129 113 128 syl φj02j+11
130 peano2nn0 j+10j+1+10
131 73 130 syl φj0j+1+10
132 zexpcl 2j+1+102j+1+1
133 111 131 132 sylancr φj02j+1+1
134 peano2zm 2j+1+12j+1+11
135 133 134 syl φj02j+1+11
136 113 zred φj02j+1
137 133 zred φj02j+1+1
138 1red φj01
139 73 nn0zd φj0j+1
140 uzid j+1j+1j+1
141 peano2uz j+1j+1j+1+1j+1
142 leexp2a 212j+1+1j+12j+12j+1+1
143 114 115 142 mp3an12 j+1+1j+12j+12j+1+1
144 139 140 141 143 4syl φj02j+12j+1+1
145 136 137 138 144 lesub1dd φj02j+112j+1+11
146 eluz2 2j+1+112j+112j+112j+1+112j+112j+1+11
147 129 135 145 146 syl3anbrc φj02j+1+112j+11
148 elfzuzb 2j+1112j+1+112j+1112j+1+112j+11
149 127 147 148 sylanbrc φj02j+1112j+1+11
150 fzsplit 2j+1112j+1+1112j+1+11=12j+112j+1-1+12j+1+11
151 149 150 syl φj012j+1+11=12j+112j+1-1+12j+1+11
152 npcan 2j+112j+1-1+1=2j+1
153 107 16 152 sylancl φj02j+1-1+1=2j+1
154 153 oveq1d φj02j+1-1+12j+1+11=2j+12j+1+11
155 154 uneq2d φj012j+112j+1-1+12j+1+11=12j+112j+12j+1+11
156 151 155 eqtrd φj012j+1+11=12j+112j+12j+1+11
157 156 fveq2d φj012j+1+11=12j+112j+12j+1+11
158 expp1 2j+102j+1+1=2j+12
159 9 73 158 sylancr φj02j+1+1=2j+12
160 107 times2d φj02j+12=2j+1+2j+1
161 159 160 eqtrd φj02j+1+1=2j+1+2j+1
162 161 oveq1d φj02j+1+11=2j+1+2j+1-1
163 1cnd φj01
164 107 107 163 addsubd φj02j+1+2j+1-1=2j+1-1+2j+1
165 162 164 eqtrd φj02j+1+11=2j+1-1+2j+1
166 uztrn 2j+1+112j+112j+1112j+1+111
167 147 127 166 syl2anc φj02j+1+111
168 167 118 eleqtrrdi φj02j+1+11
169 168 nnnn0d φj02j+1+110
170 hashfz1 2j+1+11012j+1+11=2j+1+11
171 169 170 syl φj012j+1+11=2j+1+11
172 126 nnnn0d φj02j+110
173 hashfz1 2j+11012j+11=2j+11
174 172 173 syl φj012j+11=2j+11
175 174 oveq1d φj012j+11+2j+1=2j+1-1+2j+1
176 165 171 175 3eqtr4d φj012j+1+11=12j+11+2j+1
177 106 ltm1d φj02j+11<2j+1
178 fzdisj 2j+11<2j+112j+112j+12j+1+11=
179 177 178 syl φj012j+112j+12j+1+11=
180 hashun 12j+11Fin2j+12j+1+11Fin12j+112j+12j+1+11=12j+112j+12j+1+11=12j+11+2j+12j+1+11
181 102 69 179 180 syl3anc φj012j+112j+12j+1+11=12j+11+2j+12j+1+11
182 157 176 181 3eqtr3d φj012j+11+2j+1=12j+11+2j+12j+1+11
183 105 107 110 182 addcanad φj02j+1=2j+12j+1+11
184 183 oveq1d φj02j+1F2j+1=2j+12j+1+11F2j+1
185 fveq2 n=j+1Gn=Gj+1
186 oveq2 n=j+12n=2j+1
187 186 fveq2d n=j+1F2n=F2j+1
188 186 187 oveq12d n=j+12nF2n=2j+1F2j+1
