Step |
Hyp |
Ref |
Expression |
1 |
|
comppfsc.1 |
|
2 |
|
elpwi |
|
3 |
1
|
cmpcov |
|
4 |
|
elfpw |
|
5 |
|
finptfin |
|
6 |
5
|
anim1i |
|
7 |
6
|
anassrs |
|
8 |
7
|
ancom1s |
|
9 |
4 8
|
sylanb |
|
10 |
9
|
reximi2 |
|
11 |
3 10
|
syl |
|
12 |
11
|
3exp |
|
13 |
2 12
|
syl5 |
|
14 |
13
|
ralrimiv |
|
15 |
|
elpwi |
|
16 |
|
0elpw |
|
17 |
|
0fin |
|
18 |
16 17
|
elini |
|
19 |
|
unieq |
|
20 |
|
uni0 |
|
21 |
19 20
|
eqtrdi |
|
22 |
21
|
rspceeqv |
|
23 |
18 22
|
mpan |
|
24 |
23
|
a1i13 |
|
25 |
|
n0 |
|
26 |
|
simp2 |
|
27 |
26
|
eleq2d |
|
28 |
27
|
biimpd |
|
29 |
|
eluni2 |
|
30 |
28 29
|
syl6ib |
|
31 |
|
simpl3 |
|
32 |
|
simprl |
|
33 |
31 32
|
sseldd |
|
34 |
|
elssuni |
|
35 |
34 1
|
sseqtrrdi |
|
36 |
33 35
|
syl |
|
37 |
36
|
ralrimivw |
|
38 |
|
iunss |
|
39 |
37 38
|
sylibr |
|
40 |
|
ssequn1 |
|
41 |
39 40
|
sylib |
|
42 |
|
simpl2 |
|
43 |
|
uniiun |
|
44 |
42 43
|
eqtrdi |
|
45 |
44
|
uneq2d |
|
46 |
41 45
|
eqtr3d |
|
47 |
|
iunun |
|
48 |
|
vex |
|
49 |
|
vex |
|
50 |
48 49
|
unex |
|
51 |
50
|
dfiun3 |
|
52 |
47 51
|
eqtr3i |
|
53 |
46 52
|
eqtrdi |
|
54 |
|
simpll1 |
|
55 |
33
|
adantr |
|
56 |
31
|
sselda |
|
57 |
|
unopn |
|
58 |
54 55 56 57
|
syl3anc |
|
59 |
58
|
fmpttd |
|
60 |
59
|
frnd |
|
61 |
|
elpw2g |
|
62 |
61
|
3ad2ant1 |
|
63 |
62
|
adantr |
|
64 |
60 63
|
mpbird |
|
65 |
|
unieq |
|
66 |
65
|
eqeq2d |
|
67 |
|
sseq2 |
|
68 |
67
|
anbi1d |
|
69 |
68
|
rexbidv |
|
70 |
66 69
|
imbi12d |
|
71 |
70
|
rspcv |
|
72 |
64 71
|
syl |
|
73 |
53 72
|
mpid |
|
74 |
|
simprr |
|
75 |
|
ssel2 |
|
76 |
75
|
3ad2antl3 |
|
77 |
76
|
adantrr |
|
78 |
|
elunii |
|
79 |
74 77 78
|
syl2anc |
|
80 |
79 1
|
eleqtrrdi |
|
81 |
80
|
adantr |
|
82 |
|
simprr |
|
83 |
81 82
|
eleqtrd |
|
84 |
|
eqid |
|
85 |
84
|
ptfinfin |
|
86 |
85
|
expcom |
|
87 |
83 86
|
syl |
|
88 |
|
simprl |
|
89 |
|
elun1 |
|
90 |
89
|
ad2antll |
|
91 |
90
|
ralrimivw |
|
92 |
50
|
rgenw |
|
93 |
|
eqid |
|
94 |
|
eleq2 |
|
95 |
93 94
|
ralrnmptw |
|
96 |
92 95
|
ax-mp |
|
97 |
91 96
|
sylibr |
|
98 |
97
|
adantr |
|
99 |
|
ssralv |
|
100 |
88 98 99
|
sylc |
|
101 |
|
rabid2 |
|
102 |
100 101
|
sylibr |
|
103 |
102
|
eleq1d |
|
104 |
103
|
biimprd |
|
105 |
93
|
rnmpt |
|
106 |
88 105
|
sseqtrdi |
|
107 |
|
ssabral |
|
108 |
106 107
|
sylib |
|
109 |
|
uneq2 |
|
110 |
109
|
eqeq2d |
|
111 |
110
|
ac6sfi |
|
112 |
111
|
expcom |
|
113 |
108 112
|
syl |
|
114 |
|
frn |
|
115 |
114
|
adantr |
|
116 |
115
|
ad2antll |
|
117 |
32
|
ad2antrr |
|
118 |
117
|
snssd |
|
119 |
116 118
|
unssd |
|
120 |
|
simprl |
|
121 |
|
simprrl |
|
122 |
121
|
ffnd |
|
123 |
|
dffn4 |
|
124 |
122 123
|
sylib |
|
125 |
|
fofi |
|
126 |
120 124 125
|
syl2anc |
|
127 |
|
snfi |
|
128 |
|
unfi |
|
129 |
126 127 128
|
sylancl |
|
130 |
|
elfpw |
|
131 |
119 129 130
|
sylanbrc |
|
132 |
|
simplrr |
|
133 |
|
uniiun |
|
134 |
|
simprrr |
|
135 |
|
iuneq2 |
|
136 |
134 135
|
syl |
|
137 |
133 136
|
eqtrid |
|
138 |
132 137
|
eqtrd |
|
139 |
|
ssun2 |
|
140 |
|
vsnid |
|
141 |
139 140
|
sselii |
|
142 |
|
elssuni |
|
143 |
141 142
|
ax-mp |
|
144 |
|
fvssunirn |
|
145 |
|
ssun1 |
|
146 |
145
|
unissi |
|
147 |
144 146
|
sstri |
|
148 |
143 147
|
unssi |
|
149 |
148
|
rgenw |
|
150 |
|
iunss |
|
151 |
149 150
|
mpbir |
|
152 |
138 151
|
eqsstrdi |
|
153 |
31
|
ad2antrr |
|
154 |
116 153
|
sstrd |
|
155 |
33
|
ad2antrr |
|
156 |
155
|
snssd |
|
157 |
154 156
|
unssd |
|
158 |
|
uniss |
|
159 |
158 1
|
sseqtrrdi |
|
160 |
157 159
|
syl |
|
161 |
152 160
|
eqssd |
|
162 |
|
unieq |
|
163 |
162
|
rspceeqv |
|
164 |
131 161 163
|
syl2anc |
|
165 |
164
|
expr |
|
166 |
165
|
exlimdv |
|
167 |
166
|
ex |
|
168 |
113 167
|
mpdd |
|
169 |
87 104 168
|
3syld |
|
170 |
169
|
ex |
|
171 |
170
|
com23 |
|
172 |
171
|
rexlimdv |
|
173 |
73 172
|
syld |
|
174 |
173
|
rexlimdvaa |
|
175 |
30 174
|
syld |
|
176 |
175
|
exlimdv |
|
177 |
25 176
|
syl5bi |
|
178 |
24 177
|
pm2.61dne |
|
179 |
15 178
|
syl3an3 |
|
180 |
179
|
3exp |
|
181 |
180
|
com24 |
|
182 |
181
|
ralrimdv |
|
183 |
1
|
iscmp |
|
184 |
183
|
baibr |
|
185 |
182 184
|
sylibd |
|
186 |
14 185
|
impbid2 |
|