189 185 188 eqeq12d n=j+1Gn=2nF2nGj+1=2j+1F2j+1
190 63 adantr φj0n0Gn=2nF2n
191 189 190 73 rspcdva φj0Gj+1=2j+1F2j+1
192 83 recnd φj0F2j+1
193 fsumconst 2j+12j+1+11FinF2j+1k=2j+12j+1+11F2j+1=2j+12j+1+11F2j+1
194 69 192 193 syl2anc φj0k=2j+12j+1+11F2j+1=2j+12j+1+11F2j+1
195 184 191 194 3eqtr4d φj0Gj+1=k=2j+12j+1+11F2j+1
196 101 195 breqtrrd φj0k=2j+12j+1+11FkGj+1
197 elfznn k12j+11k
198 70 197 1 syl2an φj0k12j+11Fk
199 102 198 fsumrecl φj0k=12j+11Fk
200 69 79 fsumrecl φj0k=2j+12j+1+11Fk
201 nn0uz 0=0
202 0zd φ0
203 simpr φn0n0
204 nnexpcl 2n02n
205 71 203 204 sylancr φn02n
206 205 nnred φn02n
207 fveq2 k=2nFk=F2n
208 207 eleq1d k=2nFkF2n
209 43 adantr φn0kFk
210 208 209 205 rspcdva φn0F2n
211 206 210 remulcld φn02nF2n
212 4 211 eqeltrd φn0Gn
213 201 202 212 serfre φseq0+G:0
214 213 ffvelcdmda φj0seq0+Gj
215 136 83 remulcld φj02j+1F2j+1
216 191 215 eqeltrd φj0Gj+1
217 le2add k=12j+11Fkk=2j+12j+1+11Fkseq0+GjGj+1k=12j+11Fkseq0+Gjk=2j+12j+1+11FkGj+1k=12j+11Fk+k=2j+12j+1+11Fkseq0+Gj+Gj+1
218 199 200 214 216 217 syl22anc φj0k=12j+11Fkseq0+Gjk=2j+12j+1+11FkGj+1k=12j+11Fk+k=2j+12j+1+11Fkseq0+Gj+Gj+1
219 196 218 mpan2d φj0k=12j+11Fkseq0+Gjk=12j+11Fk+k=2j+12j+1+11Fkseq0+Gj+Gj+1
220 eqidd φj0k12j+11Fk=Fk
221 1 recnd φkFk
222 70 197 221 syl2an φj0k12j+11Fk
223 220 127 222 fsumser φj0k=12j+11Fk=seq1+F2j+11
224 223 eqcomd φj0seq1+F2j+11=k=12j+11Fk
225 224 breq1d φj0seq1+F2j+11seq0+Gjk=12j+11Fkseq0+Gj
226 eqidd φj0k12j+1+11Fk=Fk
227 elfznn k12j+1+11k
228 70 227 221 syl2an φj0k12j+1+11Fk
229 226 167 228 fsumser φj0k=12j+1+11Fk=seq1+F2j+1+11
230 fzfid φj012j+1+11Fin
231 179 156 230 228 fsumsplit φj0k=12j+1+11Fk=k=12j+11Fk+k=2j+12j+1+11Fk
232 229 231 eqtr3d φj0seq1+F2j+1+11=k=12j+11Fk+k=2j+12j+1+11Fk
233 simpr φj0j0
234 233 201 eleqtrdi φj0j0
235 seqp1 j0seq0+Gj+1=seq0+Gj+Gj+1
236 234 235 syl φj0seq0+Gj+1=seq0+Gj+Gj+1
237 232 236 breq12d φj0seq1+F2j+1+11seq0+Gj+1k=12j+11Fk+k=2j+12j+1+11Fkseq0+Gj+Gj+1
238 219 225 237 3imtr4d φj0seq1+F2j+11seq0+Gjseq1+F2j+1+11seq0+Gj+1
239 238 expcom j0φseq1+F2j+11seq0+Gjseq1+F2j+1+11seq0+Gj+1
240 239 a2d j0φseq1+F2j+11seq0+Gjφseq1+F2j+1+11seq0+Gj+1
241 22 28 34 40 68 240 nn0ind N0φseq1+F2N+11seq0+GN
242 241 impcom φN0seq1+F2N+11seq0+GN